脑组织参数近红外实时在位微创测量技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑组织光学、血氧和血流动力学参数的在位精确测量是生物医学领域中脑科学的重要研究内容,而这些参数的微创综合测量还未见报道,这些综合参数可能对脑组织类型识别、脑肿瘤定性分析、脑外科手术导航、脑功能基础研究等提供更丰富的参考信息。
     本文从双光纤微创探头在位测量的角度出发,以实现脑组织光学、血氧和血流动力学参数较高精度的微创综合测量为研究目标,在脑组织参数测量基础理论、脑组织内部光场分布、系统设计与定标、系统在基础医学中的应用等方面进行了深入研究。主要研究内容包括:基于小距离双光纤微创探头和稳定态光纤光谱仪设计一个多参数综合测量系统,并实现测量结果实时自动分析;有关测量参数的基础理论和经验公式研究,主要有吸收和漫反射光谱特征因子提取、人工神经网络和多元线性回归分析的特征因子建模、特征因子与光学、血氧和血流动力学参数关联等;系统在大鼠C6胶质瘤综合(光学、血氧与血流)参数测量中的应用研究。论文在一些关键性技术上取得了如下创新性成果:
     1.设计了生物组织参数实时在位微创测量实验系统,可以同时获取穿刺轨迹上生物组织的约化散射系数、吸收系数、血氧饱和度、总血红蛋白浓度、血流量和血容量。
     2.采用模型实验定标法获得双光纤微创系统约化散射系数、血氧饱和度和总血红蛋白浓度的经验公式,测试精度在动物实验中得到验证,结果准确可靠。
     3.在血氧饱和度的测试上,利用人工神经网络建立了光谱分析数学模型,测量精度和传统的脑组织血氧饱和度测试方法相比有了一定的提高。
     4.利用本系统在临床医学上进行了初步应用探索,主要研究了脑胶质瘤的近红外测试特征因子。实验中实时在位获得了SD大鼠C6胶质瘤的光学、血氧和血流动力学参数,发现这些参数在胶质瘤和正常脑组织间有较显著的差异性,为疾病诊断提供了参考。
     5.将近红外测试技术和MRI影像结合对胶质瘤的病理特性进行了探索,研究了SD大鼠C6胶质瘤近红外测试特征因子与胶质瘤病理分级的关联,提出了近红外测试特征因子用于胶质瘤分级的方案,为临床医学应用奠定了良好的基础。
In vivo accurate measurements of tissue optical, blood oxygenic and blood dynamic parameters are important contents of brain science researching of biomedical fields. However, all parameters’simultaneous measurment with one minimally-invasive system havn’t been reported, which can provide more useful information and more characteristic factors for brain tissue recognization, brain tumor quality analysis, neurosurgery operation guidance and brain function research.
     This study is based on minimally-invasive, in vivo measurement with a needle probe including two fibers. The researching goals are exact measurement of brain tissue optical, blood oxygenic and blood dynamic parameters with a minimally-invasive system. Basical measurement theories of brain tissue’s paremeters, light distributions in brain tissues, system design, standard establishment and calibration, and clinic application are studied. The main contents of this study include building a real time in vivo measurement system which can measure and analysis three kinds of parameters automatically based on a steady-state fiber spectrometeric and a minimally-invasive needle probe, researching about the basical theories of measurements of brain tissue paremeters and experimental equations, including extracting spectra characteristics from absorption and scattering spectra, characteristic modeling of artificial neural network and regression analysis, building relationships between the characteristics and optical, blood oxygenic and blood dynamic parameters, and applying this system in measuring parameters (optical, blood oxygenic and blood dynamic parameters) of rats’C6 glioma. The main achievements and innovative results:
     1. An experimental system of a minimally-invasive, real time, in vivo tissue parameters measurement system, which realizes simultaneous measurement of reduced scattering coefficient, absorption coefficient, hemoglobin oxygen saturation, total hemoglobin concentration, blood flow and blood volume of the puncturing track.
     2. Empiricism equations for reduced scattering coefficient, hemoglobin oxygen saturation and total hemoglobin concentration are obtained through model experiments. These equations’precisions are validated in animal experiments. The results are exact and reliable.
