血根碱在大鼠、猪和鸡的体外代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血根碱是一种天然的异喹啉类生物碱,具有抗菌、促进动物生长及杀虫等作用,在兽医领域具有广阔的应用前景。但血根碱具有一定的毒性,其主要代谢途径是被还原成毒性较低的二氢血根碱,而其中所参与的代谢酶和还原代谢机制尚未有研究报道,为此,本试验建立肝微粒体与胞液体外代谢系统、肠道代谢系统进行血根碱的体外代谢研究,旨在研究参与还原的代谢酶、肠道菌与代谢部位,以及种属间差异的比较,并鉴定血根碱在猪肝微粒体与胞液中的代谢产物与代谢路径的推导,为血根碱的临床合理、安全使用及残留代谢奠定基础。
     1血根碱在大鼠、猪和鸡微粒体与胞液中的还原代谢研究
     辅助因子核黄素(RIB)、黄素单核苷酸(FMN)、还原型烟酰胺腺嘌呤二核苷酸(NADH)、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)直接与血根碱孵育时,NADH、 NADPH能将血根碱还原为二氢血根碱;当与血根碱在大鼠、猪和鸡肝微粒体或胞液中孵育时,NADP、NADH能显著增强肝微粒体或胞液的还原能力。
     没有NAD (P) H参与时,大鼠肝、肾微粒体与心、肝、肾胞液,猪心、肝、肾微粒体与心、肝、肺、肾胞液,鸡肾胞液能将血根碱还原为二氢血根碱;NAD (P) H参与时,微粒体还原强弱依次为大鼠肾、肺、心、脾、脑、睾丸、肝;猪肾、肝、心、脾、肺;胞液还原强弱为大鼠心、肾、肺、肝、脾、脑、睾丸;猪肾、脾、肝、肺、心;鸡微粒体与胞液在组织间没有差异。
     还原酶抑制试验表明,鸡肝微粒体中是NADPH-细胞色素P450还原酶在发挥作用,在大鼠、猪肝微粒体中还有醌氧化还原酶1(NQO1)、醌氧化还原酶2(NQO2)或羰基还原酶发挥作用;在大鼠、猪和鸡各组织胞液中为NQO2或羰基还原酶发挥作用,而大鼠脾胞液、鸡心、肺、脑胞液、猪各组织胞液还含有(?)NQO1。
     2血根碱在肠道系统中的还原代谢研究
     NAD (P) H能让大鼠、猪和鸡肠微粒体、肠胞液与肠粘膜匀浆液生成二氢血根碱,猪各肠胞液还原酶活性最强,还原酶抑制试验表明大鼠、猪和鸡各个肠胞液中含有NQO2或羰基还原酶,而大鼠结肠胞液、猪、鸡各个肠胞液中还有NQO1.
     血根碱在大鼠、猪和鸡肠道内容物中能被还原为二氢血根碱,生成量由多到少依次为大鼠结肠、空肠、回肠、十二指肠;鸡回肠、空肠、十二指肠;猪回肠、十二指肠、空肠、结肠;三种动物肠道内容物还原强弱为猪、鸡、大鼠。
     3血根碱在猪肝微粒体与胞液中的代谢产物鉴定
     二氢血根碱是肝微粒体中的主要代谢产物和肝胞液中的唯一代谢产物,经三氯乙酸处理的肝微粒体样品中还鉴定出一个氧化产物,两个O-去甲基化代谢物,经乙腈处理的样品中还鉴定出伪血根碱和另外两个O-去甲基化代谢产物。
     综上所述,在大鼠、猪和鸡胞液中存在两条将血根碱转变为的二氢血根碱的代谢途径,一条是直接通过NAD(P)H进行非酶还原,另一条路径是通过胞液中的醌还原酶或羰基还原酶进行还原;在微粒体代谢途径中还有NADPH-细胞色素P450还原酶参与。在肠道内容物中能将血根碱还原成二氢血根碱降低其毒性,在不同种属动物肠道,同种动物不同肠道中,二氢血根碱的生成量有较大差异。从猪肝微粒体与胞液中总共鉴定出7种代谢产物,两条主要代谢路径是亚胺键还原与O-去甲基化,以上研究为血根碱的临床合理、安全使用,以及血根碱的残留代谢奠定试验研究基础。
Sanguinarine (SA) is a quaternary benzo[c]phenanthridine alkaloid and has been extensively studied because of its antimicrobial, antiproliferative and antiplatelet activities, which are worth applying it to veterinary medicine. SA has a little toxin, but it could be metabolized to less toxic dihydrosanguinarine (DHSA). This experiment was conducted to study the metabolic enzymes involved in the reduction metabolism of SA to DHSA by liver microsome, cytosol, intestinal mucosa and microbiota, and compare distribution of reduction enzymes and metabolic characteristics of rat, pig and chicken. Metabolic pathways of SA in pig liver microsomes and structures of metabolites were also aimed to be proposed.
