多尺度循环系统数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病是全球死亡率最高的疾病之一,其病理研究、早期预防和临床诊治是一项十分艰巨的工作。循环系统的数学模型可为心血管系统生理研究、心血管疾病的诊断和治疗提供了一种有效的辅助手段。多尺度循环系统数学模型主要研究系统、器官和组织层次循环系统模型耦合中的多物理场问题和多种维度建模技术问题。建立多尺度的循环系统数学模型,能够帮助定量分析循环系统各个层次上的生理和病理特性,提高心血管疾病的预防、诊断与治疗水平。
     本文的研究目标是通过对不同层次循环系统建模中关键技术问题的研究,建立多尺度循环系统数学模型。具体完成了以下工作:
     1、解决了循环系统多尺度模型研究中的关键技术问题,包括(1)仿真心率变异性的自主神经系统模型技术;(2)提高一维(One-Dimensional,1D)微循环模型仿真效率的数值计算技术;(3)整体循环系统与微循环系统的耦合技术。
     2、建立了整体循环系统与自主神经系统耦合模型,基于该模型提出了一种表征副交感神经活动的特异性参数。应用临床数据初步验证了该参数的有效性,并基于模型分析了其生理机制。
     3、建立了基于大鼠肠系膜实验数据的微循环系统1D模型,仿真了血流脉动性的衰减特性。基于模式动物实验验证了模型的有效性。应用该模型发现微血管的阻力与顺应性是血流脉动性衰减的主要原因。
     4、基于结构参数耦合了整体循环与微循环系统模型,仿真发现微循环结构性病变会改变整体血压水平。仿真结果还表明,高血压情况下外周血压脉动性降低,并影响微循环功能。
     在上述工作中,本文研究的创新点在于:
     1、提出了基于血管阻力及顺应性耦合的多尺度模型技术,有效地解决了整体循环与微循环系统模型结合的问题,为仿真研究血流动力学与功能特性的融合提供了有益的探索。
     2、基于结合自主神经调节机制的整体循环模型研究,提出了一种改进的心率减速能力参数,并借助模型阐明了算法改进的机理,为促进自主神经系统评价指标的临床应用提供了一种新的方法。
     3、提出了1D微循环系统建模中高效的数值计算方法,所建立的模型可系统地仿真血流脉动性衰减现象,改变了微循环血流脉动性衰减机制研究中缺乏技术手段的现状,为研究微循环中血流脉动性介导的机械信号转导过程提供了崭新的平台。
     本文所建立的多尺度循环系统数学模型为循环系统生理和病理研究提供了有效的定量研究技术平台,待其完善并应用后将有益于促进心血管疾病基础研究,提升国民心血管健康水平。
Cardiovascular diseases (CVDs) are world-wide leading cause of death. The pathological research, early prevention, diagnosis and treatment of CVDs are great challenges. Mathematical models of the circulatory system provide an effective auxiliary means for the physiological research, diagnosis and treatment of CVDs. The multi-scale mathematical modeling of the circulatory system focuses on studying the nature of multiphysics and multi-dimensional modeling techniques in coupling multiple levels of circulatory systems, namely systematic, organic and tissular levels. The models are able to help study the pathophysiology of CVDs quantitatively in multiple scales, and improve the standard of the prevention, diagnosis and treatment of CVDs.
     This study aims to build a multi-scale mathematical model of the circulatory system based on the key technologies in multi-scale modeling. The main contributions of this study are summarized as follows:
     1. Key technologies in the multi-scale modeling of the circulatory system were developed, including (1) the autonomic nervous system (ANS) modeling technique which can simulate heart rate variability;(2) the numerical computing technique which can improve the simulation efficiency of one-dimensional (ID) microcirculatory model;(3) the coupling technique which can link the systemic and" microcirculatory systems.
     2. By the incorporation of the systemic circulatory model and the ANS model, an index which characterizes the parasympathetic activity was proposed. The index was verified by use of clinical data, and its physiological mechanism was interpreted by the model simulation.
     3. A ID microcirculation model was created based on the experimental data of rat mesentery and conducted to simulate the damping of blood flow pulsatility. The model was validated against the experiment of the model animal. With the help of the model, it is discovered that the vascular resistance and compliance are the major factors of the damping of blood flow pulsatility.
     4. The systemic and microcirculatory systems were coupled by structural parameters. The simulation of the coupled model explored that the structural alterations in the microcirculation affect the systemic blood pressure level. The simulation result also suggested that the peripheral blood pressure pulsatility under hypertension was reduced, and thus might result in the dysfuntion of microcirculation.
     The main innovations of the study are:
     1. A multi-scale modeling technique is proposed based on the coupling of vascular resistance and compliance. The technique solves the problem of incorporating the systemic and microcirculatory systems, and thus provides a beneficial approach in studying the fusion of hemodynamic and functional properties in the models.
     2. With the help of the incorporation of the systemic circulatory model and the ANS model, a modified deceleration capacity index of heart rate is produced, and its superiority is validated in mechanism. The model technique provides a novel method for promoting the clinical use of ANS index.
     3. The high-performance numerical methods for1D microcirculation model were developed to permit the simulation of the damping of blood flow pulsatility. The model fills the gap of methodology in the physiological study of the pulsatility damping mechanism, and provides a promising framework for the mechanotransduction research in the microcirculation.