     3. Artifical Neural Network is used to design spectra analysis model in minimal-invasive measurement of hemoglobin oxygen saturation, which has higher precision compared with traditional methods in measurement of hemoglobin oxygen saturation.
     4. Preliminary exploring of system application in clinical medicine. In vivo optical, blood oxygenic and blood dynamic parameters of C6 glioma are obtained in real time. Obvious diversities between C6 glioma and normal brain tissue are found from these parameters, which can supply reference for tumor diagnose.
     5. Pathological characters of glioma are explored by combining MRI and near infrared technique. Relationship between these parameters and pathological level are discussed and some methods for glioma classification by these parameters are proposed, which make good foundation for clinical application.
引文
[1] O'Leary M. A., Boas D. A., Chance B., et. al.. Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities [J]. Journal of Luminescence, 1994, 60 (1): 281~286
    [2] Sevick-Muraca E. M., Houston J. P. and Gurfinkel M.. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents [J]. Curr. Opin. in Chem. Bio., 2002, 6(5): 642~650
    [3] Svanberg S.. Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines [J]. Journal of Alloys and Compounds, 2002, 344(1): 255~259
    [4] Ni X., Xing Q., Cai W., et. al.. Time-resolved polarization to extract coded information from early ballistic and snake signals through turbid media [J]. Opt. Lett., 2003, 10(28): 343~347
    [5] Karamzadeh A. M., Jackson R., Guo S., et. al.. Distinguishing edema vs scar in the rabbit subglottis using optical coherence tomography [J]. Otolaryngology - Head and Neck Surgery, 2004, 131(2): 128~130
    [6] Ishimaru A.. Wave propagation and scattering in random media [M]. Academic press, 1978
    [7] Chance B.. Photon migration in tissue [M]. Plemum Press, New York, 1989
    [8] Profio A. E.. Light transport in tissue [J]. Appl. Opt., 1989, 28(12): 2216~2222
    [9] Welch A. J. and van Gemert M. J. C.. Optical-thermal response of laser-irradiated tissue [M]. Plemum Press, New York, 1995
    [10] Wilson B. C. and Jacques S. L.. Optical reflectance and transmittance of tissues: principles and applications [J]. IEEE J. Quan. Elec., 1990, 26(12): 2186~2199
    [11] Petterson M. S., Wilson B. C. and Wyman D. R.. The propagation of optical radiation in tissue I. Models of radiation transport and their application [J]. Laser Med. Sci., 1991, 6(2): 155~168
    [12] Svaasand L. O. and Gomer C. J.. Optics of tissue. In: Dosimetry of Laser Radiation in Medicine and Biology [C]. Proc. SPIE, 1989, IS5: 114~131
    [13]徐兰青,李晖,谢树森。Theoretical analysis of backscattered polarization patterns of turbid media containing glucose [J]. Chinese Optics Letters, 2007, 5(2): 102~104
    [14]李忠明,张镇西。光场力的电磁理论分析[J]。量子电子学报,2007, 24(2): 211~215
    [15]王金东,魏正军,刘颂豪。向长波方向发展的光子数分辨探测技术[J]。物理,2007, 36(4): 319~324
    [16]方正,孙小敏,骆清铭。一种简便的计算层析系统X射线硬化校正方法[J]。光学学报,2007, 27(2): 302~306
    [17]丁海曙,腾轶超。组织血氧参数近红外无损检测技术及自主创新之路[J]。激光与光电子学进展,2007, 44(9): 14~31
    [18] Zhao H., Gao F., Tanikawa Y., et. al.. Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue [J]. Appl. Opt., 2005, 43(10): 1905~1916
    [19] Cheong W. F., Parhl S. A. and Welch A. J.. A review of optical properties of biological tissues [J]. IEEE J. Quantum Electron, 1990, 26(12): 2166~2185
    [20] Delfino I., Lepore M., and Indovina P. L.. Experiental tests of different solution to the diffusion equation for optical characterization of scattering media by time-resolved transmittance [J]. Appl. Opt., 1999, 38(19): 4228~4236