     1. The study on reductive metabolism of SA by rat, pig and chicken liver preparations
     The results showed that when SA was incubated with riboflavin(RIB), flavin mononucleotide(FMN), reduced form of nicotinamide-adenine dinucleotid I (NADH), reduced form of nicotinamide-adenine dinucleotid II (NADPH), respectively, DHSA, the iminium bond reductive metabolite was formed by NAD(P)H. The reductase activity of the liver microsomes or cytosol of rat, pig or chicken was enhanced significantly in the presence of NADPH or NADH.
     When SA was incubated in different tissue microsomes and cytosol in the absence of NAD(P)H, DHSA could be formed in some tissues microsomes or cytosol which are as following, rat liver and kidney microsomes, pig heart, liver and kidney microsomes, rat heart, liver and kidney cytosol, pig heart, liver, kidney and lung cytosol, chicken kidney cytosol. In the presence of NADPH, the order of reduction activity of rat tissue microsomes was kidney> lung> heart> spleen>liver>brain>testicle, and the order of pig tissue microsomes was kidney>liver> heart> spleen> lung. In the presence of NADH, the order of reduction activity of rat tissue cytosol was heart>kidney> lung>liver> spleen>brain>testicle, and the order of pig tissue cytosol was kidney> spleen> lung>liver>heart. There was no significant difference in reduction activity among chicken tissue microsomes and cytosol.
     Inhibition studies indicated that NADPH-CYP450reductase was responsible for DHSA formation by chicken liver microsomes. Quinone oxidoreductase1(NQO1), quinone oxidoreductase2(NQO2) and/or carbonyl reductases(CBR) were responsible for DHSA formation by rat or pig liver microsomes. NQO2or CBR played the major role by rat, pig or chicken tissue cytosol. And there was still NQO1in rat spleen cytosol, chicken heart, lung, brain cytosol, and pig all tissue cytosol.
     2. The reductive metabolism of SA by intestinal metabolism system
     DHSA couldn't be formed when SA was incubated in intestinal microsomes, cytosol and mucosa in the absence of NAD(P)H, but DHSA could be formed in the presence of NAD(P)H. The reduction activity of pig intestinal cytosol was highest. Inhibition studies indicated that there was NQO2or CBR in rat, pig and chicken intestinal cytosol, and there was still NQO1in rat colon, pig and chicken intestinal cytosol.
     DHSA could be formed when SA was incubated in intestinal microbiota. The order of DHSA amount by rat intestinal microbiota was colon>jejunum> ileum> duodenum. The order by chicken intestinal microbiota was ileum>jejunum> duodenum. The order by pig intestinal microbiota was ileum> duodenum>jejunum> colon. The reduction activity of pig intestinal microbiota was highest among these animals intestinal microbiota.
     3. Identification of sanguinarine metabolites in pig liver preparations
     DHSA was the main metabolite formed in liver microsomes and the only one in cytosol. One oxidative metabolite and two O-demethylene metabolites of SA were found in the TCA-treated microsomal samples. SA pseudobase and two additional O-demethylene metabolites of DHSA were only found in the acetonitrile-treated microsomal samples.
     These results indicated that the SA reduction proceeds via two routes in the rat, pig and chicken cytosol. One route is direct non-enzymatic reduction by NAD(P)H, and the other is enzymatic reduction by possible carbonyl and/or quinone reductases. NADPH-CYP450reductase was involved in rat, pig and chicken microsomes additionally. DHSA could be formed when SA was incubated in intestinal microbiota. And the amount of DHSA was different obviously among different intestines of rat, pig and chicken. A total of seven metabolites in pig liver preparations were identified. The metabolic pathway was proposed to be reduction of iminium bond and O-demethylenation. These results laid a good foundation for making use of SA in the future.