     In conclusion, the multi-scale mathematical models of the circulatory system provide an effective technological platform for quantitative research. With the further improvement and utilization, the models are potential to benefit the fundamental cardiovascular research and improve the cardiovascular health of the public.
引文
1.世界卫生组织.2011心血管病实况报道.2011-01 [cited 2013 May 1st]; http://www.who.int/mediacentre/factsheets/fs317/zh/index.html.
    2.国家心血管病中心,中国心血管病报告.2011.
    3.血液循环示意图.[cited 2013 May 1st]; http://hiphotos.baidu.com/_i%CC%D4%B1%A6_/pic/item/6e74bcd21ca99df4a8ec9a3b.jpg.
    4.姚泰,生理学.2010,北京:人民卫生出版社.
    5. Tuma, R.F., W.N. Duran, and K. Ley, Microcirculation.2008, San Diego: Academic Press.949.
    6. Carlson, B.E., J.C. Arciero, and T.W. Secomb, Theoretical model of blood flow autoregulation:roles of myogenic, shear-dependent, and metabolic responses. Am. J. Physiol. Heart Circ. Physiol.,2008.295(4):p. H1572-H1579.
    7. Joyner, W.L., M.J. Davis, and J.P. Gilmore, Intravascular pressure distribution and dimensional analysis of microvessels in hamsters with renovascular hypertension. Microvasc. Res.,1981.22(2):p.190-198.
    8. Kuo, L., M.J. Davis, and W.M. Chilian, Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. Heart Circ. Physiol.,1988.255(6):p. H1558-HI562.
    9. Rhodin, J.A.G., Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J. Ultrastruct. Res.,1968.25(5-6):p.452-500.
    10. House, S.D. and P.C. Johnson, Diameter and blood flow of skeletal muscle venules during local flow regulation. Am. J. Physiol. Heart Circ. Physiol.,1986. 250(5):p. H828-H837.
    11. Pries, A.R., H. Habazettl, G. Ambrosio, P.R. Hansen, J.C Kaski, V. Schachinger, H. Tillmanns, G. Vassalli, I. Tritto, M. Weis, C. de Wit, and R. Bugiardini, A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc. Res.,2008.80(2):p.165-174.
    12. Levy, B.I., G. Ambrosio, A.R. Pries, and H.A.J. Struijker-Boudier, Microcirculation in Hypertension:A New Target for Treatment? Circulation,2001. 104(6):p.735-740.
    13. Grey, E., C. Bratteli, S.P. Glasser, C. Alinder, S.M. Finkelstein, B.R. Lindgren, and J.N. Cohn, Reduced small artery but not large artery elasticity is an independent risk marker for cardiovascular events. Am. J. Hypertens.,2003.16(4):p. 265-269.
    14. Rizzoni, D., E. Porteri, G.E.M. Boari, C. De Ciuceis, I. Sleiman, M.L. Muiesan, M. Castellano, M. Miclini, and E. Agabiti-Rosei, Prognostic Significance of Small-Artery Structure in Hypertension. Circulation,2003.108(18):p.2230-2235.
    15.陈淑真,基于循环系统键合图的心脑血管疾病仿真研究[硕士学位论文],杭州,浙江大学,2007
    16.汪道文,赵华月,植物神经系统与心血管疾病的研究进展.心血管病学进展,1995(05):p.257-260.
    17. Watson, A.M.D., S.G. Hood, and C.N. May, Mechanisms of sympathetic activation in heart failure. Clin. Exp. Pharmacol. Physiol.,2006.33(12):p. 1269-1274.
    18.潘惠麟,赵华月,儿茶酚胺诱致的低血钾及其在急性心肌梗塞时的临床意义.同济医科大学学报,1991(01):p.9-13.
    19. Olshansky, B., H.N. Sabbah, P.J. Hauptman, and W.S. Colucci, Parasympathetic Nervous System and Heart Failure:Pathophysiology and Potential Implications for Therapy. Circulation,2008.118(8):p.863-871.
    20. Li, M., C. Zheng, T. Sato, T. Kawada, M. Sugimachi, and K. Sunagawa, Vagal Nerve Stimulation Markedly Improves Long-Term Survival After Chronic Heart Failure in Rats. Circulation,2004.109(1):p.120-124.
    21. Mortara, A., M.T. La Rovere, G.D. Pinna, A. Prpa, R. Maestri, O. Febo, M. Pozzoli, C. Opasich, and L. Tavazzi, Arterial Baroreflex Modulation of Heart Rate in Chronic Heart Failure:Clinical and Hemodynamic Correlates and Prognostic Implications. Circulation,1997.96(10):p.3450-3458.
    22. Quarteroni, A., Modeling the Cardiovascular System-A Mathematical Adventure:Part I. SIAM News,2001.34(5):p.1-3.
    23.邹盛铨,血流动力学与心血管人工器官.1991,成都:成都科技大学出版社.
    24. Sutera, S.P. and R. Skalak, The history of Poiseuille Law. Annu. Rev. Fluid Mech.,1993.25:p.1-19.
    25. Sagawa, K., R.K. Lie, and J. Schaefer, Translation of Otto frank's paper "Die Grundform des arteriellen Pulses" zeitschrift fur biologie 37:483-526 (1899). J. Mol. Cell. Cardiol.,1990.22(3):p.253-254.