    [21] Durduran T., Choe R., Culver J. P., et. al.. Bulk optical properties of healthy female breast tissue [J]. Phys. Med. Biol., 2002, 47: 2847~2861
    [22] Palmer G., Zhu C., Breslin T., et. al.. Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis [J]. Appl. Opt., 2006, 45(5): 1072~1078
    [23] Yoon G., Roy D. N. G., and Straight R. C.. Coherent backscattering in biological media: measurement and estimation of optical properties [J]. Appl. Opt., 1993, 32(4): 580~585
    [24] Sheth S., Nemoto M., Guiou M., et. al.. Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex [J]. NeuroImage, 2003, 19(3): 884~894
    [25] Asgari S., Rohrborn H. J., Engelhorn T., et. al.. Intra-operative characterization of gliomas by near-infrared spectroscopy: possible association with prognosis [J]. Acta Neurochir, 2003, 145(6): 453~460
    [26] Gate L. F.. Comparison of the photon diffusion model and Kubelka-Munk equation with the exact solution of the radiative transport equation [J]. Appl. Opt., 1974, 13(2): 236~238
    [27] Kienle A., Patterson M.S., D?gnitz N., et. al.. Noninvasive determination of the optical properties of two-layered turbid media [J]. Appl. Opt., 1998, 37(4): 779~791
    [28] Chandrasekhar S.. Radiative Transfer [M]. Oxford University Press, London, 1960
    [29] Suddeath L., Sahai V., Wilser A., et. al.. Finite element solution of the“forward imaging”problem associated with time and frequency-domain measurements of photon migration [C]. Proc. SPIE, 1993,1888:117~127
    [30] Prahl S. A., van Gemert M. J. C. and Welch A. J.. Determining the optical properties of turbid media by using the adding-doubling method [J]. Appl. Opt., 1993, 32(4): 559~568
    [31] Preuss L. E., Bolin F. P., and Cain B. W.. Tissue as a medium for laser light transport - Implications for photoradiation therapy [C]. Proc. SPIE, 1982, 357: 77~84
    [32] Doiron D. R., Svaasand L. O. and Profio A. E..“Light dosimetry in tissue applications to photoradiation therapy”in Porphyrin Photosensitization [M]. New York: Plenum, 1983: 63~75
    [33] Svaasand L. O. and Ellingsen R.. Optical properties of human brain [J]. Photochem. Photobiol., 1983, 38(3): 293~299
    [34] Wilson B. C., Jeeves W. P. and Lowe D. M.. In vivo and postmortem measurements of the attenuation spectra of light in mammalian tissues [J]. Photochem. Photobiol., 1985, 42(2): 153~162
    [35] Wilson B. C., Patterson M. S. and Burns D. M.. Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light [J]. Lasers Med. Sci., 1986, 1(2):235~244
    [36] Flock S. T., Wilson B. C. and Patterson M. S.. Total attenuation coefficients and scattering phase functions of tissue and phantom materials at 633nm [J]. Med. Phys., 1987, 14(5): 835~841
    [37] Sterenborg H. J. C. M., van Gemert M. J. C., Kamphorst W., et. al.. The spectral dependence of the optical properties of the human brain [J]. Lasers Med. Sci., 1989, 4(4): 221~227
    [38] Karagiannes J. L., Zhang Z., Grossweiner B., et. al.. Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms [J]. Appl. Opt., 1989, 28(12): 2325~2330
    [39] Splinter R., Cheong W. F., van Gemert M. J. C., et. al.. In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm [J]. Lasers Surg. Med., 1989, 9(1): 37~41
    [40] Patterson M. S., Chance B. and Wilson B. C.. Time resolved reflectance and transmittancefor the noninvasive measurement of tissue optical properties [J]. Appl. Opt., 1989, 28(12): 2331~2336