引文
[1]Schmeller T, Latz-Bruning B, Wink M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores[J].Phytochemistry,2006,44:257-266.
    [2]Mitscher LA, Park YH, Clark D, Clark GW, Hammesfahr PD, Wu WN, Beal JL.Antimicrobial agents from higher plants:An investigation of Hunnemannia fumariaefolia pseudoalcoholates of sanguinarine and chelerythrine[J].Lloydia,2002, 41:145-150.
    [3]Dvorak Z, Simanek V. Metabolism of sanguinarine:The facts and the myths. Curr Drug Metab[J].2007,8:173-176.
    [4]Treschan TA, Peters J. The vasopressin system:Physiology and clinical strategies[J]. Anesthesiology,2006,105:599-612; quiz 639-540.
    [5]Singh R, Mackraj I, Naidoo R, Gathiram P.Sanguinarine downregulates AT1a gene expression in a hypertensive rat model [J].J Cardiovasc Pharmacol,2006,48:14-21.
    [6]ZHANG Q D, HUANG L ZH, etal.Insecticidal and fungicidal activities of the extracts of thirty medicinal plants[J]. Acta Bot.2006,26(6):1223-1230.
    [7]王祥云,刘新起,韦宇等.博落回总生物碱提取方法的研究[J].药物分析杂志,2003,23(1):23-27.
    [8]Jong Seong Kang, Pham Hoai Long, Hwan Mi Lim,Young Ho Kim, and Gottfried Blaschke. Achiral and Chiral Determination of Benzophenanthridine Alkaloids from Methanol Extracts of Hylomecon Species by High Performance Liquid Chromatography[J].Arch Pharm Res,2003,2(26):114-119.
    [9]L.Kursinszki, A.Sarkozi, A.Kery, E.Szoke. Improved RP-HPLC Method for Analysis of Isoquinoline Alkaloids in Extracts of Chelidonium majus[J]. Friedr,2006,63:131-35.
    [10]Psotova J, Klejdus B, Vecera R, Kosina P, Kuban V, Vicar J,Simanek V, Ulrichova J.A liquid chromatographic-mass spectrometric evidence of dihydrosanguinarine as a first metabolite of sanguinarine transformation in rat[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2006,830:165-172.
    [11]Vecera R, Klejdus B, Kosina P, Orolin J, Stiborova M, Smrcek S, Vicar J, Dvorak Z, Ulrichova J, Kuban V. Disposition of sanguinarine in the rat[J]. Xenobiotica.2007, 37:549-558.
    [12]Alain Deroussent, Micheline Re, Henri Hoellinger, Thierry Cresteil. Metabolism of sanguinarine in human and in rat:Characterization of oxidative metabolites produced by human CYP1A1 and CYP1A2 and rat liver microsomes using liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,52:391-397.
    [13]V.A.Chelombit'ko and D.A.Murav'eva. Bocconia microcarpe, Source of the alkaloids cheleritrine and sanguinarine[J]. Pharmaceutical Institute, Pyatigorsk,1968,2:49-52.
    [14]R.Nandi, M.Maiti, K.Chaudhuri, S.B.Mahato and A.K.Bairagi. Sensitivity of vibrios to sanguinarine[J].Experientia,1983,39:524-525.
    [15]Ladanyi P(1984) Antimicrobial agent.Canadian patent no.1177407.
    [16]M.Wink,T.Schmeller,and B.Latz-Bruning.Modes of Action of Allelochemical Alkaloids:Interaction with Neuroreceptors,DNA, and Other Molecular Targets[J]. Journal of Chemical Ecology,1998,11 (24):1881-1937.
    [17]A.Vollekova, D.Kosialova, R.Sochorova. Isoquinoline Alkaloids from Mahonia aquifolium Stem Bark Are Active against Malassezia spp[J]. Folia Microbiol,2001, 46(2):107-111.
    [18]王高学,王建福,原居林等.博落回杀火鱼类指环虫和病原菌活性成分的研究[J].西北植物学报,2007,27(8):1650-1655.
    [19]郁建平,赵东亮,孟祥斌等.博落回生物碱对8种真菌的抑菌作用[J].山地农业生物学报,2006,25(1):89-91.
    [20]冯岗,张静,冯俊涛,等.小果博落回中2种杀虫活性成分的分离及鉴定[J].西北植物学报,2008,28(1):179-180.
