血根碱抗宫颈癌作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是当前危害人类健康的重要疾病之一,对人类生存构成最严重的威胁。目前较为成熟的治疗方法有手术、放疗、化疗及免疫治疗等。近年来,肿瘤化疗取得了很大的进步,但对危害人类生命健康最严重的、占恶性肿瘤90%以上的实体瘤的治疗效果不尽人意,并且绝大多数抗肿瘤药物在抑制或杀伤肿瘤细胞的同时对正常组织、器官不可避免地产生毒性作用,给患者带来痛苦,甚至导致死亡。据最新癌症研究统计,宫颈癌在世界范围发病率在女性恶性肿瘤中居第二位,仅次于乳腺癌,且近年来宫颈癌的年轻病例数呈逐年增多趋势。因此,开发与研究新型有效的抗宫颈癌药物是生物医药研究领域的重大课题和长期任务。
     最近几年,使用中草药来预防和治疗宫颈癌已成为宫颈癌治疗的热点。寻求能够抑制肿瘤生长、引起细胞周期阻滞、诱导细胞凋亡和抑制肿瘤转移的中草药已成为当今宫颈癌研究的新领域。血根碱来源于罂粟科植物博落回的果实,早期的研究发现它具有抗炎、抗菌、抗氧化并对中枢神经有麻醉作用,最近的研究表明血根碱在人类上皮癌、前列腺癌、人黑色素瘤、结肠腺癌、乳腺癌等多种肿瘤中均有抗肿瘤作用,但通过文献检索发现,血根碱在宫颈癌方面的缺乏系统研究,对宫颈癌的作用机制尚不明确,因此本课题旨在研究血根碱抗宫颈癌作用及其机制,为更深入开展血根碱的基础和临床研究提供实验基础和理论依据。本课题的研究内容共分四个部分。
     第一部分血根碱抑制宫颈癌细胞增殖、诱导凋亡及其机制的研究
     目的:研究血根碱在体外对宫颈癌细胞HeLa和Siha生长、周期阻滞和凋亡的影响,并以正常GM和ECV304细胞作为对照,初步探讨其作用机制。
     方法:采用倒置显微镜和活细胞工作站观察不同浓度血根碱作用后HeLa、Siha、GM和ECV304细胞形态的变化;应用MTT和克隆形成法检测不同浓度血根碱对细胞的生存率的影响;通过流式细胞术分析血根碱处理后细胞周期的变化;DNA凝胶电泳、TUNEL法、碱性“彗星”电泳、Annexin V和PI双染法检测、透射电镜等手段定性和定量探讨血根碱诱导宫颈癌细胞凋亡的状况。采用活性氧检测试剂盒和线粒体膜电位检测试剂盒测定血根碱处理后宫颈癌细胞中ROS的改变和线粒体膜电位的变化。最后用Western blot检测血根碱对细胞周期和凋亡相关蛋白表达的变化。
     结果:(1)血根碱能够明显抑制宫颈癌HeLa细胞和Siha细胞的生长,并呈时间依赖和浓度依赖关系,且HeLa细胞对血根碱敏感性高于Siha细胞;(2)血根碱可以引起宫颈癌细胞周期G2/M期阻滞,并能明显诱导细胞凋亡,同时促发ROS的生成和引起线粒体膜电位的降低;(3)血根碱明显下调细胞周期调节蛋白CyclinB1、CyclinE和CDC2的表达水平,而上调了p21和p27的表达水平;(4)血根碱处理后,凋亡相关蛋白NF-кB、Bcl-2、Procaspase3、P-Erk、P-P38和P-JNK蛋白表达水平出现明显上调,而Cytochrome C、AIF、Cleaved PARP和P-JNK蛋白表达水平则出现明显下调。
     第二部分血根碱体外诱导宫颈癌细胞自噬及其机制的研究
     目的:研究血根碱在体外诱导宫颈癌细胞自噬及其可能的机制
     方法:采用MTT比色法观察自噬抑制剂3-MA影响血根碱的宫颈癌细胞增殖抑制作用;通过透射电镜观察和MDC染色方法检测血根碱处理后宫颈癌细胞自噬的发生;应用Western blot方法检测自噬相关蛋白LC3和Beclin1表达水平。
     结果:血根碱处理导致宫颈癌HeLa和Siha细胞中自噬囊泡明显增多,并呈浓度和时间依赖关系;自噬抑制剂3-MA可以逆转血根碱对宫颈癌细胞生长的抑制作用。血根碱处理使宫颈癌细胞中LC3II和Beclin1的蛋白表达水平出现了明显上调。
     第三部分血根碱对体外宫颈癌细胞转移的影响及分子机制研究
     目的:研究血根碱对宫颈癌细胞粘附、转移及侵袭的影响,并探讨其作用的初步机制。
     方法:通过贴壁实验方法检测血根碱处理后宫颈癌细胞粘附能力的影响。采用划痕实验方法检测血根碱对肿瘤细胞体外迁移能力的影响。通过Boyden小室法检测血根碱对肿瘤细胞转移能力的影响;最后用Western blot方法检测侵袭和转移相关蛋白表达水平的变化。
     结果:血根碱可以抑制宫颈癌HeLa和Siha细胞的粘附、迁徙、运动及侵袭转移能力,并呈浓度和时间依赖关系,而且在无毒性的剂量下也明显抑制细胞的侵袭转移。其机制与上调了钙粘附蛋白(E-cadherin)蛋白表达水平,下调α-catenin、β-catenin和γ-catenin的蛋白表达水平有关。另外也发现了基质金属蛋白酶MMP-2和MMP-9和VEFG的蛋白表达水平随着血根碱浓度的增加而下降;抑癌基因PTEN蛋白的表达水平则随着血根碱浓度的增加而增加。
     第四部分血根碱体内对宫颈癌的抑制作用及其机制的研究
     目的:建立裸鼠的宫颈癌移植瘤模型,观察血根碱在动物体内对宫颈癌生长的抑制作用,并初步探讨其作用机制。
     方法:首先将HeLa细胞接种Babl/C裸鼠臀部,建立裸鼠宫颈癌移植瘤模型;按处理分组为:生理盐水对照组、顺铂阳性对照组(5mg/kg,1次/周,iP)、血根碱低浓度组(1.25mg/kg,1次/3天,iP)和血根碱高浓度组(2.5mg/kg,1次/3天,iP),连续腹腔注射给药治疗28天,随后继续观察28天。期间观察动物一般生命体征的改变和肿瘤体积变化;实验结束时观察实验组和对照组肿瘤周围血管以及肿瘤侵袭转移情况,并取肿瘤进行HE染色观察肿瘤的病理学改变及瘤内和周边血管情况;采用免疫组化法检测肿瘤组织中CD34、Ki67、EGFR和VEGF的表达水平;Western blot方法检测肿瘤组织内Bcl-2、 Bax和VEGF蛋白表达水平;采用透射电镜检测肿瘤组织中细胞超微结构改变。
     结果:血根碱在实验剂量下对荷瘤裸鼠无明显毒副作用,血根碱能够明显抑制宫颈癌HeLa细胞移植肿瘤的生长,并呈一定的浓度依赖性,且这种抑制作用与经典化疗药物顺铂的抑瘤疗效相当。其机制可能与血根碱能够抑制肿瘤的血管生成有关,发现在血根碱治疗的肿瘤组织中CD34、Ki67、EGFR和VEGF的表达均出现下调。电镜结果显示血根碱治疗组的肿瘤组织中出现了自噬和凋亡共存现象。血根碱治疗组肿瘤组织抑凋亡蛋白Bcl-2显现下调和促凋亡蛋白Bax则显现上调。
     结论本课题分别以宫颈癌HeLa和Siha细胞为体外研究对象和裸鼠宫颈癌移植瘤模型为体内研究对象,分别从细胞,蛋白分子和动物研究水平探讨了血根碱抑制宫颈癌的抗肿瘤作用,研究结论总结如下:
     1.血根碱可以抑制宫颈癌HeLa和Siha细胞生长,并呈剂量依赖和时间依赖关系。
     2.血根碱可以诱导宫颈癌细胞发生G2/M期周期阻滞,其机制是可能是通过激活NF-κB,继而上调p21和p27表达,从而抑制Cdc2/CyclinB1复合物的活性有关。
     3.血根碱可以诱导宫颈癌细胞发生凋亡,其机制是(1)通过上调Bax蛋白表达水平和下调Bcl-2、NF-кB的表达水平;(2)诱导宫颈癌细胞产生ROS,继而引起线粒体膜电位的下降,启动了Cytochrome C→Caspase-9→Caspase-3→PARP通路;(3)激活了MAPK信号通路。
     4.血根碱可以诱导宫颈癌细胞发生自噬, LC3和Beclin1蛋白参与了自噬的调控。
     5.血根碱可以抑制宫颈癌细胞的侵袭和转移能力,其机制可能包括(1)首先激活上游钙粘附蛋白(E-cadherin)、α-catenin、β-catenin和γ-catenin的表达,通过影响Catenins、E-Cadherin和细胞骨架之间信号传递的作用,继而抑制下游基质金属蛋白酶MMP-2和MMP-9活性抑制其侵袭和转移;(2)抑制VEFG和PTEN的表达从而抑制宫颈癌细胞的侵袭和转移能力。
     6.血根碱在体内也能够明显抑制异体移植瘤宫颈癌的生长,其机制可能与抗血管生成、抑制肿瘤细胞增殖、诱导凋亡和自噬有关。
     7.与肿瘤细胞的敏感性相比,血根碱对正常细胞的毒性明显要小,而且在明显抑制肿瘤生长的剂量条件下,血根碱对裸鼠未产生明显的毒副作用。这些实验结果表明血根碱对肿瘤细胞有较好的选择性,这为临床试验深入研究提供了非常好的实验基础和理论依据。
Purpose:
     The aim of study was to investigate the ant-cancer activities of sanguinarine incervical cancer and its possible mechanisms via a series of in vitro and in vivo studies.