    [41] Patterson M. S., Moulton J. D., Wilson B. C., et. al.. Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue [J]. Appl. Opt., 1991, 30(31): 4474~4476
    [42] Fantini S., Franceschini M. A. and Gratton E.. Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency domain study in the diffusion approximation [J]. J. Opt. Soc. Am. B, 1994, 11(10):2128~2138
    [43] Farrell T. J., Patterson M. S. and Wilson B.. A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvaive determination of tissue optical properties in vivo [J]. Med. Phys., 1992, 19(4): 879~888
    [44] Matcher S. J., Cope M. and Delpy D. T.. In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy [J]. Appl. Opt., 1997, 36(1): 386~396
    [45] Zaccanti G., Taddeucci A., Barilli M., et. al.. Optical properties of biological tissues [C]. Proc. SPIE, 1995, 2389: 513~521
    [46] Choi J., Wolf M., Toronov V., et. al.. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach [J]. J. Biomed. Opt., 2004, 9(1): 221~229
    [47] Bevilacqua F., Piguet D., Marguet P., et. al.. In vivo local determination of tissue optical properties: applications to human brain [J]. Appl. Opt., 1999, 38(22): 4939~4950
    [48] Zonios G., Perelman L. T., Backman V., et. al.. Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo [J]. Appl. Opt., 1999, 38(31): 6628~6637
    [49] Ghosh N., Mohanty S., Majumder S., et. al.. Measurement of Optical Transport Properties of Normal and Malignant Human Breast Tissue [J]. Appl. Opt., 2001, 40(1): 176~184
    [50] Bolt R. A. and Ten Bosch J. J.. Method for measuring position-dependent volume reflection [J]. Appl. Opt., 1993, 32(24): 4641~4645
    [51] Kienle A., Lilge L., Patterson M. S., et. al.. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue [J]. Appl. Opt., 1996, 35(13): 2304~2314
    [52] Wilson B. C. and Adam G. A.. Monte carlo model for the absorption and flux distribution of light in tissue [J]. Med. Phys., 1983, 10(6): 824~830
    [53] Wang L. V.. Rapid modeling of diffuse reflectance of light in turbid slabs [J]. J. Opt. Soc. Am. A, 1998, 15(4): 936~944
    [54] Graaf R., Koelink M. H., de Mul F. F. M., et. al.. Condensed Monte Carlo simulations for the description of light transport [J]. Appl. Opt., 1993, 32(4): 426~434
    [55] Sassaroli A., Blumetti C., Martelli F., et. al.. Monte Carlo procedure for investigating light propagation and imaging of highly scattering media [J]. Appl. Opt., 1998, 37(31): 7392 ~ 7400
    [56] Tinet E., Avrillier S. and Tualle J. M.. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media [J]. J. Opt. Soc. Am. A, 1996, 13(9): 1903 ~ 1915
    [57] van der Zee P.. Measurement and modeling of the optical properties of human tissue in the near-infrared [D]. Ph.D dissertation, University of London, London, 1992
    [58] Flock S. T., Wilson B. C. and Patterson M. S.. Monte carlo modeling of light-propagation in highly scattering tissue-I: model predictions and comparison with diffusion theory [J]. IEEE trans. Biomed. Eng., 1989, 36:1162~1168
    [59] Schmitt J. M., Knüttel A. and Bonner R. F.. Measurement of optical properties of biological tissues by low-coherence reflectometry [J]. Appl. Opt., 1993, 32 (30): 6032~6042
    [60] Kholodnykh A., Petrova I., Larin K., et. al.. Precision of Measurement of Tissue Optical Properties with Optical Coherence Tomography [J]. Appl. Opt., 2003 ,42 (16): 3027~3037
    [61] Fantini S., Franceschini M. A., Maier J., et. al.. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry [J]. Optical Engineering, 1995, 34(1): 32~42