    [21]J.A. Duke, CRC Handbook of Medicinal Herbs, CRC Press, Boca Raton, FL,1985.
    [22]Haseeb Ahsan, Shannon Reagan-Shaw, Jorien Breur, Nihal Ahmad, Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins[J]. Cancer Letters,2007,249:198-208.
    [23]Mei-Chi Chang a, Chiu-Po Chan b, Ying-Jan Wang Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization[J]. Toxicology and Applied Pharmacology 2007,128:143-151.
    [24]Teresa L.Serafim a, Ju lio A.C.Matos a,Vilma A.Sarda o Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells-Nuclear vs.mitochondrial effects[J]. Biochemical pharma cology,2008,76:1459-1475.
    [25]Holy J, Lamont G, Perkins E. Disruption of nucleocytoplasmic trafficking of cyclin Dl and topoisomerase II by sanguinarine [J]. BMC Cell Biol,2006,7:13.
    [26]黄馨慧,罗明志,齐浩.龙胆苦苷等6种中草药提取物对SMMC-7721人肝癌细胞增殖的影响[J].西北药学杂志,2001,19(4):166-168.
    [27]Azhar R.Hussain, Naif A.Al-Jomah, Abdul K.Siraj,etl.Sanguinarine-Dependent Induction of Apoptosis in Primary Effusion Lymphoma Cells[J].Cancer Res,2007,67, (8):3888-3897.
    [28]Smita S.Matkar, Lisa A.Wrischnik and Utha Hellmann-Blumberg.Sanguinarine causes DNA damage and p53-independent cell death in human colon cancer cell lines [J]. Chemico-Biological Interactions,2008,172:163-171.
    [29]Dhana E.Larsson, Malin Wickstrom, Sadia Hassan, Kjell Oberg and Dan Granberg.The Cytotoxic Agents NSC-95397, Brefeldin A, Bortezomib and Sanguinarine Induce Apoptosis in Neuroendocrine Tumors In Vitro[J]. Anticancer Research,2010,30:149-156.
    [30]C.M.Hu, H.W.Cheng, Y.W.Cheng and J.J.Kang.Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine[J]. British Journal of Pharmacology,2000,130:299-306.
    [31]Chen Ming HU et al. Mechanisms Underlying the Induction of Vasorelaxation in Rat Thoracic Aorta by Sanguinarine[J].Jpn.J.Pharmacol,2001,85:47-53.
    [32]Chien Ming Hu, Yu Wen Cheng, Jiunn Wang Liao, Huei Wen Cheng & Jaw JouKang. Induction of contracture and extracellular Ca2+ influx in cardiac muscle by sanguinarine:a study on cardiotoxicity of sanguinarine[J]. Journal of Biomedical Science,2005,12:399-407.
    [33]S. N. SARKAR. Isolation from Argemone Oil of Dihydrosanguinarine and Sanguinarine:Toxicity of Sanguinarine[J]. Nature,1948,162:265-266.
    [34]Dalvi RR Sanguinarine:Its potential as a liver toxicalkaloid present in the seeds of Argemone mexicana[J].Experientia,2007,41:77-78.
    [35]Williams MK, Dalvi S, Dalvi RR. Influence of 3-methylcholanthrene pretreatment on sanguinarine toxicity in mice[J]. Vet Hum Toxicol,2000,42:196-198.
    [36]Becci PJ, Schwartz H, Barnes HH, Southard GL Short-term toxicity studies of sanguinarine and of two alkaloid extracts of Sanguinaria canadensis[J]. Toxicol Environ Health 2007:199-208.
    [37]Singh R, Mackraj I, Naidoo R, Gathiram P Sanguinarine downregulates AT1a gene expression in a hypertensive rat model[J]. J Cardiovasc Pharmacol,2005,48:14-21.
    [38]Hakim SA, Mijovic V, Walker J:Experimental transmission of sanguinarine in milk, Detection of a metabolic product[J]. Nature,1961,189,201-204.
    [39]Tandon S, Das M, Khanna SK:Biometabolic elimination and organ retention profile of argemone alkaloid, sanguinarine, in rats and guinea pigs[J]. Drug Metab Dispos,1993, 21,194-197.