    26. Womersley, J.R., Oscillatory flow in arteries-The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol.,1957.2(2):p. 178-187.
    27. Sherwin, S.J., V. Franke, J. Peiro, and K. Parker, One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math.,2003.47(3):p.217-250.
    28. Steinman, D., Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries. Ann. Biomed. Eng.,2002.30(4):p.483-497.
    29. Hunter, P.J. and T.K. Borg, Integration from proteins to organs:the Physiome Project Nat. Rev. Mol. Cell Biol.,2003.4(3):p.237-243.
    30. Southern, J., J. Pitt-Francis, J. Whiteley, D. Stokeley, H. Kobashi, R. Nobes, Y. Kadooka, and D. Gavaghan, Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol.,2008.96(1-3):p.60-89.
    31. Pries, A.R., T.W. Secomb, and P. Gaehtgens, Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res.,1996.32(4):p.654-667.
    32. Shi, Y., P. Lawford, and R. Hose, Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. Biomed. Eng. Online.,2011.10(1):p.33.
    33. Geers, A.J., I. Larrabide, A.G. Radaelli, H. Bogunovic, M. Kim, H.A.F. Gratama van Andel, C.B. Majoie, E. VanBavel, and A.F. Frangi, Patient-Specific Computational Hemodynamics of Intracranial Aneurysms from 3D Rotational Angiography and CT Angiography:An In Vivo Reproducibility Study. Am. J. Neuroradiol.,2011.32(3):p.581-586.
    34. Westerhof, N., J.-W. Lankhaar, and B. Westerhof, The arterial Windkessel. Med. Biol. Eng. Comput.,2009.47(2):p.131-141.
    35. Westerhof, N., F. Bosman, C.J. De Vries, and A. Noordergraaf, Analog studies of the human systemic arterial tree. J. Biomech.,1969.2(2):p.121-143.
    36.肖汉光,心血管系统的电网络建模及动脉硬化与狭窄诊断研究[博士学位论文],重庆,重庆大学,2012
    37. Guyton, A.C., T.G. Cpleman, and H.J. Granger, Circulation:Overall Regulation. Annu. Rev. Physiol.,1972.34(1):p.13-44.
    38. McLeod, J., PHYSBE... a physiological simulation benchmark experiment. Simulation,1966.7(6):p.324-329.
    39. Coleman, T.G. and J.E. Randall, HUMAN. A comprehensive physiological model. Physiologist,1983.26(1):p.15-21.
    40. Ursino, M., Interaction between carotid baroregulation and the pulsating heart:a mathematical model. Am. J. Physiol. Heart Circ. Physiol.,1998.44(5):p. H1733-H1747.
    41. Ursino, M. and E. Magosso, Acute cardiovascular response to isocapnic hypoxia.I. A mathematical model. Am. J. Physiol. Heart Circ. Physiol.,2000.279:p. 149-165.
    42.白净,吴冬生,桡动脉脉搏波的仿真模型.航天医学与医学工程,1995.8(2):p.94-98.
    43.孔谙,白净,席葆树,祖佩贞,张菊鹏,心血管系统参数变化对脉搏波波形影响的数字仿真研究.航天医学与医学工程,1999.12(4):p.288-292.
    44.李新胜,白净,崔树起,王苏中,心肺交互作用的心血管系统模型及仿真研究.中国生物医学工程学报,2003.22(3):p.241-249.
    45. Diaz-Insua, M. and M. Delgado. Modeling and simulation of the human cardiovascular system with bond graph:A basic development. in Computers in Cardiology.1996.
    46. Rolle, V., A.I. Hernandez, P.Y. Richard, J. Buisson, and G. Carrault, A Bond Graph Model of the Cardiovascular System. Acta Biotheor.,2005.53(4):p.295-312.
    47.冯宇军,田树军,心血管循环系统建模和仿真研究中的功率键合图方法.中国生物医学工程学报,2001.20(1):p.67-71.
    48.冯宇军,杭晓明,多分支心血管循环系统的建模和仿真研究.生物医学工程学杂志,2000.17(2):p.186-191.
    49. Formaggia, L., D. Lamponi, M. Tuveri, and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng.,2006.9(5):p.273-288.
    50. Stergiopulos, N., D.F. Young, and T.R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech.,1992. 25(12):p.1477-1488.
    51. Alastruey, J., K.H. Parker, J. Peiro, S.M. Byrd, and S.J. Sherwin, Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech.,2007.40(8):p.1794-1805.
    52. Huo, Y.L. and G.S. Kassab, Pulsatile blood flow in the entire coronary arterial tree:theory and experiment. Am. J. Physiol. Heart Circ. Physiol.,2006.291(3): p. H1074-H1087.
    53. Alastruey, J., A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, K.H. Parker, and J. Peiro, Pulse wave propagation in a model human arterial network:Assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech.,2011.44(12):p.2250-2258.
    54. Olufsen, M.S., C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng.,2000.28(11):p. 1281-1299.
    55. Olufsen, M.S., Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol.,1999.276(1):p. H257-268.
    56. Castro, M.A., C.M. Putman, and J.R. Cebral, Computational Fluid Dynamics Modeling of Intracranial Aneurysms:Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. Am. J. Neuroradiol.,2006.27(8):p.1703-1709.
    57. Cebral, J.R., M.A. Castro, J.E. Burgess, R.S. Pergolizzi, M.J. Sheridan, and C.M. Putman, Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol., 2005.26(10):p.2550-2559.