    [62] Chance B., Zhuang Z., Unah C., et.al.. Cognition-activated low-frequency modulation of light absorption in human brain [J]. Proc. Natl. Acad. Sci. USA, 1993, 90(8): 3770~3774
    [63] de Blasi R. A., Cope M., Elwell C., et al.. Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy [J]. J. Appl. Physiol., 1993, 67(1): 20~25
    [64] Wyatt J. S.. Cerebral oxygenation and haemodynamics in the foetus and newborn infant [J]. Philosophical Transactions of the Royal Society of London, 1997, 352(1354):697~700
    [65] Hoshi Y. and Tamua M.. Dynamic multichannel near-infrared optical imaging of human brain activity [J]. J. Appl. Physiol., 1993, 75(4): 1842~1846
    [66]杜烜。多通道近红外光谱血氧监测系统的研制[D]:[学位论文]。武汉:华中科技大学生物医学工程系,2005
    [67]郑名哲,陈衔城。超声技术测量颅外供血动脉血流参数评价脑血流量及其进展[J]。中国临床神经科学,2004, 12(2): 215~217
    [68]黄厚才,彭蕴茹,丁永芳等。钩藤散对麻醉犬脑血流量的影响[J]。实验动物科学,2007, 24(3): 17~19
    [69]倪建明,姚振威,沈天真等。氙气CT灌注用于脑血流及其储备功能的初步评价[J]。中国医学计算机成像杂志,2005, 11(2): 75~79
    [70]杨仪,刘增礼,唐军等。99Tcm-ECD SPECT无创性脑血流量测定[J]。同位素, 2007, 20(2): 94~97
    [71] Rostrup E., Law I., Pott F., et. al.. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans [J]. Brain Research, 2002, 954(2): 183~193
    [72]郭恩忠,赵宇,刘静红等。正常成人头CT灌注成像脑血流动力学定量研究[J]。解剖科学进展, 2006, 12 (2) : 119~120
    [73]郑斐群,余永强,柏亚等。脑MR灌注成像在评价神经胶质瘤肿瘤血管中的价值[J]。中华放射学杂志,2003, 37(9): 813~817
    [74]吴劲松,陈衔城。激光多普勒血流测定法在局部脑血流量监测中的应用[J]。国外医学脑血管疾病分册,1999, 7(3): 162~164
    [75]赵军,丁海曙,侯新琳等。新生儿脑部光学参数的无损检测[J]。光谱学与光谱分析,2005, 25(11): 1768~1771
    [76] Kusaka T., Nagano K., Okubo K., et. al.. Estimation of regional cerebral blood flow in infants by near-infrared topography with ICG [J]. International Congress Series, 2002, 1232: 323~327
    [77] Kurth C. D. and Thayer W. S.. A multiwavelength frequency-domain near-infrared cerebral oximeter [J]. Phys. Med. Biol., 1999, 44(3): 727~740
    [78] Mourant J. R., Bigio I. J., Boyer J., et. al.. Spectroscopic diagnostic of bladder cancer by elastic light scattering [J]. Laser Surg. Med., 1995, 17(4): 350~357
    [79] Johns M., Giller C. A. and Liu H.. Computational and In Vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery [J]. J. Biomed. Opt., 1998, 3(4): 437~445
    [80] Mourant J. R., Johnson T., Los G., et. al.. Non-invasive measurements of chemotherapy drugconcentrations in tissue: preliminary demonstrations of in vivo measurements [J]. Phys. Med. Biol.,1999, 44(5): 1397~1417
    [81] Giller C. A., Johns M. and Liu H.. Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders [J]. J Neurosurg., 2000, 93(3): 498~505
    [82] Plesnila N., Putz C., Rinecker M., et. al.. Measurement of absolute values of hemoglobin oxygenation in the brain of small rodents by near infrared reflection spectrophotometry [J]. J. Neuroscience methods, 2002, 114(1):107~117
    [83] Johns M., Giller C. A. and Liu H.. Determination of Hemoglobin Oxygen Saturation from Turbid Media using Reflectance Spectroscopy with small Source-Detector separations [J]. Appl.Spectroscopy, 2001, 55(12): 1686~1694
    [84]钱志余,陈仁文,顾月清等。生物组织光学参数:优化散射系数的实时在位测定[J]。南京航空航天大学学报,2004, 36(3): 369~372
    [85] Binzoni T., Colier W., Hiltbrand E., et. al.. Muscle O2 consumption by NIRS: a theoretical model [J]. J. Appl. Physiol., 1999, 87(2): 683~688
    [86] Zhang F., Chen B., Zhao S., et. al.. Noninvasive determination of tissue optical properties based on radiative transfer theory [J]. Optics & Laser Technology, 2004, 36(5): 353~359
    [87] Zhu T. C., Finlay J. C. and Hahn S. M.. Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy [J]. J. Photochem. Photobio. B: Biology, 2005, 79(3): 231~241