    [40]P. Kosina, J. Vacek, B. Papouskova, M. Stiborova, J. Styskala, P. Cankar, E. Vrublova, J. Vostalova, V. Simanek, J. Ulrichova, Identification of benzo[c]phenanthridine metabolites in human hepatocytes by liquid chromatography with electrospray ion-trap and quadrupole time-of-flight mass spectrometry[J]. J. Chromatogr. B.2011,879,1077.
    [41]M. Janovska, M. Kubala, V. Simanek, J. Ulrichova, Fluorescence of sanguinarine: fundamental characteristics and analysis of interconversion between various forms[J]. Anal. Bioanal. Chem.2009,395,235.
    [42]Dhana E.Larsson, Sadia Hassan, Rolf Larsson, Kjell Oberg,Dan Granberg.Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines[J].Cancer Chemother Pharmacol,2009,65:5-12.
    [43]Repesh LA.A new in vitro assay for quantitating tumor cell invasion[J].Invasion Metastasis 1989,9:192-208.
    [44]Repesh LA, Drake SR, Warner MC.Adriamycin-induced inhibition of melanoma cell invasion is correlated with decreases in tumor cell motility and increases in focal contact formation[J].Clin Exp Metastasis 1993,11:91-102.
    [45]Zdarilova A, Vrza R, Rypka M, Ulrichova J, Dvorak Z. Investigation of sanguinarine and chelerythrine effects on CYP1A1 expression and activity in human hepatoma cells[J]. Food Chem Toxicol,2004,44:242-249.
    [46]Ahmad N, Gupta S, Husain MM, Heiskanen KM, Mukhtar H. Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells[J]. Clin Cancer Res 2006,6:1524-1528.
    [47]Das M, Ansari KM, Dhawan A, Shukla Y, Khanna SK. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice[J].Int J Cancer,2008,117:709-717.
    [48]Anderson KM, Stoner GD, Fields HW, Chacon GE, Dohar AL,Gregg BR, Mallery SR.Immunohistochemical assessment of Viadent-associated leukoplakia[J].Oral Oncol. 2005,41:200-207.
    [49]饶茂阳,郁建生.禽痢净口服液的临床效果观察[J].中兽医药杂志,2001,(4):17-18.
    [50]Pavel Kosina, Daniela Walterova, Jit ka Ulrichova.Sanguinarine and cheleryt hrine: assessment of safety on pigs in ninety days feeding experiment[J].Food and Chemical Toxicology.2004,42:85-91.
    [51]Nelson A C, Huang W, Moody D E. Variables in human microsomes preparation:impact on the kinetics of L-alpha-acetylmethadol (LAAM) n-demethylation and dextrome thorphan O-demethylation[J]. Drug Metabolism and Disposition,2001,29(3):319-325.
    [52]Pearce R E, Mcintyre C J, Madan A, Sanzgiri U, Draper A J, Bullock P L, Cook D C, Burton L A, Latham J, Nevins C, Parkinson A. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity[J]. Archives of Biochemistry and Biophysics,1996,331(2):145-169.
    [53]Diaz G J, Squires E J. Metabolism of 3-methylindole by porcine live microsomes: responsible cytochrome P450 enzymes[J]. Toxicological Sciences,2000,55(2): 284-292.
    [54]Kanon M, Saeki K I, Kato T A, Takahashi K, Mizutani T. Study of in vitro glucuronidation of hydroxyquinolines with bovine liver microsomes [J]. Fundamental and Clinical Pharmacology,2002,16(6):513-517.
    [55]Desille M, Corcos L, Lhelgoualch A, Fremond B, Campion J-P, Guillouzo A, Clement B. Detoxifying activity in pig liver and hepatocytes intended for xenotherapy[J]. Transplantation,1999,68(10):1437-1443.
    [56]Horslen S P, Hammel J M, Fristoe L W, Kangas J A, Collier D S, Sudan D L, Langnas A N, Dixon R S, Prentic E D, Shaw B W, Fox I J. Extracorporeal liver perfusion using human and pig liver for acute liver failure[J]. Transplantation,2000,70(10):1472-1478.
    [57]Kvetina J, Svoboda Z, Nobilis M, Pastera J, Anzenbacher P. Experimental Goettingen minipig and beagle dog as two species used in bioequivalence studies for clinical pharmacology (5-aminosalicylic acid and atenolol as model drugs) [J]. General Physiology and Biophysics,1999,18:80-85.