     Methods:
     In vitro studies, two human cervical cancer cell lines, HeLa and Siha, with thefollowing methods were employed, in some cases, normal cell lines GM and ECV304were used as control:1) Cell morphology was observed by inverted microscope and livecell imaging system;2) Cell viability was examined by MTT assay;3) Colonyformation assay was also used to study the cell growth inhibition of sanguinarine;4)Scratch healing assay and the trans-well assay were employed to study the influence ofsanguinarine on the cell migration and invasion;5) Flow cytometry was applied toanalyze cell cycle progression and apoptosis induction;6) Single cell gel electrophoresis(comet assay) was used to detect DNA damage;7) Apoptosis and necrosis weremeasured by TUNEL and Annexin V-FITC cell apoptosis kits;8) ROS content andmitochondrial membrane potential was determined by commercial kits;9) Alteration ofProtein expression level was detected by Western blot assay;10) Autophagy wasexamined by MDC (monodansylcadaverin) staining;11) Autophagy and apoptosisultrastructure changes of cells were observed by transmission electron microscope(TEM).
     In vivo studies, a transplanted tumor model by injecting HeLa cells intosubcutaneous tissue of Babl/c mice was established. Mice were randomly assigned into4groups by intraperitoneal injection:1) saline solution as negative control;2)5mg/kgcisplatin as positive control (1/week);3)1.25mg/kg injection of sanguinarine (1/3days)and4)2.5mg/kg injection of sanguinarine (1/3days). The period time of therapies was28days, the tumor volume was measured once every other day upto another28days following sanguinarine treatment. At the end of experiments, tumors were carefullyremoved and weighted. Microvascular density in tumor tissues was measured by aninverted microscope and CD34immunostaining. The expression levels of Bcl-2, Baxand VEGF tumor tissues were detected by Western blot and the expression levels ofVEGF, EGFR and Ki67, by immunohistochemical assay, in tumor tissues. Changes ofcell ultrastructure related to autophagy and apoptosis in tumors were observed by TEM.
     Results:
     1) A dose-and time-dependent inhibition of cell proliferation by sanguinarine wasobserved in both cell lines. An IC50value for24h treatment of sanguinarine in HeLa andSiha cells was2.62±0.21μmol/L and3.07±0.23μmol/L, respectively, indicatingslightly more sensitivity in HeLa cells (P <0.05). While, sanguinarine showed lesstoxicity in normal GM and ECV304cells with an IC50value of4.93±0.22μmol/L and5.78±0.18μmol/L, respectively.
     2) After treatment of0,1,2and3μmol/L sanguinarine for24h, the proportion ofG2/M phase in HeLa cells was (25.21±0.66)%,(29.97±0.84)%,(37.31±0.93)%and(57.72±0.13)%, respectively. Similar a dose-dependent arrest of G2/M phase wasobserved in Siha cells after sanguinarine treatment. Consistant with cell cycle arrest,sanguinarine caused a significant down-regulation of CyclinB1, CyclinE and CDC2protein expression and an up-regulation of P21and P27protein expression.
     3) With24h treatment of sanguinarine, HeLa and Siha cells showed typicalapoptotic morphologic changes, including chromatin condensation and DNA fragment.Comet assay evidenced that sanguinarine increased the mean tail length and thepercentage of cells with comet tails. Sanguinarine decreased Bcl-2expression andincreased Bax expression via a dose-response manner, and consequently the ratio of Baxto Bcl-2was significantly increased (P<0.05). The expression of procaspase-3wasdecreased and AIF and Cleaved PARP were increased in HeLa and Siha cells treatedwith sanguinarine (P<0.05). The ROS content in HeLa cells treated with1μmol/Lsanguinarine markedly increased in0.5h (29.63±1.28)%compared with0h (38.4±2.90)%and reached peak in4h (58.37±6.03)%(P<0.01) following exposure tosanguinarine. Similar results were observed for ROS generation in Siha cells. On theother hand, mitochondrial transmembrane potential was decreased and the expression ofcytochrome c protein was increased in both of cell lines after sanguinarine treatment.
     4) As for migration and invasion, sanguinarine significantly decreased theadherence rate and inhibited the ability to cover “cell wound” by scratch in both of celllines via a time-dependent fashion. Tran-well assay showed that HeLa cell number aftertreatment with sanguinarine at0,0.5and0.75mol/L was156±9.85,108±13.23and74.67±7.02, respectively (P <0.01). Similar observation was obtained in Siha cells withsanguinarine treatment. Additionally, a significant dose-dependent alteration of someproteins which are related to cell migration and invasion was found in both of cell linestreated with sanguinarine, i.e., a decrease level of VEGF, EGFR, PTEN, NF-κB,-catenin,-catenin and γ-catenin expression and an increased expression of E-cadherinprotein (P<0.05).
     5) TEM observation indicated that autophagosomes and apoptotic bodies inducedby sanguinarine in both of cell lines. However, sanguinarine-induced autophagy wasreversed by emplying a specific autophagy inhibitor,3-methylademine (3-MA). Aquantitative method of MDC staining releaved that the cell number of autophagy was149±22.65and412.67±16.80in HeLa cells as well as138±17.47and371±20.84inSiha cells after4h treatment with1and2mol/L sanguinarine (P<0.01). Sanguinarinecaused a reduced expression of Beclin1protein. In addition, a decrease of LC3-I proteincomparing with an increase of LC3-II protein were detectable after treatment withsanguinarine.