    [88] Radhakrishnan H., Liu H., Senapati A. K., et. al.. Determination of hemoglobin oxygen saturation in rat sciatic nerve by in vivo near infrared spectroscopy [J]. Brain Research, 2006, 1098(1): 86~93
    [89] Zeng H., McWilliams A. and Lam S.. Optical spectroscopy and imaging for early lung cancer detection: a review [J]. Photodiagnosis and Photodynamic Therapy, 2004, 1(2): 111~122
    [90] Stepp H., Beck T., Beyer W., et. al.. Measurement of fluorophore concentration in turbid media by a single optical fiber [J]. Medical Laser Application, 2007, 22(1): 23~34
    [91] Song L. M. W. K. and Wilson B. C.. Optical Detection of High-Grade Dysplasia in Barrett’s Esophagus [J]. Techniques in Gastrointestinal Endoscopy, 2005, 7(2): 78~88
    [92] Jiang H., Marquez G. and Wang L.. Particle sizing in concentrated suspensions by use ofsteady-state, continuous-wave photon-migration techniques [J]. Opt. Lett., 1998, 23(5): 394~396
    [93] Weersink R. A., Bogaards A., Gertner M., et. al.. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: Clinical experience and practicalities [J]. J. Photochem. Photobio. B: Biology, 2005, 79(3): 211~222
    [94] Yves Roggo, Pascal Chalus, Lene Maurer, et.al. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3): 683~700
    [95]来建成,李振华,贺安之。生物组织光传输理论概论[J]。激光生物学报,2004, 13(3): 167~172
    [96] Bolin F. P., Preuss L. E., Taylor R. C., et. al.. Refractive index of some mammalian tissues using a fiber optic cladding method [J]. Appl. Opt., 1989, 28(12): 2297~2303
    [97]吴太虎,徐可欣,刘庆珍等。近红外光谱法无创测量人体血红蛋白浓度[J]。激光生物学报,2006, 15(2): 204~208
    [98]刘喜成,张中军,任永功。混合静脉血氧饱和度监测的临床应用[J]。中国急救医学,2007, 27(1): 55~58
    [99] de Visscher G., van Rossem K., van Reempts J., et. al.. Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy in the rat [J]. Comparative Biochem.and Physiol.Part A, 2002, 132(1):87~95
    [100] Prahl S.. Optical Absorption of Hemoglobin, Oregon. Medical Laser Center Webpage [EB/OL].
    [101] Cope M. and Delpy D. T.. A system for the long term measurement of cerebral blood and tissue oxygenation in newborn infants by near infrared transillumination [J]. Medical and Biological Engineering and Computing, 1988, 26(3): 289~294
    [102] Arridge S. R., Cope M. and Delpy D. T.. The theoretical basis for the determination of optical pathlengths in tissue:temporal and frequency analysis [J]. Phys. Med. Biol., 1993, 37(7): 1531~1560
    [103] Hiraoka M., Firbank M., Essenpreis M., et. al.. A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy [J]. Phys. Med. Biol., 1993, 38(12): 1859~1876
    [104] Duncan A., Meek J. H., Clemence M., et. al.. Measurement of cranial optical pathlength asa function of age using phase resolved near infrared spectroscopy [J]. Pediatric Research, 1995, 39(5):889~594
    [105]蒋宗礼。人工神经网络导论[M]。北京:高等教育出版社,2001
    [106] Wang L. and Jacques S. L.. Hybrid model of monte carlo simulation diffusion theory for light reflectance by turbid media [J]. Journal of Optical Society of America A, 1993, 10(8): 1746~1752
    [107] Wang L., Jacques S. L. and Zheng L. Q.. MCML-Monte Carlo modeling of photon- transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131~146
    [108] Qian Z., Victor S. S., Gu Y., et. al.“Look-Ahead Distance”of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study [J]. Opt. Exp., 2003, 11 (16): 1844~1855
    [109] Takatani S. and Graham M. D.. Theoretical analysis of diffuse reflectance from a two-layer tissue model [C]. IEEE Trans. Biomed. Eng., 1987, BME-26: 656~664.