    [58]Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism [J]. Journal of Cellular and Molecular Medicine,2002,6(2): 189-198.
    [59]Anzenbacher P, Soucek P, Anzenbacherova E, Gut I, Hruby K, Svoboda Z and Kvetina J. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples[J]. Drug Metabolism and Disposition,1998, 26(1):56-59.
    [60]Court M H, Von Moltke L L, Shader R I, Greenblatt D J. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species[J]. Biopharmaceutics and Drug Disposition,1997,18(3):213-226.
    [61]Szotakova B, Baliharova V, Lamka J, Nozinova E, Wsol V, Velik J, Machala M, Necal J, Soucek P, Susova S, Skalova L. Comparsion of in vitro activities of biotransformation enzymes in pig, cattle, goat and sheep[J]. Research in Veterinary Science,2004,76(1): 43-51.
    [62]Doran E, Whittington F M, Wood J D, Mc Givan J D. Characterisation of androstenone metabolism in pig liver microsomes[J]. Chemico-Biological Interactions,2004,147(2): 141-149.
    [63]Salva M, Jansat J M, Martinez-Tobed A, Palacios J M. Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan[J]. Drug Metabolism and Disposition,2003,31(4):404-411.
    [64]Walton M I, Wolf C R and Workman P. The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-1,2,4-benzotrizine-1,4-dioxide (SR 4233, WIN 59075) by mouse liver[J]. Biochemical Pharmacology,1992,44(2):251-259.
    [65]Myers M J, Farrell D E, Howard K D and Kawalek J C. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine[J]. Drug Metabolism and Disposition,2001,29(6):908-915.
    [66]Nebbia C, Ceppa L, Dacasto M, Carletti M, Nachtmann C. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents:evidence for the involvement of cytochrome P450 3A subfamily[J]. Drug Metabolism and Disposition,1999,27(9):1039-1044.
    [67]Ekins S, Ring B J, Grace J, McRobie-Belle D J, Wrighton S A. Present and future in vitro approaches for drug metabolism[J]. Journal of Pharmacological and Toxiological Methods,2000,44(1):313-324.
    [68]Kostrubsky V E, Sinclair J F, Ramachandran V, Venkataramanan R, Wen Y H, Kindt E, Galchev V, Rose K, Sinz M, Strom S C. The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures[J]. Drug Metabolism and Disposition,2000,28(10):1192-1197.
    [69]Skalova L, Wsol V, Baliharova V, Kral R, Szotakova B, Velit J, Lamka J. Reduction of flobufen in pig hepatocytes:effect of pig breed (domestic,wild) and castration[J]. Chirality,2003,15(3):213-219.
    [70]Gomez-Lechon M J, Donato M T, Castell J V, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism[J]. Current Drug Metabolism,2003,4(4): 292-312.
    [71]Farkas D, Tannenbaum S R. In vitro methods to study chemically-induced hepatotoxicity: a literature review[J]. Current Drug Metabolism,2005,6(2):111-125.
    [72]Santi A, Anfossi P, Coldham N G, Capolongo F, Sauer M J, Montesissa C. Biotransformation of benzydamine by microsomes and precision-cut slices prepared from cattle live[J]. Xenobiotica,2002,32(1):73-86.
    [73]Zalko D, Debrauwer L, Bories G, Tulliez J. Metabolism of clenbuterol in rats[J]. Drug Metabolism and Disposition,1998a,26(9):891-899.
    [74]De Kanter R, Monshouwer M, Meijer D K, Groothuis G M. Precision-cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues[J]. Current Drug Metabolism,2002,3(1):39-59.
    [75]Hoensch H P, Hutt R, and Hartmann F. Biotransformation of xenobiotics in human intestinal mucosa[J]. Environmental Health Perspectives,1979,33:71-78.
    [76]Ilett K F, Tee L, Reeves P T, and Minchin R F. Metabolism of drugs and other xenobiotics in the gut lumen and wall[J]. Pharmacology & Therapeutics,1990,46(1): 67-93.
    [77]Scheline R R. Metabolism of foreign compounds by gastrointestinal microorganisms[J]. Pharmacological Reviews,1973,25(4):451-523.
    [78]Scheline R R. Drug metabolism by intestinal microorganisms[J]. Journal of Pharmaceutical Sciences,1968,57(12):2021-2037.