     6) A significant inhibition of tumor growth and volume in transplanted tumor micewere observed after therapy with sanguinarine via an intraperitoneal injection. At theend of experiment, the inhibition rate of tumor growth was29.40%,39.96%and45.16%in cisplatin,1.25mg/kg and2.5mg/kg sanguinarine, compared with that inun-treated control mice. Microvascular density in tumor tissues as evidenced by CD34immunostaining was77.33±7.04,25.00±4.90,28.33±1.70and15.67±2.05inun-treated controls, cisplatin,1.25mg/kg and2.5mg/kg sanguinarine, respectively(P<0.01). TEM observation also showed a significant change of apoptosis andautophagy in tumor tissues after therapy with sanguinarine. On the other hand,sanguinarine inhibited tumor angiogenesis possibly via down-regulating the expressionof VEGF, EGFR and NF-κB.
     Conclusion:
     In summary, a significant inhibitory proliferation in both of human cervical cancer cell lines, HeLa and Siha, was observed after treatment with sanguinarine in a dose-andtime-dependent manner. Sanguinarine-caused arrest of G2/M phase was accompaniedwith a down-regulation of CyclinB1, CyclinE, and CDC2protein and a up-regulation ofp21and p27expression. The occurrence of apoptosis and autophagy after sanguinarinetreatment was confirmed by a few methods, the underlying mechanisms may beinvolved in an increase of Bax/Bcl-2, an alteration of LC3II/LC3I expression, anactivation of caspase-3and MAPK pathway. Anti-cancer growth in vivo bysanguinarine may be related to an inhibition of tumor angiogenesis and an induction ofapoptosis and autophagy by down-regulating the expression of VEGF, EGFR andNF-κB. These novel findings indicate that sanguinarine inhibites cervical cancer growthin vitro and in vivo by multimechanisms, which suggesting that sanguinarine may serveas a potential therapeutic agent for cervical cancer.
引文
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin,2011,61(2):69-90.
    [2]郑荣寿,张思维,吴良有,等.中国肿瘤登记地区2008年恶性肿瘤发病和死亡分析.中国肿瘤,2012,21(1):1-12.
    [3] Ciesielska U, Nowinska K, Podhorska-Okolow M, et al. The role of humanpapillomavirus in the malignant transformation of cervix epithelial cells and theimportance of vaccination against this virus. Adv Clin Exp Med,2012,21(2):235-44.
    [4]许雪梅.人乳头瘤病毒及宫颈癌疫苗的研究——解读2008年诺贝尔生理学或医学奖.生物化学与生物物理进展,2008,35(10):1095-103.
    [5]鲍福军.中医药治疗肿瘤临床运用与机制的研究进展.中国实用医药,2010,5(7):249-50.
    [6]陈赐慧,花宝金.中医药治疗肿瘤的优势.中国中医药信息杂志,2013,20(1):6-7.
    [7]刘浩,谈满良,单体江,等.博落回生物碱与生物活性及其应用.中国野生植物资源,2009,28(3):21-3.
    [8]孙文霞,袁仕善,黄琼瑶,等.血水草生物碱及其血根碱抑菌作用的研究.实用预防医学,2010,17(9):1864-6.
    [9] Maiti M, Kumar GS. Polymorphic nucleic Acid binding of bioactive isoquinolinealkaloids and their role in cancer. J Nucleic Acids,2010, doi:10.4061/2010/593408.
    [10]Ferraroni M, Bazzicalupi C, Bilia AR, et al. X-Ray diffraction analyses of thenatural isoquinoline alkaloids Berberine and Sanguinarine complexed with doublehelix DNA d(CGTACG). Chem Commun (Camb),2011,47(17):4917-9.
    [11]Adhami VM, Aziz MH, Mukhtar H, et al. Activation of prodeath Bcl-2familyproteins and mitochondrial apoptosis pathway by sanguinarine in immortalizedhuman HaCaT keratinocytes. Clin Cancer Res,2003,9(8):3176-82.
    [12]Adhami VM, Aziz MH, Reagan-Shaw SR, et al. Sanguinarine causes cell cycleblockade and apoptosis of human prostate carcinoma cells via modulation of cyclinkinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther,2004,3(8):933-40.
    [13]张乙涛,王慧.血根碱药理及毒理作用的研究进展.中国畜牧兽医,2012,39(7):214-7.
    [14]Chaturvedi MM, Kumar A, Darnay BG, et al. Sanguinarine (pseudochelerythrine) isa potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, anddegradation. J Biol Chem,1997,272(48):30129-34.
    [15]Ahmad N, Gupta S, Husain MM, et al. Differential antiproliferative and apoptoticresponse of sanguinarine for cancer cells versus normal cells. Clin Cancer Res,2000,6(4):1524-8.
    [16]Choi WY, Jin CY, Han MH, et al. Sanguinarine sensitizes human gastricadenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation ofAKT and activation of caspase-3. Anticancer Res,2009,29(11):4457-65.
    [17]Jang BC, Park JG, Song DK, et al. Sanguinarine induces apoptosis in A549humanlung cancer cells primarily via cellular glutathione depletion. Toxicol In Vitro,2009,23(2):281-7.
    [18]Park H, Bergeron E, Senta H, et al. Sanguinarine induces apoptosis of humanosteosarcoma cells through the extrinsic and intrinsic pathways. Biochem BiophysRes Commun,2010,399(3):446-51.
    [19]Hammerova J, Uldrijan S, Taborska E, et al. Benzo[c]phenanthridine alkaloidsexhibit strong anti-proliferative activity in malignant melanoma cells regardless oftheir p53status. J Dermatol Sci,2011,62(1):22-35.
    [20]Lee JS, Jung WK, Jeong MH, et al. Sanguinarine induces apoptosis of HT-29human colon cancer cells via the regulation of Bax/Bcl-2ratio andcaspase-9-dependent pathway. Int J Toxicol,2012,31(1):70-7.
    [21]Xu JY, Meng QH, Chong Y, et al. Sanguinarine inhibits growth of human cervicalcancer cells through the induction of apoptosis. Oncol Rep,2012,28(6):2264-70.
    [22]Kulp M, Bragina O. Capillary electrophoretic study of the synergistic biologicaleffects of alkaloids from Chelidonium majus L. in normal and cancer cells. AnalBioanal Chem,2013,405(10):3391-7.
    [23]Dvorak Z, Vrzal R, Maurel P, Ulrichova J. Differential effects of selected naturalcompounds with anti-inflammatory activity on the glucocorticoid receptor andNF-kappaB in HeLa cells. Chem Biol Interact.2006.159(2):117-28.
    [1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics.CA Cancer J Clin.2011.61(2):69-90.
    [2] Klopp AH, Eifel PJ. Chemoradiotherapy for cervical cancer in2010. Curr OncolRep.2011.13(1):77-85.
    [3] Women's health in rural China. Lancet.2009.374(9687):358.
    [4] Shi JF, Canfell K, Lew JB, Qiao YL. The burden of cervical cancer in China:synthesis of the evidence. INTERNATIONAL JOURNAL OF CANCER LAEnglish DT Article.2012.130(3):641-52.
    [5] Ahmad N, Gupta S, Husain MM, Heiskanen KM, Mukhtar H. Differentialantiproliferative and apoptotic response of sanguinarine for cancer cells versusnormal cells. Clin Cancer Res.2000.6(4):1524-8.
    [6] Lee JS, Jung WK, Jeong MH, Yoon TR, Kim HK. Sanguinarine induces apoptosisof HT-29human colon cancer cells via the regulation of Bax/Bcl-2ratio andcaspase-9-dependent pathway. Int J Toxicol.2012.31(1):70-7.
    [7] Tsukamoto H, Kondo S, Mukudai Y, et al. Evaluation of anticancer activities ofbenzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cellline. Anticancer Res.2011.31(9):2841-6.
    [8] Pica F, Balestrieri E, Serafino A, et al. Antitumor effects of thebenzophenanthridine alkaloid sanguinarine in a rat syngeneic model of colorectalcancer. Anticancer Drugs.2012.23(1):32-42.
