围产期健康奶牛与酮病、亚临床低钙血症病牛血液代谢谱的比较与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围产期(又称过渡期)奶牛经历妊娠-分娩-泌乳的一系列生理变动。尤其是高产奶牛在妊娠后期和泌乳初期能量需求和生理变动更加剧烈,一旦机体由于生理或病理性因素无法及时做出适应性调整,便有可能引发酮病、脂肪肝和低钙血症等生产性疾病。随着奶牛泌乳量的大幅增加和养殖业集约化程度的不断提高,使得酮病和亚临床低钙血症等疾病的发生往往具有群发性特征,该类疾病不仅能引起奶产量下降,而且酮病和亚临床低钙血症也增加了奶牛对其它疾病的易感性,对奶牛业影响巨大。因此,开展营养代谢状态的群体监测显得尤为必要。处在不同生理阶段的围产期奶牛代谢状态亦不同,监测可作为围产期奶牛代谢谱的相关血液生化指标,便有可能对围产期奶牛的营养代谢状态做出评价,在预测、预报酮病和低钙血症等生产性疾病中具有重要意义。有研究者提出了通过定期检测血液、尿液和乳中的某些成份,以评价畜群或个体营养状态,预警营养代谢障碍性疾病的“凯谱顿代谢谱”(camptonmetabolic profiles)。
     血液指标及体况评分已经被认为是监测围产期奶牛群体健康和预测奶牛群体患病风险的主要依据。例如,监测能量代谢是否平衡的主要生理学参数包括GLU、NEFA、BHBA以及体况评分的改变等,并已确定了这些指标的预先定义范围。虽然其它的一些血液生化指标参数目前还没有被用做常规群体健康监测体系,但这并不意味着这些指标不重要,而是对于这些指标目前还没有确切的定义范围。本研究利用生物化学和ELISA方法,旨在通过检测围产期健康奶牛血液中糖、脂肪、蛋白质、矿物元素代谢及胰岛素敏感性、炎症反应等相关指标,确定可作为围产期健康、酮病和亚临床低钙血症奶牛代谢谱的相关血液生化指标的变动范围和变动规律,为运用代谢监测评价围产期奶牛营养代谢状态,预测、预报围产期奶牛生产性疾病提供理论和试验依据。
     围产期健康奶牛血液生化指标的变动:结果表明,围产期奶牛普遍存在生理性能量和钙负平衡,胰岛素敏感性降低,肝脏的正常功能受到一定程度的影响。确定了妊娠后期、分娩和泌乳初期奶牛血液中能量和矿物元素代谢、激素、细胞因子及急性期反应蛋白等指标的变动范围及规律;与围产期生理变动密切相关的指标主要有:NEFA、BHBA、RQUICKI、TG、TBIL、DBIL、IBIL、AST、GGT、LP、Ⅰ C TP、IL-6、IL-8、HP、SAA、HYP、1,25(OH)2D3、PTH以及Ca、Mg、K和Zn等。围产期奶牛,尤其是临近分娩期,血液中细胞因子(IL-1、IL-6和IL-8等)水平及Zn浓度下降,急性期反应蛋白(如HP和SAA等)浓度较高,可能与该时期奶牛免疫力低下有关。
     建立合理和切实有效的奶牛酮病和亚临床低钙血症群体监测体系对于预防和及时诊断该类疾病具有重要的现实意义。本研究在确定围产期奶牛代谢谱的相关指标变动范围和变动规律的基础上,运用预防医学的观点和理论,通过临床检查并结合生物化学和ELISA方法,检测、比较了群体水平围产期健康奶牛与酮病和亚临床低钙血症奶牛血液中糖、脂肪和蛋白质代谢等相关指标的差异,并进行相关性分析,筛选具有诊断价值的特异性指标,利用受试者工作特征曲线(receiver operating characteristic curve,ROC曲线)对相关指标在奶牛酮病和亚临床低钙血症诊断中的效用进行比较,并在此基础上确定临界值(cut-point),以期为围产期奶牛酮病、亚临床低钙血症的诊断和群体监测提供有效的数据支持。
     酮病奶牛血液代谢参数的评价:结果表明,奶牛酮病多发生于产后1-3周,以产后1周发病比例最高,因此,产后3周内泌乳牛群是酮病监测的重点。酮病奶牛胰岛素敏感性降低,肝功能指标轻度异常,存在免疫抑制现象。血液NEFA、BHBA和GLU浓度是监测酮病奶牛能量代谢状态的首选指标,初步确定RQUICKI、AST、AST/ALT、LDH、DBIL、TBIL和CREA是可用于酮病诊断和群体监测的辅助指标,并确定了其可能的cut-point值。
     此外,在前期对围产期和酮病奶牛筛选的过程中,发现部分奶牛存在高血糖、高胰岛素和高BHBA现象,据此,本研究中将低糖、低胰岛素的Ⅰ型酮病与Ⅱ型奶牛酮病进行比较。结果表明,Ⅱ型酮病奶牛比Ⅰ型酮病奶牛存在较为严重肝功能、组织损伤和胰岛素抵抗;奶牛Ⅱ型酮病与脂肪肝的发生密切相关。
     亚临床低钙血症奶牛血液代谢参数的分析:结果表明,与健康奶牛相比,亚临床低钙血症奶牛在泌乳初期存在更加严重的能量负平衡,这也可能是亚临床低钙血症奶牛易感酮病和脂肪肝等能量代谢障碍性疾病的主要原因。在群体水平,亚临床低钙血症奶牛部分血清酶学指标(AST/ALT、GGT)和促炎因子以及急性期反应蛋白(HP、SAA)显著升高,表明奶牛亚临床低钙血症过程中存在一定程度的炎症和肝细胞损伤。高P、低Mg是引起或加剧奶牛钙负平衡的风险因素,可能“钝化”PTH作用,抑制1,25(OH)2D3的合成,导致肠钙和骨钙吸收以及肾脏对钙的重吸收减少,进而引起血钙浓度下降。亚临床低钙血症奶牛血液中Zn浓度降低,可能与罹患该病奶牛免疫抑制有关。TRAP和GGT是评价亚临床低钙血症代谢状态的辅助指标,并确定了其可能的cut-point值。
     总之,围产期奶牛经历一系列生理变动,而糖、脂、蛋白质和矿物元素等代谢过程不是彼此孤立的,存在着错综复杂的相互作用,诸多因素可影响奶牛个体或群体代谢状态,采用单一监测指标的做法是不可取的,选择数种指标组合监测才有可能提供可靠的诊断信息。