    58. Kim, M., E.I. Levy, H. Meng, and L.N. Hopkins, Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery,2007.61(6):p.1305-1312.
    59. Cebral, J.R. and R. Lohner, Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging,2005.24(4):p.468-476.
    60. Formaggia, L., J.F. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and ID Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng.,2001.191(6-7):p.561-582.
    61.Nordsletten, D.A., S. Blackett, M.D. Bentley, E.L. Ritman, and N.P. Smith, Structural morphology of renal vasculature. Am. J. Physiol. Heart Circ. Physiol.,2006. 291(1):p. H296-H309.
    62. Simoens, P., L. De Schaepdrijver, and H. Lauwers, Morphologic and clinical study of the retinal circulation in the miniature pig. A:Morphology of the retinal microvasculature. Exp. Eye Res.,1992.54(6):p.965-973.
    63. Kassab, G.S., C.A. Rider, N.J. Tang, and Y.C. Fung, Morphometry of pig coronary arterial trees. Am. J. Physiol. Heart Circ. Physiol.,1993.265(1):p. H350-365.
    64. Ley, K., A.R. Pries, and P. Gaehtgens, Topological structure of rat mesenteric microvessel networks. Microvasc. Res.,1986.32(3):p.315-332.
    65. Pries, A.R. and T.W. Secomb, Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc. Res.,2009.81(2):p.328-335.
    66. Pries, A.R., T.W. Secomb, P. Gaehtgens, and J.F. Gross, Blood flow in microvascular networks. Experiments and simulation. Circ. Res.,1990.67(4):p. 826-834.
    67. Kassab, G.S. and Y.C. Fung, Topology and dimensions of pig coronary capillary network. Am. J. Physiol. Heart Circ. Physiol.,1994.267(1):p. H319-325.
    68. Kassab, G.S., D.H. Lin, and Y.C. Fung, Morphometry of pig coronary venous system. Am. J. Physiol. Heart Circ. Physiol.,1994.267(6):p. H2100-2113.
    69. Kassab, G.S., J. Berkley, and Y.C. Fung, Analysis of pig's coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng.,1997.25(1):p. 204-217.
    70. Kassab, G.S., K.N. Le, and Y.C. Fung, A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am. J. Physiol. Heart Circ. Physiol.,1999.277(6):p. H2158-2166.
    71. Mittal, N., Y. Zhou, S. Ung, C. Linares, S. Molloi, and G.S. Kassab, A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data. Ann. Biomed. Eng.,2005.33(8):p.1015-1026.
    72. Huo, Y. and G.S. Kassab, A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am. J. Physiol. Heart Circ. Physiol.,2007.292(6):p. H2623-2633.
    73.郭仲三,肖帆,郭四稳,伍岳庆,古乐野,微循环系统动力学综合数学模型研究(Ⅰ)——理论基础.应用数学和力学,1999(09).
    74.郭仲三,肖帆,郭四稳,伍岳庆,古乐野,微循环系统动力学综合数学模型研究(Ⅱ)———计算方法及结果.应用数学和力学,2000(05).
    75. Fahraeus, R., The Suspension Stability of the Blood. Physiol. Rev.,1929. 9(2):p.241-274.
    76. Fahraeus, R. and T. Lindqvist, The viscosity of the blood in narrow capillary tubes. Am. J. Physiol.--Legacy Content,1931.96(3):p.562-568.
    77. Pries, A.R., K. Ley, M. Claassen, and P. Gaehtgens, Red cell distribution at microvascular bifurcations. Microvasc. Res.,1989.38(1):p.81-101.
    78. Chen, S.Z., S.W. Zhang, Y.X. Gong, K.Y. Dai, M.R. Sui, Y. Yu, and G.M. Ning, The role of the autonomic nervous system in hypertension:a bond graph model study. Physiol. Meas.,2008.29(4):p.473-495.
    79. Gong, Y., Q. Hu, G. Ning, S. Gong, and J. Yan. Simulate Heart Failure by a Mathematical Model. in Bioinformatics and Biomedical Engineering,2009.1CBBE 2009.3rd International Conference on.2009.
    80. Task, F., Heart rate variability:Standards of measurement, physiological interpretation, and clinical use. Circulation,1996.93(5):p.1043-1065.
    81. Lipowsky, H.H. and B.W. Zweifach, Network analysis of microcirculation of cat mesentery. Microvasc. Res.,1974.7(1):p.73-83.
    82. Gaehtgens, P., Pulsatile pressure and flow in the mesenteric vascular bed of the cat. Pflug. Arch. Eur. J. Phy..1970.316(2):p.140-151.
    83. Seki, J., Flow pulsation and network structure in mesenteric micro vasculature of rats. Am. J. Physiol. Heart Circ. Physiol.,1994.266(2):p. H811-H821.
    84. Wiederhielm, C.A., J.W. Woodbury, S. Kirk, and R.F. Rushmer, Pulsatile pressures in the microcirculation of frog's mesentery. Am. J. Physiol.,1964.207(1):p. 173-176.
    85. Mahler, F., M.H. Muheim, M. Intaglietta, A. Bollinger, and M. Anliker, Blood pressure fluctuations in human nailfold capillaries. Am. J. Physiol. Heart Circ. 'Physiol.,1979.236(6):p. H888-H893.