    [110] Edwards A. D., Wyatt J. S., Richardson D. E., et. al.. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy [J]. Lancet, 1988, 2(11):770~771
    [111] Elwell C. E., Cope M., Edwards A. D., et. al.. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy [J]. J. Appl. Physiol., 1994, 77(6): 2753~2760
    [112] Ito H., Kanno I., Fukuda H., et. al.. Change in CBF and CBV during changes in neural activity or PaCO2 measured by PET [J]. 2004 International Congress Series.1265: 211~217
    [113] http://anthro.palomar.edu/blood/blood_components.htm
    [114] Motrescu I., Oancea S., Rapa A., et. al.. Spectrophotometric analysis of the blood plasma for different mammals [J]. Romanian J.Biophys., 2006, 16(3): 215~220
    [115] Woodard H. Q. and White D. R.. The composition of body tissues [J]. Br. J.Radiol., 1986, 59(708): 1209~1219
    [116] Buiteveld H., Hakvoort J. M. H. and Donze M.. The optical Properties of pure water [C]. Proc. SPIE, 1994, 2258: 174~183
    [117] Fillerup D. L. and Mead J. F.. The lipids of the aging human brain [J]. Lipids, 1976, 2(4): 295~298
    [118] van Veen R. L. P., Sterenborg H. J. C. M., Pifferi A., et. al.. Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy [C]. OSA Annual BIOMED Topical Meeting,2004
    [119]包新民,舒斯云。大鼠脑立体定位图谱[M]。北京:人民卫生出版社,1991
    [120]黄强,陈忠平,兰青。胶质瘤[M]。北京:中国科学技术出版社,2000
    [121] Keles G. E., Anderson B. and Berger M. S.. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere [J]. Surg. Neurol., 1999, 52: 371~379
    [122] Norden A. D. and Wen P. Y.. Glioma Therapy in Adults[J]. The Neurologist, 2006, 12: 279~292
    [123] Steven V., Marion R., Rüdiger V. S., et. al.. Dendritic cell vaccination in patients with malignant gliomas: current status and future directions [J]. Neruosurgery, 2006, 5(59): 988~1000
    [124]王忠诚。神经外科手术学[M]。北京:科学出版社, 2000
    [125] Negendank W. G., Sauter R., Brown T. R., et. al.. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study [J]. J Neurosurg., 1996, 84 (3): 449~458
    [126] Tsuneo S., Hidekazu K., Norio A., et. al.. Evaluation of Primary Brain Tumors With FLT-PET: Usefulness and Limitations [J]. Clinical Nuclear Medicine, 2006, 12(31): 774~ 780
    [127] Law M. E., Templeton K. L., Kitange G., et. al.. Molecular cytogenetic analysis of chromosomes 1 and 19 in glioma cell lines [J]. Cancer Genetics and Cytogenetics, 2005, 160(1): 1~14
    [128] Cazzaniga S., Schold S. C., Sostman H. D., et. al.. Effects of therapy on the 1H NMR spectrum of a human glioma line [J]. Magnetic Resonance Imaging, 1994, 12(6): 945~950
    [129] Yang M. S., Yu L. C. and Gupta R. C.. Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium [J]. Toxicology, 2004, 201(2): 105~113
    [130] Tuettenberg J., Friedel C. and Vajkoczy P.. Angiogenesis in malignant glioma-A target for antitumor therapy [J]. Critical Reviews in Oncology/Hematology, 2006, 59: 181~193
    [131] Pasdois P., Deveaud C., Voisin P., et. al.. Contribution of the Phosphorylable Complex I in the Growth Phase-Dependent Respiration of C6 Glioma Cells in Vitro [J]. Journal of Bioenergetics and Biomembranes, 2003, 35(5): 439~450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700