    [79]Gushchin G V, Gushchin M I, Gerber N, and Boyd R T. A novel cytochrome P450 3A isoenzyme in rat intestinal microsomes[J]. Biochemical and Biophysical Research Communications,1999,255(2):394-398.
    [80]Matsubara T, Kim H J, Miyata M, Shimada M, Nagata K, and Yamazoe Y. Isolation and characterization of a new major intestinal CYP3A form, CYP3A62, in the rat[J]. Journal of Pharmacology and Experimental Therapeutics,2004,309(3):1282-1290.
    [81]Takara K, Ohnishi N, Horibe S, and Yokoyama T. Expression profiles of drug-metabolizing enzyme cyp3a and drug efflux transporter multidrug resistance 1 subfamily mrnas in small intestine[J]. Drug Metabolism and Disposition,2003,31(10): 1235-1239.
    [82]Kaminsky L S and Fasco M J. Small intestinal cytochromes p450[J]. Critical Reviews in Toxicology,1991,21(6):407-422.
    [83]Chung K T, Jr Stevens S E, and Cerniglia C E. The reduction of azo dyes by the intestinal microflora[J]. Critical Reviews in Microbiology,1992,18(3):175-90.
    [84]Barker P S, Morrison F O, and Whitaker R S. Conversion of DDT to DDD by proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse[J]. Nature,1965, 205(4971):621-622.
    [85]Cole M. Hydrolysis of penicillins and related compounds by the cell-bound penicillin acylase of Escherichia coli[J]. Biochemical Journal,1969,115(4):733-739.
    [86]Hamilton-Miller J M. Penicillinacylase[J]. Bacteriology Review,1966,30(4):761-771.
    [87]Melnykowycz J and Johansson K. R. Formation of amines by intestinal microorganisms and the influence of chlortetracycline[J]. Journal of Experimental Medicine,1955, 101(5):507-517.
    [88]Uno T and Kono M. studies on the metabolism of sulfisoxazole. v. on the deacetylation of n-acetylsulfisoxazole by intestinal bacteria[J].. Yakugaku Zasshi-Journal of The Pharmaceutical Society of Japan,1961,81:1434-1436.
    [89]王从品和吕承哲.影响黄酮苷类药物口服吸收的因素[J].中国医院药学杂志,2006,26(11):1395-1396
    [90]徐叔云.药理学实验方法.北京:人民卫生出版社,2002:511-512.
    [91]Tsuneo Omura, Ryo Sato. The Carbon Monoxide-binding Pigment of Liver Microsomes[J]. Journal of Biological Chemistry,1964,239(7):2370-2377.
    [92]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analyt. Biochem, 1976,72:248-254.
    [93]Rosemond MJ, Walsh JS. Human carbonyl reduction pathways and a strategy for their study in vitro[J]. Drug Metab Rev,2004,36,335-361.
    [94]Kitamura S, Sugihara K, Ohta S.Drug-metabolizing ability of molybdenum hydroxylases[J]. Drug Metab Pharacokinet,2006,21,83-98.
    [95]Long DJ, Jaiswal AK.NRH:quinine oxidoreductase2 (NQO2) [J]. Chem Biol Interact 2000,129,99-112.
    [96]Colombo ML, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae) [J]. Pharmacol Res,1996,33,127-134.
    [97]Boutin JA, Chatelain-Egger F, Vella F, Delagrange P, Ferry G. Quinone reductase 2 substrate specificity and inhibition pharmacology[J]. Chem Biol Interact,2005,151, 213-228.
    [98]Vrublova E, Vostalova J, Vecera R, Klejdus B, Stejskal D, Kosina P, Zdarilova A et al. The toxicity and pharmacokinetics of dihydrosanguinarine in rat:a pilot study[J]. Food Chem Toxicol,2008,46,2546-2553.
    [99]Vrba J, Dolezel P, Vicar J, Ulrichova J:Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells[J]. Toxicol In Vitro, 2009,23,580-588.
    [100]Janovska M, Kubala M, Simanek V, Ulrichova J. Fluorescence of sanguinarine: fundamental characteristics and analysis of interconversion between various forms[J]. Anal Bioanal Chem,2009,395,235-240.
    [101]Kovar J, Stejskal J, Paulova H, Slavik J. Reduction of quaternary benzophenanthridine alkaloids by NADH and NADPH[J]. Collect. Czech. Chem. Commun,1986,51, 2626-2634.