    86. Nakano, T., R. Tominaga, I. Nagano, H. Okabe, and H. Yasui, Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am. J. Physiol. Heart Circ. Physiol.,2000.278(4):p. H1098-H1104.
    87. Li, Y., J. Zheng, I.M. Bird, and R.R. Magness, Effects of pulsatile shear stress on nitric oxide production and endothelial cell nitric oxide synthase expression by ovine fetoplacental artery endothelial cells. Biol. Reprod.,2003.69(3):p.1053-1059.
    88. Uryash, A., H. Wu, J. Bassuk, P. Kurlansky, M.A. Sackner, and J.A. Adams, Low-amplitude pulses to the circulation through periodic acceleration induces endothelial-dependent vasodilatation. J. Appl. Physiol.,2009.106(6):p.1840-1847.
    89. Buschmann, I., A.R. Pries, B. Styp-Rekowska, P. Hillmeister, L. Loufrani, D. Henrion, Y. Shi, A. Duelsner, I. Hoefer, N. Gatzke, H.T. Wang, K. Lehmann, L. Ulm, Z. Ritter, P. Hauff, R. Hlushchuk, V. Djonov, T. van Veen, and F. le Noble, Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development,2010.137(13):p.2187-2196.
    90. Sezai, A., M. Shiono, Y. Orime, K. Nakata, M. Hata, H. Yamada, M. Iida, S. Kashiwazaki, J. Kinishita, M. Nemoto, T. Koujima, Y. Sezai, and T. Saitoh, Renal circulation and cellular metabolism during left ventricular assisted circulation: Comparison study of pulsatile and nonpulsatile assists. Artif. Organs,1997.21(7):p. 830-835.
    91.Orime, Y., M. Shiono, K.-I. Nakata, M. Hata, A. Sezai, H. Yamada, M. Iida, S. Kashiwazaki, M. Nemoto, J.-I. Kinoshita, T. Kojima, T. Saito, and Y. Sezai, The Role of Pulsatility in End-Organ Microcirculation After Cardiogenic Shock. ASAIO J., 1996.42(5):p. M724-728.
    92. O'Neil, M.P., J.C. Fleming, A. Badhwar, and L.R. Guo, Pulsatile Versus Nonpulsatile Flow During Cardiopulmonary Bypass:Microcirculatory and Systemic Effects. Ann. Thorac. Surg.,2012.94(6):p.2046-2053.
    93.Mitchell, G.F., J.A. Vita. M.G. Larson, H. Parise, M.J. Keyes, E. Warner, R.S. Vasan, D. Levy, and E.J. Benjamin, Cross-Sectional Relations of Peripheral Microvascular Function, Cardiovascular Disease Risk'Factors, and Aortic Stiffness: The Framingham Heart Study. Circulation,2005.112(24):p.3722-3728.
    94. Feihl, F., L. Liaudet, B. Waeber, and B.I. Levy, Hypertension:A Disease of the Microcirculation? Hypertension,2006.48(6):p.1012-1017.
    95. Blanco, P.J. and R.A. Feijoo, A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med. Eng. Phys.,2013. 35(5):p.652-667.
    96.王中双,键合图理论及其在系统动力学中的应用.2000,哈尔滨:哈尔滨工程大学出版社.
    97.代开勇,心血管系统键合图模型仿真研究[硕士学位论文],杭州,浙江大学,2006
    98. Milisic, V. and A. Quarteroni, Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM:Mathematical Modelling and Numerical Analysis,2004.38(04):p.613-632.
    99. William. H., Numerical Recipes.2007, New York:Cambridge University Press.
    100.龚月仙,心血管系统多尺度模型研究[硕士学位论文],杭州,浙江大学,2010
    101. Alastruey, J., S.M. Moore, K.H. Parker, T. David, J. Peiro, and S.J. Sherwin, Reduced modelling of blood flow in the cerebral circulation:Coupling 1-D, 0-D and cerebral auto-regulation models. Int. J. Numer. Meth. Fl.,2008.56(8):p. 1061-1067.
    102. Alastruey, J., Numerical modelling of pulse wave propagation in the cardiovascular system:development, validation and clinical applications[PhD], London, Imperial College London,2006
    103. Fung, Y.C., B.W. Zweifach, and M. Intaglietta, Elastic Environment of the Capillary Bed. Circ. Res.,1966.19(2):p.441-461.
    104. Viscoelasticity. [cited 2013 May 1st]; http://en.wikipedia.org/wiki/ Viscoelasticity.
    105. Bergel, D.H., The dynamic elastic properties of the arterial wall. J. Physiol.,1961.156(3):p.458-469.
    106. Skalak, T.C. and G.W. Schmid-Schonbein, Viscoelastic properties of microvessels in rat spinotrapezius muscle. J. Biomech. Eng.,1986.108(3):p. 193-200.
    107. Karniadakis, G. and S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics.2005, New York:Oxford University Press.657.
    108. Cockburn, B. and C.W. Shu, TVB Runge-Kutta local projection discontinuous galerkin finite-element method for conservation-laws. Ⅱ. General framework. Math. Comp.,1989.52(186):p.411-435.
    109. Popel, A.S. and P.C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech.,2005.37(1):p.43-69.
    110. Pries, A.R. and T.W. Secomb. Rheology of the microcirculation. in 5th Asian Congress for Microcirculation.2003. Manila, Philippines:Ios Press.