    [9] Chan WH. Embryonic toxicity of sanguinarine through apoptotic processes inmouse blastocysts. Toxicol Lett.2011.205(3):285-92.
    [10]Hammerova J, Uldrijan S, Taborska E, Slaninova I. Benzo[c]phenanthridinealkaloids exhibit strong anti-proliferative activity in malignant melanoma cellsregardless of their p53status. J Dermatol Sci.2011.62(1):22-35.
    [11] Park H, Bergeron E, Senta H, et al. Sanguinarine induces apoptosis of humanosteosarcoma cells through the extrinsic and intrinsic pathways. BiochemBiophys Res Commun.2010.399(3):446-51.
    [12]Choi WY, Jin CY, Han MH, et al. Sanguinarine sensitizes human gastricadenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation ofAKT and activation of caspase-3. Anticancer Res.2009.29(11):4457-65.
    [13]Jang BC, Park JG, Song DK, et al. Sanguinarine induces apoptosis in A549humanlung cancer cells primarily via cellular glutathione depletion. Toxicol In Vitro.2009.23(2):281-7.
    [14]Choi WY, Kim GY, Lee WH, Choi YH. Sanguinarine, a benzophenanthridinealkaloid, induces apoptosis in MDA-MB-231human breast carcinoma cells througha reactive oxygen species-mediated mitochondrial pathway. Chemotherapy.2008.54(4):279-87.
    [15]Wang J, Yuan L, Xiao H, Xiao C, Wang Y, Liu X. Momordin Ic induces HepG2cellapoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways.Apoptosis.2013.18(6):751-65.
    [16]Dong X, Zhang M, Wang K, et al. Sanguinarine Inhibits Vascular EndothelialGrowth Factor Release by Generation of Reactive Oxygen Species in MCF-7Human Mammary Adenocarcinoma Cells. Biomed Research International AR517698.2013.
    [17] Aburai N, Yoshida M, Ohnishi M, Kimura K. Sanguinarine as a potent andspecific inhibitor of protein phosphatase2C in vitro and induces apoptosis viaphosphorylation of p38in HL60cells. Biosci Biotechnol Biochem.2010.74(3):548-52.
    [18]Slunska Z, Gelnarova E, Hammerova J, Taborska E, Slaninova I. Effect ofquaternary benzo[c]phenanthridine alkaloids sanguilutine and chelilutine on normaland cancer cells. Toxicol In Vitro.2010.24(3):697-706.
    [19]Han MH, Yoo YH, Choi YH. Sanguinarine-induced apoptosis in human leukemiaU937cells via Bcl-2downregulation and caspase-3activation. Chemotherapy.2008.54(3):157-65.
    [20]Li WT, Yeh TK, Song JS, et al. BPR0C305, an orally active microtubule disruptinganticancer agent. Anticancer Drugs.2013. PMID:24025560.
    [21]Malikova J, Zdarilova A, Hlobilkova A. Effects of sanguinarine and chelerythrineon the cell cycle and apoptosis. Biomed Pap Med Fac Univ Palacky OlomoucCzech Repub.2006.150(1):5-12.
    [22]Chen H, Huang Q, Dong J, Zhai D, Wang A, Lan Q. Overexpression ofCDC2/CyclinB1in gliomas, and CDC2depletion inhibits proliferation of humanglioma cells in vitro and in vivo. BMC Cancer.2008.8:http://www.biomedcentral.com/1471-2407/8/29.
    [23] Vairapandi M, Balliet AG, Hoffman B, Liebermann DA. GADD45b andGADD45g are cdc2/cyclinB1kinase inhibitors with a role in S and G2/M cell cyclecheckpoints induced by genotoxic stress. JOURNAL OF CELLULARPHYSIOLOGY.2002.192(3):327-338.
    [24]Yang J, Song H, Walsh S, Bardes ES, Kornbluth S. Combinatorial control of cyclinB1nuclear trafficking through phosphorylation at multiple sites. J Biol Chem.2001.276(5):3604-9.
    [25]Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. JClin Oncol.2006.24(11):1770-83.
    [26]Penzo M, Massa PE, Olivotto E, et al. Sustained NF-kappaB activation produces ashort-term cell proliferation block in conjunction with repressing effectors of cellcycle progression controlled by E2F or FoxM1. J Cell Physiol.2009.218(1):215-27.
    [27]Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. The interaction of telomeric DNAand C-myc22G-quadruplex with11natural alkaloids. Nucleic Acid Ther.2012.22(2):127-36.
    [28]Vrba J, Dolezel P, Vicar J, Ulrichova J. Cytotoxic activity of sanguinarine anddihydrosanguinarine in human promyelocytic leukemia HL-60cells. Toxicol InVitro.2009.23(4):580-8.
    [29]Lee B, Lee SJ, Park SS, et al. Sanguinarine-induced G1-phase arrest of the cellcycle results from increased p27KIP1expression mediated via activation of theRas/ERK signaling pathway in vascular smooth muscle cells. Arch BiochemBiophys.2008.471(2):224-31.
    [30]Philchenkov A, Kaminskyy V, Zavelevich M, Stoika R. Apoptogenic activity of twobenzophenanthridine alkaloids from Chelidonium majus L. does not correlatewith their DNA damaging effects. Toxicol In Vitro.2008.22(2):287-95.
    [31]Chang MC, Chan CP, Wang YJ, et al. Induction of necrosis and apoptosis to KBcancer cells by sanguinarine is associated with reactive oxygen species productionand mitochondrial membrane depolarization. Toxicol Appl Pharmacol.2007.218(2):143-51.
    [32]Ahsan H, Reagan-Shaw S, Breur J, Ahmad N. Sanguinarine induces apoptosis ofhuman pancreatic carcinoma AsPC-1and BxPC-3cells via modulations in Bcl-2family proteins. Cancer Lett.2007.249(2):198-208.
    [33]Malikova J, Zdarilova A, Hlobilkova A, Ulrichova J. The effect of chelerythrine oncell growth, apoptosis, and cell cycle in human normal and cancer cells incomparison with sanguinarine. Cell Biol Toxicol.2006.22(6):439-53.
    [34]Lopus M, Panda D. The benzophenanthridine alkaloid sanguinarine perturbsmicrotubule assembly dynamics through tubulin binding. A possible mechanism forits antiproliferative activity. FEBS J.2006.273(10):2139-50.
    [35]Reagan-Shaw S, Breur J, Ahmad N. Enhancement of UVB radiation-mediatedapoptosis by sanguinarine in HaCaT human immortalized keratinocytes. MolCancer Ther.2006.5(2):418-29.
    [36]Holy J, Lamont G, Perkins E. Disruption of nucleocytoplasmic trafficking of cyclinD1and topoisomerase II by sanguinarine. BMC Cell Biol.2006.7:13.
    [37]Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon withwide-ranging implications in tissue kinetics. Br J Cancer.1972.26(4):239-57.
    [38]Wensveen FM, Alves NL, Derks IA, Reedquist KA, Eldering E. Apoptosis inducedby overall metabolic stress converges on the Bcl-2family proteins Noxa and Mcl-1.Apoptosis.2011.16(7):708-21.
    [39]Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks inindividual apoptotic cells by the in situ terminal deoxynucleotidyl transferase andnick translation assays. Cancer Res.1993.53(8):1945-51.
    [40]Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. Thebenzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor ofmitogen-activated protein kinase phosphatase-1. J Biol Chem.2005.280(19):19078-86.
    [41]Adhami VM, Aziz MH, Reagan-Shaw SR, Nihal M, Mukhtar H, Ahmad N.Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinomacells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinasemachinery. Mol Cancer Ther.2004.3(8):933-40.