The periparturient period (also called the transition period) of4weeks before and4weeksafter calving from the pregnant, nonlactating state to the nonpregnant, lactating state is often adisastrous experience for the cow. High producing dairy cows struggle to meet energy demandsand handle various transitional changes during late gestation and early lactation. Once the bodycan not respond correspondingly because of physiological and pathological factors, which willcause production diseases such as ketosis, fatty liver and hypocalcemia and so on. With theincreasing of intensive degree of modern dairy cattle farming industry, production diseases of thetransition cow were characterized by herd epidemic, resulting in decreasing milk yield andincreasing the susceptibility to other disease, which has a tremendous impact on dairy cowindustry. Therefore, it is necessary to carry out the herd monitoring of nutritional and metabolicstatus. Different physiological stages experience different nutritional and metabolic status ofperiparturient dairy cows, and monitoring blood biochemical indexes of metabolic profiles mayevaluate nutritional and metabolic status of this period, and forecast and warn production diseasesof the transition cow. Therefore, using “campton metabolic profiles” by detecting termly somecomponents in blood, urine and milk could evaluate nutritional and metabolic status of individualand group, and warn an occurrence of metabolic diseases.
     Blood profiles and changes in body condition (BCS) have been used to monitor metabolicdisturbances around parturition and, in early lactation, to investigate problem herds as well as topredict the risk of diseases such as ketosis and subclinical hypocalcemia. Parameters used tomonitor imbalances in energy metabolism included glucose (GLU), non-esterified fatty acids(NEFA), betahydroxybutyrate (BHBA) in blood and BCS. This key indicator for each of theseparameters, when they are used to monitor herd health, is the proportion of cows outside apre-defined range. Although other blood biochemical indicators have not be used for routinemonitoring system, which does not mean that they are trivial indexes, only due to lacking of theexact defined range. To monitor glucose, lipid, protein, mineral element metabolism, insulinsensitivity and inflammatory in blood of healthy periparturient dairy cows, we need do the firstthing that it is definiting a range and rule of fluctuation of blood biochemical indexes in healthyperiparturient dairy cows, which can provide theoretical and experimental basis for utilizingmetabolic monitoring to evaluate nutritional and metabolic status, forecast and warn productivediseases in periparturient dairy cows.