    111. Pries, A.R. and T.W. Secomb, Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol.,2005.289(6):p. H2657-H2664.
    112. Kitney, R.I., A nonlinear model for studying oscillations in the blood pressure control system. J. Biomed. Eng.,1979.1(2):p.89-99.
    113. deBoer, R.W., J.M. Karemaker, and J. Strackee, Hemodynamic fluctuations and baroreflex sensitivity in humans:a beat-to-beat model. Am. J. Physiol. Heart Circ. Physiol.,1987.253(3):p. H680-H689.
    114. Baselli, G., S. Cerutti, F. Badilini, L. Biancardi, A. Porta, M. Pagani, F. Lombardi, O. Rimoldi, R. Furlan, and A. Malliani, Model for the assessment of heart period and arterial pressure variability interactions and of respiration influences. Med. Biol. Eng. Comput.,1994.32(2):p.143-152.
    115. Cavalcanti. S. and E. Belardinelli, Modeling of cardiovascular variability using a differential delay equation. IEEE Trans. Biomed. Eng.,1996.43(10):p. 982-989.
    116. Ursino, M. and E. Magosso, Role of short-term cardiovascular regulation in heart period variability:a modeling study. Am. J. Physiol. Heart Circ. Physiol., 2003.284(4):p. H1479-H1493.
    117.中国高血压防治指南修订委员会,中国高血压防治指南(2005年修订版).2005.
    118. Tarvainen, M.P., P.O. Ranta-aho, and P.A. Karjalainen, An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng., 2002.49(2):p.172-175.
    119. Golub, A.S., M.C. Barker, and R.N. Pittman, Microvascular oxygen tension in the rat mesentery. Am. J. Physiol. Heart Circ. Physiol.,2008.294(1):p. H21-H28.
    120. Nakano, A., Y. Sugii, M. Minamiyama, and H. Niimi, Measurement of red cell velocity in microvessels using particle image velocimetry (PIV). Clin. Hemorheol. Microcirc.,2003.29(3):p.445-455.
    121. Tsai, A.G., B. Friesenecker, M.C. Mazzoni, H. Kerger, D.G. Buerk, PC. Johnson, and M. Intaglietta, Microvascular and tissue oxygen gradients in the rat mesentery. PNAS,1998.95(12):p.6590-6595.
    122. Pries, A.R., T.W. Secomb, T. Gessner, M.B. Sperandio, J.F. Gross, and P. Gaehtgens, Resistance to blood flow in microvessels in vivo. Circ. Res.,1994.75(5): p.904-915.
    123. Pries, A.R., T.W. Secomb, and P. Gaehtgens, Structural adaptation and stability of microvascular networks:theory and simulations. Am. J. Physiol. Heart Circ. Physiol.,1998.275(2):p. H349-360.
    124. Pries, A.R., B. Reglin, and T.W. Secomb, Structural adaptation of microvascular networks:functional roles of adaptive responses. Am. J. Physiol. Heart Circ. Physiol.,2001.281(3):p. H1015-1025.
    125. Pries, A.R., B. Reglin, and T.W. Secomb, Remodeling of blood vessels: Responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension,2005.46(4):p.725-731.
    126. Pries, A.R., K. Ley, and P. Gaehtgens, Generalization of the Fahraeus principle for microvessel networks. Am. J. Physiol. Heart Circ. Physiol.,1986.251(6): p. H1324-1332.
    127. Salotto, A.G., L.F. Muscarella, J. Melbin, J.K.J. Li, and A. Noordergraaf, Pressure pulse transmission into vascular beds. Microvasc. Res.,1986.32(2):p. 152-163.
    128. Gore, R.W., Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circ. Res.,1974.34(4):p.581-591.
    129. Smaje, L.H., P.A. Fraser, and G. Clough, The distensibility of single capillaries and venules in the cat mesentery. Microvasc. Res.,1980.20(3):p. 358-370.
    130. Avolio, A.P., Multi-Branched model of the human arterial system. Med. Biol. Eng. Comput.,1980.18(6):p.709-718.
    131. Taylor, M.G., Input impedance of an assembly of randomly branching elastic tubes. Biophys. J.,1966.6(1):p.29-&.
    132. Lindert, J., J. Werner, M. Redlin, H. Kuppe, H. Habazettl, and A.R. Pries, OPS Imaging of Human Microcirculation:A Short Technical Report. J. Vasc. Res., 2002.39(4):p.368-372.
    133. Lee, J. and N. Smith, Development and application of a one-dimensional blood flow model for microvascular networks. Proc. Inst. Mech. Eng. [H].2008. 222(H4):p.487-511.
    134. Zweifach, B.W. and H.H. Lipowsky, Quantitative studies of microcirculatory structure and function.Ⅲ. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ. Res.,1977.41(3):p.380-390.
    135. Zweifach, B.W., Quantitative Studies of Microcirculatory Structure and Function. Circ. Res.,1974.34(6):p.841-857.
    136. Safar, M.E. and P. Lacolley, Disturbance of macro-and microcirculation: relations with pulse pressure and cardiac organ damage. Am. J. Physiol. Heart Circ. Physiol.,2007.293(1):p. H1-H7.
    137. Jackson, K.R. and R. Sacks-Davis, An alternative implementation of variable step-size multistep formulas for stiff ODEs. ACM Trans. Math. Software, 1980.6(3):p.295-318.