    [42]Adhami VM, Aziz MH, Mukhtar H, Ahmad N. Activation of prodeath Bcl-2familyproteins and mitochondrial apoptosis pathway by sanguinarine in immortalizedhuman HaCaT keratinocytes. Clin Cancer Res.2003.9(8):3176-82.
    [43]Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2family. J CellSci.2009.122(Pt4):437-41.
    [44]Reed JC. Bcl-2: prevention of apoptosis as a mechanism of drug resistance.Hematol Oncol Clin North Am.1995.9(2):451-73.
    [45]Tsujimoto Y. Role of Bcl-2family proteins in apoptosis: apoptosomes ormitochondria. Genes Cells.1998.3(11):697-707.
    [46]Xu ZW, Friess H, Buchler MW, Solioz M. Overexpression of Bax sensitizes humanpancreatic cancer cells to apoptosis induced by chemotherapeutic agents. CancerChemother Pharmacol.2002.49(6):504-10.
    [47]Weerasinghe P, Hallock S, Liepins A. Bax, Bcl-2, and NF-kappaB expression insanguinarine induced bimodal cell death. Exp Mol Pathol.2001.71(1):89-98.
    [48]Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation,invasion, angiogenesis, and metastasis of tumor cells through modulation ofinflammatory pathways by nutraceuticals. Cancer Metastasis Rev.2010.29(3):405-34.
    [49]Cheah SC, Lai SL, Lee ST, Hadi AH, Mustafa MR. Panduratin A, a PossibleInhibitor in Metastasized A549Cells through Inhibition of NF-Kappa BTranslocation and Chemoinvasion. Molecules.2013.18(8):8764-78.
    [50]Ennen M, Klotz R, Touche N, et al. DDB2: a novel regulator of NF-kB and breasttumor invasion. Cancer Res.2013.doi:10.1158/0008-5472.
    [51]Nikolaou K, Sarris M, Talianidis I. Molecular pathways: the complex roles ofinflammation pathways in the development and treatment of liver cancer. ClinCancer Res.2013.19(11):2810-6.
    [52]程大丽,葛莉娜,张淑兰.细胞核因子KB与细胞周期蛋白D1在宫颈癌中的表达及相关性研究.中国医科大学学报.2005.34(3):257-8.
    [53]程大丽,陈冬,陈浩阳,张淑兰.核转录因子KB p65在子宫颈鳞癌中的表达及意义.中国医科大学学报.2005.34(4):140-2.
    [54] Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB.Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation,IkappaBalpha phosphorylation, and degradation. J Biol Chem.1997.272(48):30129-34.
    [55]Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G. Quantitationof mitochondrial alterations associated with apoptosis. J Immunol Methods.2002.265(1-2):39-47.
    [56]Kim S, Lee TJ, Leem J, Choi KS, Park JW, Kwon TK. Sanguinarine-inducedapoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy withTRAIL. J Cell Biochem.2008.104(3):895-907.
    [57]Debiton E, Madelmont JC, Legault J, Barthomeuf C. Sanguinarine-inducedapoptosis is associated with an early and severe cellular glutathione depletion.Cancer Chemother Pharmacol.2003.51(6):474-82.
    [58]Chen LC, Chueh TC, Tuan YF, et al. Activation of MAPK pathways anddownstream transcription factors in2-aminobiphenyl-induced apoptosis. EnvironToxicol.2013. DOI:10.1002/tox.21886.
    [59]De Stefano I, Raspaglio G, Zannoni GF, et al. Antiproliferative and antiangiogeniceffects of the benzophenanthridine alkaloid sanguinarine in melanoma. BiochemPharmacol.2009.78(11):1374-81.
    [1] Autophagy in cancer. Anticancer Res.2013.33(8):3523.
    [2] Levine B. Cell biology: autophagy and cancer. Nature.2007.446(7137):745-7.
    [3] Su M, Mei Y, Sinha S. Role of the Crosstalk between Autophagy and Apoptosis inCancer. J Oncol.2013.2013. doi:10.1155/2013/102735.
    [4] Smaili SS, Pereira GJ, Costa MM, et al. The role of calcium stores in apoptosis andautophagy. Curr Mol Med.2013.13(2):252-65.
    [5] Bellot GL, Liu D, Pervaiz S. ROS, autophagy, mitochondria and cancer: Ras, thehidden master. Mitochondrion.2013.13(3):155-62.
    [6] Eum KH, Lee M. Crosstalk between autophagy and apoptosis in the regulation ofpaclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol CellBiochem.2011.348(1-2):61-8.
    [7] Kralova V, Benesova S, Cervinka M, Rudolf E. Selenite-induced apoptosis andautophagy in colon cancer cells. Toxicol In Vitro.2012.26(2):258-68.
    [8] Garcia-Zepeda SP, Garcia-Villa E, Diaz-Chavez J, Hernandez-Pando R, Gariglio P.Resveratrol induces cell death in cervical cancer cells through apoptosis andautophagy. Eur J Cancer Prev.2013. PMID:23603746.
    [9] Motyl T, Gajkowska B, Zarzynska J, Gajewska M, Lamparska-Przybysz M.Apoptosis and autophagy in mammary gland remodeling and breast cancerchemotherapy. J Physiol Pharmacol.2006.57Suppl7:17-32.
    [10] Sy LK, Yan SC, Lok CN, Man RY, Che CM. Timosaponin A-III induces autophagypreceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res.2008.68(24):10229-37.
    [11] Park HS, Kim GY, Nam TJ, Deuk KN, Hyun CY. Antiproliferative activity offucoidan was associated with the induction of apoptosis and autophagy in AGShuman gastric cancer cells. J Food Sci.2011.76(3): T77-83.
    [12] Hu Y, Cheng SC, Chan KT, et al. Fucoidin enhances dendritic cell-mediated T-cellcytotoxicity against NY-ESO-1expressing human cancer cells. Biochem BiophysRes Commun.2010.392(3):329-34.
    [13] Zhu C, Cao R, Zhang SX, Man YN, Wu XZ. Fucoidan inhibits the growth ofhepatocellular carcinoma independent of angiogenesis. Evid Based ComplementAlternat Med.2013. http://dx.doi.org/10.1155/2013/692549.
    [14] Kim AD, Kang KA, Kim HS, et al. A ginseng metabolite, compound K, inducesautophagy and apoptosis via generation of reactive oxygen species and activationof JNK in human colon cancer cells. Cell Death Dis.2013.4: e750.
    [15] Huang CC, Chen KL, Cheung CH, Chang JY. Autophagy induced by cathepsin Sinhibition induces early ROS production, oxidative DNA damage, and cell deathvia xanthine oxidase. Free Radic Biol Med.2013. PMID:23892358.
    [16] Liu H, He Z, Simon HU. Targeting autophagy as a potential therapeutic approachfor melanoma therapy. Semin Cancer Biol.2013.doi:10.1016/j.semcancer.2013.06.008.
    [17] Wang WJ, Long LM, Yang N, et al. NVP-BEZ235, a novel dual PI3K/mTORinhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. ActaPharmacol Sin.2013.34(5):681-90.
    [18] Gurkar AU, Chu K, Raj L, et al. Identification of ROCK1kinase as a criticalregulator of Beclin1-mediated autophagy during metabolic stress. Nat Commun.2013.4:2189.
    [19] Lira VA, Okutsu M, Zhang M, et al. Autophagy is required for exercisetraining-induced skeletal muscle adaptation and improvement of physicalperformance. FASEB J.2013. doi:10.1096/fj.13-228486.
    [20]Chen Z, Li Y, Zhang C, et al. Downregulation of Beclin1and Impairment ofAutophagy in a Small Population of Colorectal Cancer. Dig Dis Sci.2013. DOI10.1007/s10620-013-2732-8.
    [21]Yang J, Wan C, Nie S, et al. Localization of Beclin1in mouse developing toothgerms: possible implication of the interrelation between autophagy and apoptosis.J Mol Histol.2013. PMID:23793984.