     The change of blood metabolic parameters in periparturient dairy cows: The resultsshowed that essentially all dairy cattle experience a period of negative energy and calcium balance,decreasing insulin sensitivity, and affected normal function of liver during the periparturientperiod. We also definited the range and rule of fluctuation of energy and mineral elementmetabolism, hormone, cytokines, and acutephasicprotein in dairy cows during late pregnancy,parturition and early lactating. The indicators include NEFA, BHBA, RQUICKI, TG, TBIL, DBIL,IBIL, AST, GGT, LP, ⅠC TP, IL-6, IL-8, HP, SAA, HYP,1,25(OH)2D3, PTH, Ca, Mg, K and Zn.Periparturient dairy cows, especially near parturition, the levels of cytokines (IL-1, IL-6and IL-8)and Zn concentration decrease, the levels of acutephasicprotein (HP and SAA) were high, whichmay be related to low immunity of dairy cows in this period.
     On the basis of definiting the range and rule of fluctuation of blood metabolic profiles inperiparturient dairy cows, we measured and compared the difference of glucose, lipid, and proteinmetabolism-related analytes in healthy, ketotic and subclinically hypocalcemic cows of transitionperiod using the viewpoint and theory of preventive medicine by clinical examination,biochemical methods and ELISA. We also carried out the correlation analysis and screened someindexes that are of diagnostic value. In addition, the usefulness of relative indicators in diagnosingketotic and subclinical hypocalcemic is compared by receiver operating characteristic curve (ROCcurve), and the cut-point was determined, which provide the efficient data support for thediagnosis and herd monitoring of ketosis and subclinical hypocalcemia in dairy cows during theperiparturient period.
     The evaluation of blood metabolic parameters in ketotic dairy cows: The results showedthat ketosis is still quite common to occur at1-3weeks postpartum, especially at1weekpostpartum. Therefore, testing programs with the objective of monitoring the prevalence of ketosisshould focus on the first3weeks postpartum. Ketotic cows are characterized by reduced insulinsensitivity, abnormal liver function index and immunosuppression. The concentrations of NEFA,BHBA and GLU in blood are the major indexes for monitoring energy metabolism state of ketoticdairy cows. We initially confirmed some sensitive indexes for diagnosing ketosis and herdmonitoring, such as RQUICKI, AST, AST/ALT, LDH, DBIL, TBIL and CREA, and theircut-point.
     In addition, during the screening process of periparturient and ketotic dairy cows, we foundtwo quite different types of ketosis can occur, the hypoglycaemic-hypoinsulinaemic andhyperglycaemic-hyperinsulinaemic type. According to this, we compared Type I (the former) withII (the latter) ketosis. The results indicated that compared with Type I ketotic dairy cows, Type IIketotic dairy cows have a marked change of liver function and tissues, and insulin resistance. Theoccurrence of Type II ketosis in dairy cows was closely related to fatty liver.
     The analysis of blood metabolic parameters in subclinical hypocalcemic dairy cows: Theresults showed that compared with the healthy dairy cows, subclinical hypocalcemic dairy cowshave more serious negative energy balance, which may be the key reason of subclinical hypocalcemic dairy cows susceptible to energy metabolism diseases, such as ketosis and fatty liver.Some serum enzyme parameters (AST/ALT and GGT), pro-inflammatory factor andacutephasicprotein (HP and SSA) showed a significant rise, which indicated that the course ofsubclinical hypocalcemia in dairy cows exist inflammation and hepatocyte injury. Highconcentration of P and low concentration of Mg in blood are both risk factors for causing and/oraggravating negative calcium balance. Compared with the healthy cows, subclinical hypocalcemiccows displayed a blunted PTH response to, at least in part, the decline of blood Ca levels, resultingfrom inhibition of the synthesis of1,25(OH)2D3, and suppression Ca absorption from intestine,reabsorption from kidneys, and resorption from bone. The decreasing of Zn concentration inserum may have association with immunosuppression in subclinically hypocalcemic cows. TRAPand GGT are the sensitive indexes for evaluating metabolism condition of subclinicallyhypocalcemic dairy cows, and also we have definited cut-point.
     In conclusion, periparturient dairy cows experience a series of physiological perturbance, andthe metabolic process of glucose, lipid, protein and mineral elements have interactional relations.Many factors can influence metabolic condition of individual and group. It is unreasonable toadopt single monitoring index. The combination of some parameters are reliable for diagnosingand monitoring production diseases of the transition cow.
引文
[1] DEGARIS P J, LEAN I J. Milk fever in dairy cows: A review of pathophysiology andcontrol principles [J]. The Veterinary Journal,2008,176(1):58-69.
    [2] GRUMMER R R. Impact of changes in organic nutrient metabolism on feeding thetransition dairy cow [J]. Journal of Animal Science,1995,73(9):2820-33.