    138. Davis, T.A., A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Software,2004.30(2):p.165-195.
    139. Davis, T.A., Algorithm 832:UMFPACK V4.3---an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software,2004.30(2):p.196-199.
    140. He, X.S. and J.G. Georgiadis, Pressure propagation in pulsatile flow-through random microvascular networks. J. Biomech. Eng.-Trans. ASME,1993. 115(2):p.180-186.
    141. Huang, W., Y. Tian, J. Gao, and M.R.T. Yen, Comparison of theory and experiment in pulsatile flow in cat lung. Ann. Biomed. Eng.,1998.26(5):p.812-820.
    142. Ganesan, P., S. He, and H. Xu, Modelling of pulsatile blood flow in arterial trees of retinal vasculature. Med. Eng. Phys.,2011.33(7):p.810-823.
    143. Falcone, J.C., M.J. Davis, and G.A. Meininger, Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. Heart Circ. Physiol.,1991.260(1):p. H130-H135.
    144. Van Bortel. L.M.A.B., H.A.J. Struijker-Boudier, and M.E. Safar, Pulse Pressure, Arterial Stiffness, and Drug Treatment of Hypertension. Hypertension,2001. 38(4):p.914-921.
    145. Huang, W., R.T. Yen, M. McLaurine, and G. Bledsoe, Morphometry of the human pulmonary vasculature. J. Appl. Physiol.,1996.81(5):p.2123-2133.
    146. Ganesan, P., S. He, and H. Xu, Development of an Image-Based Network Model of Retinal Vasculature. Ann. Biomed. Eng.,2010.38(4):p. 1566-1585.
    147. Zieman, S.J., V. Melenovsky, and D.A. Kass, Mechanisms, Pathophysiology, and Therapy of Arterial Stiffness. Atertio. Thromb. Vasc. Biol.,2005. 25(5):p.932-943.
    148. Mulvany, M.J. and C. Aalkjaer, Structure and function of small arteries. Physiol. Rev.,1990.70(4):p.921-961.
    149. Malliani, A., M. Pagani, F. Lombardi, and S. Cerutti, Cardiovascular neural regulation explored in the frequency domain. Circulation,1991.84(2):p. 482-492.
    150. Malpas, S.C., Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol.,2002.282(1):p. H6-H20.
    151. Hoyer, D., B. Frank, C. Gotze, P.K. Stein, J.J. Zebrowski, R. Baranowski, M. Palacios, M. Vallverdu, P. Caminal, A.B. de Luna, G. Schmidt, and H. Schmidt, Interactions between short-term and long-term cardiovascular control mechanisms. Chaos,2007.17(1):p.
    152. Hirsch, J.A. and B. Bishop, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. Heart Circ. Physiol.,1981. 241(4):p. H620-H629.
    153. Taylor, J.A., D.L. Carr, C.W. Myers, and D.L. Eckberg, Mechanisms Underlying Very-Low-Frequency RR-Interval Oscillations in Humans. Circulation, 1998.98(6):p.547-555.
    154. Bauer, A., J.W. Kantelhardt, P. Barthel, R. Schneider, T. Makikallio, K. Ulm, K. Hnatkova, A. Schornig, H. Huikuri, A. Bunde, M. Malik, and G. Schmidt, Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction:cohort study. Lancet,2006.367(9523):p.1674-1681.
    155. Bauer, A., J.W. Kantelhardt, A. Bunde, P. Barthel, R. Schneider, M. Malik, and G. Schmidt, Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Physica A,2006.364:p.423-434.
    156. Kantelhardt, J.W., A. Bauer, A.Y. Schumann, P. Barthel, R. Schneider, M. Malik, and G. Schmidt, Phase-rectified signal averaging for the detection of quasi-periodicities and the prediction of cardiovascular risk. Chaos,2007.17(1):p. 015112.
    157. Pan, Q., Y. Gong, S. Gong, Q. Hu, Z. Zhang, J. Yan, and G. Ning, Enhancing the deceleration capacity index of heart rate by modified-phase-rectified signal averaging. Med. Biol. Eng. Com put.,2010.48(4):p.399-405.
    158. Goldberger, A.L., L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, and H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet:Components of a New Research Resource for Complex Physiologic Signals. Circulation,2000.101(23):p. e215-e220.
    159. Hamburger, V. and H.L. Hamilton, A Series of Normal Stages in the Development of the Chick Embryo. J. Morphol.,1951.88(1):p.49-&.
    160. Struijker-Boudier, H.A.J. and B.J. Heijnen, The Microcirculation and Hypertension, in Special Issues in Hypertension, A.E. Berbari and G. Mancia, Editors. 2012, Springer Milan, p.213-224.
    161. Greene, A.S., P.J. Tonellato, J. Lui, J.H. Lombard, and A.W. Cowley, Microvascular rarefaction and tissue vascular resistance in hypertension. Am. J. Physiol. Heart Circ. Physiol.,1989.256(1):p. H126-H131.
    162. Davis, M.J., X. Wu, T.R. Nurkiewicz, J. Kawasaki, G.E. Davis, M.A. Hill, and G.A. Meininger, Integrins and mechanotransduction of the vascular myogenic response. Am. J. Physiol. Heart Circ. Physiol.,2001.280(4):p. H1427-H1433.