    [22] Hahm ER, Singh SV. Autophagy Fails to Alter Withaferin A-Mediated Lethality inHuman Breast Cancer Cells. Curr Cancer Drug Targets.2013.13(6):640-50.
    [23] Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition oftumorigenesis by beclin1. Nature.1999.402(6762):672-6.
    [1] Hata M, Koike I, Miyagi E, et al. Radiation therapy for pelvic lymph nodemetastasis from uterine cervical cancer. Gynecol Oncol.2013. doi:pii:S0090-8258(13)01000-7.
    [2] Jang H, Chun M, Cho O, Heo JS, Ryu HS, Chang SJ. Prognostic factors andtreatment outcome after radiotherapy in cervical cancer patients with isolatedpara-aortic lymph node metastases. J Gynecol Oncol.2013.24(3):229-35.
    [3] Choi YH, Choi WY, Hong SH, et al. Anti-invasive activity of sanguinarine throughmodulation of tight junctions and matrix metalloproteinase activities inMDA-MB-231human breast carcinoma cells. Chem Biol Interact.2009.179(2-3):185-91.
    [4] De Stefano I, Raspaglio G, Zannoni GF, et al. Antiproliferative and antiangiogeniceffects of the benzophenanthridine alkaloid sanguinarine in melanoma. BiochemPharmacol.2009.78(11):1374-81.
    [5] Pica F, Balestrieri E, Serafino A, et al. Antitumor effects of the benzophenanthridinealkaloid sanguinarine in a rat syngeneic model of colorectal cancer. AnticancerDrugs.2012.23(1):32-42.
    [6] Weerasinghe P, Hallock S, Tang SC, Trump B, Liepins A. Sanguinarine overcomesP-glycoprotein-mediated multidrug-resistance via induction of apoptosis andoncosis in CEM-VLB1000cells. Exp Toxicol Pathol.2006.58(1):21-30.
    [7] Garcia-Roman J, Zentella-Dehesa A. Vascular permeability changes involved intumor metastasis. Cancer Lett.2013.335(2):259-69.
    [8] Nishizuka Y. The role of protein kinase C in cell surface signal transduction andtumour promotion. Nature.1984.308(5961):693-8.
    [9] Aso K, Goi T, Nakazawa T, et al. The expression of integrins is decreased in coloncancer cells treated with polysaccharide K. Int J Oncol.2013.42(4):1175-80.
    [10]Brandhagen BN, Tieszen CR, Ulmer TM, Tracy MS, Goyeneche AA, Telleria CM.Cytostasis and morphological changes induced by mifepristone in human metastaticcancer cells involve cytoskeletal filamentous actin reorganization and impairmentof cell adhesion dynamics. BMC Cancer.2013.13:35.
    [11]姜希宏.粘附分子与乳腺癌的侵袭和转移.国外医学:肿瘤学分册.1998.25(2):103-5.
    [12]Kim YJ, Kang HB, Yim HS, Kim JH, Kim JW. NDRG2positively regulatesE-cadherin expression and prolongs overall survival in colon cancer patients. OncolRep.2013.30(4):1890-8.
    [13]Fujiwara K, Ohuchida K, Ohtsuka T, et al. Migratory Activity of CD105+Pancreatic Cancer Cells Is Strongly Enhanced by Pancreatic Stellate Cells. Pancreas.2013. PMID:23897167.
    [14]Weissenbacher T, Hirte E, Kuhn C, et al. Multicentric and multifocal versusunifocal breast cancer: differences in the expression of E-cadherin suggestdifferences in tumor biology. BMC Cancer.2013.13(1):361.
    [15] Xu S, Xu P, Wu W, et al. The biphasic expression pattern of miR-200a andE-cadherin in epithelial ovarian cancer and its correlation with clinicopathologicalfeatures. Curr Pharm Des.2013. PMID:23888941.
    [16]Nakamura Y. Cleaning up on beta-catenin. Nat Med.1997.3(5):499-500.
    [17]Su Y, Ishikawa S, Kojima M, Liu B. Eradication of pathogenic beta-catenin bySkp1/Cullin/F box ubiquitination machinery. Proc Natl Acad Sci U S A.2003.100(22):12729-34.
    [18]Choi WY, Jin CY, Han MH, et al. Sanguinarine sensitizes human gastricadenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation ofAKT and activation of caspase-3. Anticancer Res.2009.29(11):4457-65.
    [19]Song C, Zhu S, Wu C, Kang J. HDAC10suppresses cervical cancer metastasisthrough inhibition of matrix metalloproteinase (MMP)2and9expression. J BiolChem.2013. doi:10.1074/jbc.M113.498758jbc.M113.498758.
    [20]Choi YH, Choi WY, Hong SH, et al. Anti-invasive activity of sanguinarine throughmodulation of tight junctions and matrix metalloproteinase activities inMDA-MB-231human breast carcinoma cells. Chem Biol Interact.2009.179(2-3):185-91.
    [21]Choi WY, Kim GY, Lee WH, Choi YH. Sanguinarine, a benzophenanthridinealkaloid, induces apoptosis in MDA-MB-231human breast carcinoma cells througha reactive oxygen species-mediated mitochondrial pathway. Chemotherapy.2008.54(4):279-87.
    [22]Roomi MW, Kalinovsky T, Niedzwiecki A, Rath M. Modulation of u-PA, MMPsand their inhibitors by a novel nutrient mixture in pediatric human sarcoma celllines. Int J Oncol.2013.43(4):1027-35.
    [23]He W, Tang B, Yang D, et al. Double-positive expression of high-mobility groupbox1and vascular endothelial growth factor C indicates a poorer prognosis ingastric cancer patients. World J Surg Oncol.2013.11(1):161.
    [24]Chatterjee S, Heukamp LC, Siobal M, et al. Tumor VEGF:VEGFR2autocrinefeed-forward loop triggers angiogenesis in lung cancer. J Clin Invest.2013.123(7):3183.
    [25]Dong X, Zhang M, Wang K, et al. Sanguinarine Inhibits Vascular EndothelialGrowth Factor Release by Generation of Reactive Oxygen Species in MCF-7Human Mammary Adenocarcinoma Cells. Biomed Res Int.2013.2013(1023):1-9.
    [26]Basini G, Santini SE, Bussolati S, Grasselli F. Sanguinarine inhibits VEGF-inducedAkt phosphorylation. Ann N Y Acad Sci.2007.1095:371-6.
    [27]Eun JP, Koh GY. Suppression of angiogenesis by the plant alkaloid, sanguinarine.Biochem Biophys Res Commun.2004.317(2):618-24.
    [28]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase genemutated in human brain, breast, and prostate cancer. Science.1997.275(5308):1943-7.
    [29]Ahn Y, Hwang CY, Lee SR, Kwon KS, Lee C. The tumour suppressor PTENmediates a negative regulation of the E3ubiquitin-protein ligase Nedd4. Biochem J.2008.412(2):331-8.
    [30]Lee JS, Choi YD, Lee JH, et al. Expression of PTEN in the progression of cervicalneoplasia and its relation to tumor behavior and angiogenesis in invasive squamouscell carcinoma. J Surg Oncol.2006.93(3):233-40.
    [31]Ueno S, Sudo T, Oka N, et al. Absence of Human Papillomavirus Infection andActivation of PI3K-AKT Pathway in Cervical Clear Cell Carcinoma. Int J GynecolCancer.2013.23(6):1084-91.
    [32]Chun J, Kim YS. Platycodin D inhibits migration, invasion, and growth ofMDA-MB-231human breast cancer cells via suppression of EGFR-mediated Aktand MAPK pathways. Chem Biol Interact.2013.205(3):212-21.