    [102]Matkar SS, Wrischnik LA, Hellmann-Blumberg U.Production of hydrogen peroxide and redox cycling can explain how sanguinarine and chelerythrine induce rapid apoptosis[J]. Arch Biochem Biophys,2008,477,43-52.
    [103]梁文权.生物药剂学与药物动力学.北京:人民卫生出版社,2007:128-140.
    [104]邹思湘.生物化学.北京:中国农业出版社,2011:111-114.
    [105]Weiss D, Baumert A, Vogel M, Roos W. Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification[J]. Plant Cell Environ,2006,29,291-302.
    [106]Jez JM, Penning TM. The aldo-keto reductase (AKR) superfamily:an update[J]. Chem Biol Interact,2001,130-132(1-3),499-525.
    [107]Vrba J, Orolinova J, Ulrichova J Induction of heme oxygenase-1 by Macleaya cordata extract and its constituent sanguinarine in RAW264.7 cells[J]. Fitoterapia,2012,83, 329-335.
    [108]Nguyen T, Nioi P, Pickett C B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. J Biol Chem,2009,20,13291-13295.
    [109]Wang W, Jaiswal AK. Nuclear factor Nrf2 and antioxidant response element regulate NRH:quinone oxidoreductase 2 (NQO2) gene expression and antioxidant induction[J]. Free Radic Biol Med.2006,40,1119-1130.
    [110]Fang W F and Strobel H W. The drug and carcinogen metabolism system of rat colon microsomes[J]. Archives of Biochemistry and Biophysics,1978,186(1):128-138.
    [111]Goon D and Klaassen C D. Effects of microsomal enzyme inducers upon UDP-glucuronic acid concentration and UDP-glucuronosyltransferase activity in the rat intestine and liver[J]. Toxicological and Applied Pharmacology,1992,115(2): 253-260.
    [112]Lu X, Li C, and Fleisher D. Cimetidine sulfoxidation in small intestinal microsomes[J]. Drug Metabolism and Disposition,1998,26(9):940-942.
    [113]Keppler K, Hein E M, and Humpf H U. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation[J]. Molecular Nutrition & Food Research,2006,50(8):686-695.
    [114]Keppler K and Humpf H U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora[J]. Bioorganic & Medicinal Chemistry,2005,13(17):5195-5205.
    [115]Labib S, Erb A, Kraus M, Wickert T, and Richling E. The pig caecum model:a suitable tool to study the intestinal metabolism of flavonoids[J]. Molecular Nutrition & Food Research,2004,48(4):326-332.
    [116]Robertson L W, Chandrasekaran A, Reuning R H, Hui J, and Rawal B D. Reduction of digoxin to 20R-dihydrodigoxin by cultures of Eubacterium lentum[J]. Applied and Environmental Microbiology,1986,51(6):1300-1303.
    [117]Groh H, Schade K, and Horhold-Schubert C. Steroid metabolism with intestinal microorganisms[J]. Journal of Basic Microbiology,1993,33(1):59-72.
    [118]J. Dostal, M. Potacek. Quaternary benzo[c]phenanthridine alkaloids[J]. Collect. Czech. Chem. Commun.1990,55,2840
    [119]Z. Liu, L. Huang, M. Dai, D. Chen, Y. Tao, Y. Wang, Z. Yuan. Metabolism of cyadox in rat, chicken and pig liver microsomes and identification of metabolites by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry[J], Rapid Commun. Mass Spectrom.2009,23,2026.
    [120]Y. Liang, L. Liu, S. Lu, L. Xie, A. Kang, T. Xie, Y. Xie, L. Sheng, X. Liu, G.J.Wang. Application of a hybrid ion trap/time-of-flight mass spectrometer in metabolite characterization studies:structural identification of the metabolism profile of antofloxacin in rats rapidly using MSn information and accurate mass measurements[J]. J. Pharm. Biomed. Anal.2009,50,1022.
    [121]Z.Y. Liu, L.L. Huang, D.M. Chen, M.H. Dai, Y.F. Tao, Y.L. Wang, Z.H. Yuan. Application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry in the rapid characterization of quinocetone metabolites formed in vitro[J]. Anal. Bioanal.Chem.2010,396,1259.
    [122]Z.Y. Liu. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies[J]. J. Mass Spectro. 2012,47,1627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700