    163. Bohlen, H.G., Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hypertensive rats. Am. J. Physiol. Heart Circ. Physiol.,1979.236(1): p. H157-H164.
    164. Prewitt, R.L., I.I. Chen, and R. Dowell, Development of microvascular rarefaction in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol., 1982.243(2):p. H243-H251.
    165. Panza, J.A., C.E. Garcia, C.M. Kilcoyne, A.A. Quyyumi, and R.O. Cannon, Impaired Endothelium-Dependent Vasodilation in Patients With Essential Hypertension:Evidence That Nitric Oxide Abnormality Is Not Localized to a Single Signal Transduction Pathway. Circulation,1995.91(6):p.1732-1738.
    166. Nakamura, T. and R.L. Prewitt, Effect of NG-monomethyl L-arginine on endothelium-dependent relaxation in arterioles of one-kidney, one clip hypertensive rats. Hypertension,1991.17(6 Pt 2):p.875-80.
    167. Cardillo, C., U. Campia, C.M. Kilcoyne, M.B. Bryant, and J.A. Panza, Improved Endothelium-Dependent Vasodilation After Blockade of Endothelin Receptors in Patients With Essential Hypertension. Circulation,2002.105(4):p. 452-456.
    168. Boudier, H., J. Lenoble, M.W.J. Messing, M.S.P. Huijberts, F.A.C. Lenoble, and H. Vanessen, The Microcirculation and Hypertension. J. Hypertens., 1992.10:p.S147-S156.
    169. Kimura, K., A. Tojo, H. Matsuoka, and T. Sugimoto, Renal arteriolar diameters in spontaneously hypertensive rats. Vascular cast study. Hypertension,1991. 18(1):p.101-10.
    170. Rakusan, K. and P. Wicker, Morphometry of the small arteries and arterioles in the rat heart:effects of chronic hypertension and exercise. Cardiovasc. Res.,1990.24(4):p.278-284.
    171. Nichols, W.W. and M.F. O'Rourke, McDonald's Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles.2005:Hodder Arnold.
    172. 罗志昌,张松,杨益民,脉搏波的工程分析与临床应用.2006,北京:科学出版社.
    173. Parker, K., An introduction to wave intensity analysis. Med. Biol. Eng. Comput.,2009.47(2):p.175-188.
    174. Pries, A.R., D. Schonfeld, P. Gaehtgens, M.F. Kiani, and G.R. Cokelet, Diameter variability and microvascular flow resistance. Am. J. Physiol. Heart Circ. Physiol.,1997.272(6):p. H2716-H2725.
    175. Drzewiecki, G., S. Field, I. Moubarak, and J.K.-J. Li, Vessel growth and collapsible pressure-area relationship. Am. J. Physiol. Heart Circ. Physiol.,1997. 273(4):p. H2030-H2043.
    176. Westerhof, B.E., I. Guelen, W.J. Stok, K.H. Wesseling, J.A.E. Spaan, N. Westerhof, W.J. Bos, and N. Stergiopulos, Arterial pressure transfer characteristics: effects of travel time. Am. J. Physiol. Heart Circ. Physiol.,2007.292(2):p. H800-807.
    177. Walawender, W.P. and P. Prasassarakich, Flow in tapering and cylindrical vessels. Microvasc. Res.,1976.12(1):p.1-12.
    178. Li, J.K.-J., Dynamics of Vascluar System. Series on Bioengineering and Biomedical Engineering, ed. J.K.-J. Li.2004, Singapore:World Scientific Publishing.
    179. McDonald, D.A., Blood flow in arteries.1974, London:Edward Arnold.
    180. Anliker, M., M.B. Histand, and E. Ogden, Dispersion and Attenuation of Small Artificial Pressure Waves in the Canine Aorta. Circ. Res.,1968.23(4):p. 539-551.
    181. Kaimovitz, B., Y. Lanir, and G.S. Kassab, A full 3-D reconstruction of the entire porcine coronary vasculature. Am. J. Physiol. Heart Circ. Physiol.,2010. 299(4):p. H1064-1076.
    182. Lauwers, F., F. Cassot, V. Lauviers-Cances, P. Puwanarajah, and H. Duvernoy, Morphometry of the human cerebral cortex microcirculation:General characteristics and space-related profiles. Neuroimage,2008.39(3):p.936-948.
    183. Wang, N., J.P. Butler, and D.E. Ingber, Mechanotransduction across the cell-surface and through the cytoskeleton. Science,1993.260(5111):p.1124-1127.
    184. Davies, P.F., Flow-mediated endothelial mechanotransduction. Physiol. Rev.,1995.75(3):p.519-560.
    185. Hahn, C. and M.A. Schwartz, Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol.,2009.10(1):p.53-62.
    186. Wozniak, M.A. and C.S. Chen, Mechanotransduction in development:a growing role for contractility. Nat. Rev. Mol. Cell Biol.,2009.10(1):p.34-43.
    187. Himburg, H.A., S.E. Dowd, and M.H. Friedman, Frequency-dependent response of the vascular endothelium to pulsatile shear stress. Am. J. Physiol. Heart Circ. Physiol.,2007.293(1):p. H645-H653.
    188. Pinaud, F., A. Bocquet, C. Baufreton, L. Loufrani, and D. Henrion, Role of the pulsatility in the microcirculation. Circulation,2006.114(18):p.221-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700