    [33] Wu J, Xie N, Xie K, et al. GPR48, a poor prognostic factor, promotes tumormetastasis and activates beta-catenin/TCF signaling in colorectal cancer.Carcinogenesis.2013. PMID:23803691.
    [1] Kma L. Roles of plant extracts and constituents in cervical cancer therapy. AsianPac J Cancer Prev.2013.14(6):3429-36.
    [2] Milosevic MF, Pintilie M, Hedley DW, et al. High tumor interstitial fluid pressureidentifies cervical cancer patients with improved survival from radiotherapy pluscisplatin versus radiotherapy alone. Int J Cancer.2013. doi:10.1002/ijc.28403.
    [3] Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. Alkaloids isolated from natural herbsas the anticancer agents. Evid Based Complement Alternat Med.2012.2012:485042.
    [4] De Stefano I, Raspaglio G, Zannoni GF, et al. Antiproliferative and antiangiogeniceffects of the benzophenanthridine alkaloid sanguinarine in melanoma. BiochemPharmacol.2009.78(11):1374-81.
    [5] Burgeiro A, Bento AC, Gajate C, Oliveira PJ, Mollinedo F. Rapid humanmelanoma cell death induced by sanguinarine through oxidative stress. Eur JPharmacol.2013.705(1-3):109-18.
    [6] Kapoor S. Sanguinarine and its potent antineoplastic effects in systemicmalignancies. Nucleic Acid Ther.2013.23(2):166.
    [7] Sun M, Liu C, Nadiminty N, et al. Inhibition of Stat3activation by sanguinarinesuppresses prostate cancer cell growth and invasion. Prostate.2012.72(1):82-9.
    [8] Hossain M, Khan AY, Suresh KG. Interaction of the anticancer plant alkaloidsanguinarine with bovine serum albumin. PLoS One.2011.6(4): e18333.
    [9] Han MH, Park C, Jin CY, et al. Apoptosis induction of human bladder cancer cellsby sanguinarine through reactive oxygen species-mediated up-regulation of earlygrowth response gene-1. PLoS One.2013.8(5): e63425.
    [10] Han MH, Kim GY, Yoo YH, Choi YH. Sanguinarine induces apoptosis in humancolorectal cancer HCT-116cells through ROS-mediated Egr-1activation andmitochondrial dysfunction. Toxicol Lett.2013.220(2):157-66.
    [11] Xu JY, Meng QH, Chong Y, et al. Sanguinarine inhibits growth of human cervicalcancer cells through the induction of apoptosis. Oncol Rep.2012.28(6):2264-70.
    [12] Ke X, Bei JH, Zhang Y, Li J. In vitro and in vivo evaluation of sanguinarineliposomes prepared by a remote loading method with three different ammoniumsalts. Pharmazie.2011.66(4):258-63.
    [13] Pica F, Balestrieri E, Serafino A, et al. Antitumor effects of thebenzophenanthridine alkaloid sanguinarine in a rat syngeneic model of colorectalcancer. Anticancer Drugs.2012.23(1):32-42.
    [14] Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesiscorrelates with metastasis in invasive prostate carcinoma. Am J Pathol.1993.143(2):401-9.
    [15] Ding S, Li C, Lin S, et al. Comparative evaluation of microvessel densitydetermined by CD34or CD105in benign and malignant gastric lesions. HumPathol.2006.37(7):861-6.
    [16] Evers BM, Townsend CM Jr, Upp JR, et al. Establishment and characterization of ahuman carcinoid in nude mice and effect of various agents on tumor growth.Gastroenterology.1991.101(2):303-11.
    [17] Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR. Metastaticbehavior of human tumor cell lines grown in the nude mouse. Cancer Res.1984.44(8):3522-9.
    [18] Qiu B, Ji M, Song X, et al. Co-delivery of docetaxel and endostatin by abiodegradable nanoparticle for the synergistic treatment of cervical cancer.Nanoscale Res Lett.2012.7(1):666.
    [19] Alonso-Castro AJ, Ortiz-Sanchez E, Garcia-Regalado A, et al. Kaempferitrininduces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects.J Ethnopharmacol.2013.145(2):476-89.
    [20] Liu Y, Xie S, Wang Y, Luo K, Wang Y, Cai Y. Liquiritigenin inhibits tumor growthand vascularization in a mouse model of HeLa cells. Molecules.2012.17(6):7206-16.
    [21] Milosevic MF, Pintilie M, Hedley DW, et al. High tumor interstitial fluid pressureidentifies cervical cancer patients with improved survival from radiotherapy pluscisplatin versus radiotherapy alone. Int J Cancer.2013. doi:10.1002/ijc.28403.
    [22] Cetina L, Gonzalez-Enciso A, Cantu D, et al. Brachytherapy versus radicalhysterectomy after external beam chemoradiation with gemcitabine plus cisplatin:a randomized, phase III study in IB2-IIB cervical cancer patients. Ann Oncol.2013.24(8):2043-7.
    [23] Grigsby PW, Zighelboim I, Powell MA, Mutch DG, Schwarz JK. In vitrochemoresponse to cisplatin and outcomes in cervical cancer. Gynecol Oncol.2013.130(1):188-91.
    [24] Kuji S, Hirashima Y, Komeda S, et al. Feasibility of extended-field irradiation andintracavitary brachytherapy combined with weekly cisplatin chemosensitization forIB2-IIIB cervical cancer with positive paraaortic or high common iliac lymphnodes: a retrospective review. Int J Clin Oncol.2013. DOI10.1007/s10147-013-0551-8.
    [25] Emoto S, Yamaguchi H, Kamei T, et al. Intraperitoneal administration of cisplatinvia an in situ cross-linkable hyaluronic acid-based hydrogel for peritonealdissemination of gastric cancer. Surg Today.2013. DOI10.1007/s00595-013-0674-6.
    [26] Medina LA, Herrera-Penilla BI, Castro-Morales MA, et al. Use of an orthovoltageX-ray treatment unit as a radiation research system in a small-animal cancer model.J Exp Clin Cancer Res.2008.27:57.
    [27] Sun L, Yu DH, Sun SY, Zhuo SC, Cao SS, Wei L. Expressions of ER, PR, HER-2,COX-2, and VEGF in Primary and Relapsed/Metastatic Breast Cancers. CellBiochem Biophys.2013. DOI10.1007/s12013-013-9729.
    [28] Wang Q, Li T, Wu Z, et al. Novel VEGF decoy receptor fusion protein conbercepttargeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect invivo. PLoS One.2013.8(8): e70544.
    [29] Chen YY, Lu HF, Hsu SC, et al. Bufalin inhibits migration and invasion in humanhepatocellular carcinoma SK-Hep1cells through the inhibitions of NF-kB andmatrix metalloproteinase-2/-9-signaling pathways. Environ Toxicol.2013. doi:10.1002/tox.21896.
    [30] Wheler JJ, Tsimberidou AM, Falchook GS, et al. Combining Erlotinib andCetuximab is Associated with Activity in Patients with Non Small Cell LungCancer (including Squamous Cell Carcinomas) and Wild-Type EGFR or ResistantMutations. Mol Cancer Ther.2013. doi:10.1158/1535-7163.
    [31] Wu X, Bhayani MK, Dodge CT, et al. Coordinated Targeting of the EGFRSignaling Axis by MicroRNA-27a*. Oncotarget.2013.www.impactjournals.com/oncotarget
    [32] Nakashima T, Okuda K, Kojiro M, et al. Pathology of hepatocellular carcinoma inJapan.232Consecutive cases autopsied in ten years. Cancer.1983.51(5):863-77.
    [33]Ng IO, Lai EC, Ng MM, Fan ST. Tumor encapsulation in hepatocellular carcinoma.A pathologic study of189cases. Cancer.1992.70(1):45-9.
    [34] Eun JP, Koh GY. Suppression of angiogenesis by the plant alkaloid, sanguinarine.Biochem Biophys Res Commun.2004.317(2):618-24.
    [35] Dong X, Zhang M, Wang K, et al. Sanguinarine Inhibits Vascular EndothelialGrowth Factor Release by Generation of Reactive Oxygen Species in MCF-7Human Mammary Adenocarcinoma Cells. Biomed Res Int.2013doi:10.1155/2013/517698.
    [36] Chen X, Zhou JY, Zhao J, Chen JJ, Ma SN, Zhou JY. Crizotinib overcomeshepatocyte growth factor-mediated resistance to gefitinib in EGFR-mutantnon-small-cell lung cancer cells. Anticancer Drugs.2013. PMID:23962905.
    [37] Zhang G, Xie X, Liu T, Yang J, Jiao S. Effects of pemetrexed, gefitinib, and theircombination on human colorectal cancer cells. Cancer Chemother Pharmacol.2013.
    [38] Garnier D, Magnus N, Meehan B, Kislinger T, Rak J. Qualitative changes in theproteome of extracellular vesicles accompanying cancer cell transition tomesenchymal state. Exp Cell Res.2013. doi:10.1016/j.yexcr.2013.08.003.
    [39] Chen X, Sun L, Mao Y, et al. Preoperative core needle biopsy is accurate indetermining molecular subtypes in invasive breast cancer. BMC Cancer.2013.13(1):390.
    [40] Tsang JY, Ni YB, Chan SK, et al. CX3CL1expression is associated with pooroutcome in breast cancer patients. Breast Cancer Res Treat.2013.140(3):495-504.
    [41] Feng XS, Wang YF, Hao SG, Ru Y, Gao SG, Wang LD. Expression of Das-1, Ki67and sulfuric proteins in gastric cardia adenocarcinoma and intestinal metaplasialesions. Exp Ther Med.2013.5(6):1555-1558.
    [42] Wang L, Feng C, Ding G, Zhou Z, Jiang H, Wu Z. Relationship of TP53and Ki67expression in bladder cancer under WHO2004classification. J BUON.2013.18(2):420-4.
    [43] De Stefano I, Raspaglio G, Zannoni GF, et al. Antiproliferative and antiangiogeniceffects of the benzophenanthridine alkaloid sanguinarine in melanoma. BiochemPharmacol.2009.78(11):1374-81.
    [44] Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system. JBiomed Nanotechnol.2013.9(5):741-50.
    [45] Niedzwiedzka-Rystwej P, Tokarz-Deptula B, Deptula W. Autophagy inphysiological and pathological processes--selected aspects. Pol J Vet Sci.2013.16(1):173-80.
    [46] Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. MolCell.2013.49(3):399-410.
    [47] Gaytan M, Morales C, Sanchez-Criado JE, Gaytan F. Immunolocalization of beclin1, a bcl-2-binding, autophagy-related protein, in the human ovary: possible relationto life span of corpus luteum. Cell Tissue Res.2008.331(2):509-17.
    [48] Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanentfocal cerebral ischemia is associated with activation of autophagic and lysosomalpathways. Autophagy.2008.4(6):762-9.
    [1]中国科学院中国植物志编辑委员会.中国植物志:第32卷[M].北京:科学出版社,1999,78-9.
    [2]刘浩,谈满良,单体江,等.博落回生物碱与生物活性及其应用[J].中国野生植物资源,2009,28(3):21-3.
    [3]孙文霞,袁仕善,黄琼瑶,等.血水草生物碱及其血根碱抑菌作用的研究[J].实用预防医学,2010,17(9):1864-6.
    [4]黄馨慧,罗明志,齐浩,等.龙胆苦苷等6种中草药提取物对SMMC-7721人肝癌细胞增殖的影响[J].西北药学杂志,2004,19(4):166-8.
    [5] Ahsan H, Reagan-Shaw S, Breur J, et al. Sanguinarine induces apoptosis of humanpancreatic carcinoma AsPC-1and BxPC-3cells via modulations in Bcl-2familyproteins [J]. Cancer Lett,2007,249(2):198-208.
    [6] Chang MC, Chan CP, Wang YJ, et al. Induction of necrosis and apoptosis to KBcancer cells by sanguinarine is associated with reactive oxygen species productionand mitochondrial membrane depolarization [J]. Toxicol Appl Pharmacol,2007,218(2):143-51.
    [7]彭飞,彭玲,黄琼瑶.血根碱调控肿瘤细胞周期机制研究进展[J].湖南中医杂志,2011,27(2):130-2.
    [8]罗国富,肖世玖.血根碱的药理作用及其应用[J].兽药与饲料添加剂,2009,14(5):22-4.
    [9] http://www.hgspace.com/dic/x/g05lhsoy.html.
    [10]Du ZP, Suo QL, Zhang XY, et al. Spectral studies of the interaction betweensanguinarine and guanosine [J]. Chin Chem Lett,2008,19(12):1465-9.
    [11]Cho HY, Son SY, Rhee HS, et al. Synergistic effects of sequential treatment withmethyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloidaccumulation and protein expression in Eschscholtzia californica suspensioncultures [J]. J Biotechnol,2008,135(1):117-22.
    [12]贝俊宏,柯学,黄志峰,等.血根碱脂质体的制备与大鼠体内药动学[J].药学与临床研究,2010,18(1):42-5.
    [13]Becci PJ, Schwartz H, Barnes HH, et al. Short-term toxicity studies of sanguinarineand of two alkaloid extracts of Sanguinaria canadensis [J]. Toxicol Environ Health,1987,20(12):199-208.
    [14]童维新,仰红野,张海发,等.复方白屈菜治疗慢性气管炎881例的临床观察研究[J].吉林中医药,1985,2:15-6.
    [15]张宏浩.白蕨菜活性物质提取工艺及杀虫活性的研究[D].哈尔滨。东北林业大学,2007.
    [16]王大菊,周诗其,叶冬青,等.博落回急性及亚慢性毒性试验[J].华中农业大学学报,1993,12(6):612-6.
    [17]Kosina P, Walterova D, Ulrichova J, et al. Sanguinarine and chelerythrine:Assessment of safety on pigs in ninety days feeding experiment [J]. Food ChemToxicol,2004,42(1):85-91.
    [18]Psotova J, Vecera R, Zdarilova A, et al. Safety assessment of sanguiritrin, alkaloidfraction of macleaya cordata in rats [J]. Vet Med,2006,51(4):145-55.
    [19]Gordon A H. The use of the isolated perfused liver to detect alterations to plasmaproteins [J]. Biochem J,1957,66(2):255-64.
    [20]Hakim SAE, Mijovic V, Walker J. Experimental transmission of sanguinarine inmilk; Detection of a metabolic product [J]. Nature,1961,189(4760):201-4.
    [21] Tandon, S, Das, M and Khanna, SK. Biometabolic elimination and organ retentionprofile of argemone alkaloid, sanguinarine, in rats and guinea pigs.[J]Drug MetabDispos,1993,21:194-7.
    [22]Janovská M, Kubala M, Simánek V, et al. Fluorescence of sanguinarine: spectralchanges on interaction with amino acids [J]. Phys Chem Chem Phys,2010,12(37):11335-41.
    [23]Karp JM, Rodrigo KA, Pei P, et al. Sanguinarine activates polycyclic aromatichydrocarbon associated metabolic pathways in human oral keratinocytes andtissues [J]. Toxicol Lett,2005,158(1):50-60.
    [24]Zdarilová A, Vrzal R, Rypka M, et al. Investigation of sanguinarine andchelerythrine effects on CYP1A1expression and activity in human hepatoma cells[J]. Food Chem Toxicol,2006,44(2):242-9.
    [25]Yang X, Liu D, Murray TJ, et al. The aryl hydrocarbon receptor constitutivelyrepresses c-myc transcription in human mammary tumor cells [J]. Oncogene,2005,24(53):7869-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700