    [3] QUIROZ-ROCHA G F, LEBLANC S J, DUFFIELD T F, et al. Reference limits forbiochemical and hematological analytes of dairy cows one week before and one week afterparturition [J]. The Canadian Veterinary Journal,2009,50(4):383.
    [4] DONKIN S, KOSER S, WHITE H, et al. Feeding value of glycerol as a replacement forcorn grain in rations fed to lactating dairy cows [J]. Journal of Dairy Science,2009,92(10):5111-9.
    [5] BAUMAN D E, BRUCE CURRIE W. Partitioning of nutrients during pregnancy andlactation: a review of mechanisms involving homeostasis and homeorhesis [J]. Journal ofDairy Science,1980,63(9):1514-29.
    [6]黄克和.奶牛酮病和脂肪肝综合症研究进展[J].中国乳业,2008,(6):62-6.
    [7] OVERTON T, WALDRON M. Nutritional management of transition dairy cows: strategiesto optimize metabolic health [J]. Journal of Dairy Science,2004,87(suppl):E105-E119.
    [8] REYNOLDS C, AIKMAN P, LUPOLI B, et al. Splanchnic metabolism of dairy cows duringthe transition from late gestation through early lactation [J]. Journal of Dairy Science,2003,86(4):1201-17.
    [9] DRACKLEY J K, OVERTON T R, DOUGLAS G N. Adaptations of glucose and long-chainfatty acid metabolism in liver of dairy cows during the periparturient period [J]. Journal ofDairy Science,2001,84(suppl):E100-E112.
    [10] BELL A W. Regulation of organic nutrient metabolism during transition from late pregnancyto early lactation [J]. Journal of Animal Science,1995,73(9):2804-19.
    [11] GRUMMER R R. Nutritional and management strategies for the prevention of fatty liver indairy cattle [J]. The Veterinary Journal,2008,176(1):10-20.
    [12] LI P, LI X, FU S, et al. Alterations of fatty acid β-oxidation capability in the liver of ketoticcows [J]. Journal of Dairy Science,2012,95(4):1759-66.
    [13] REYNOLDS C, KRISTENSEN N B. Nitrogen recycling through the gut and the nitrogeneconomy of ruminants: An asynchronous symbiosis [J]. Journal of Animal Science,2008,86(14suppl): E293-E305.
    [14]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展[J].黑龙江畜牧兽医,2004,(8):78-9.
    [15] PIEPENBRINK M, OVERTON T. Liver metabolism and production of cows fed increasingamounts of rumen-protected choline during the periparturient period [J]. Journal of DairyScience,2003,86(5):1722-33.
    [16] CAD RNIGA-VALI O C, GRUMMER R R, ARMENTANO L E, et al. Effects of fatty acidsand hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes [J].Journal of Dairy Science,1997,80(4):646-56.
    [17] STRANG B, BERTICS S, GRUMMER R, et al. Relationship of triglyceride accumulationto insulin clearance and hormonal responsiveness in bovine hepatocytes [J]. Journal ofDairy Science,1998,81(3):740-7.
    [18] KESSEL S, STROEHL M, MEYER H, et al. Individual variability in physiologicaladaptation to metabolic stress during early lactation in dairy cows kept under equalconditions [J]. Journal of Animal Science,2008,86(11):2903-12.
    [19] GOFF J P. Macromineral physiology and application to the feeding of the dairy cow forprevention of milk fever and other periparturient mineral disorders [J]. Animal Feed Scienceand Technology,2006,126(3):237-57.
    [20] HORST R, GOFF J, REINHARDT T, et al. Strategies for preventing milk fever in dairycattle [J]. Journal of Dairy Science,1997,80(7):1269-80.
    [21] HORST R, JORGENSEN N, DELUCA H. Plasma1,25-dihydroxyvitamin D andparathyroid hormone levels in paretic dairy cows [J]. American Journal ofPhysiology-Endocrinology and Metabolism,1978,235(6): E634.
    [22] GOFF J P. The monitoring, prevention, and treatment of milk fever and subclinicalhypocalcemia in dairy cows [J]. The Veterinary Journal,2008,176(1):50-7.
    [23] MAYLAND H F, SHEWMAKER G E. Animal health problems caused by silicon and othermineral imbalances [J]. Journal of Range Management,2001:441-6.
    [24] DEWES H. The inter-relationships between magnesium, sodium and potassium in dairycattle in the Waikato and Taranaki [J]. New Zealand Veterinary Journal,1995,43(1):32-6.
    [25] BACON J, BELL M, MILLER J, et al. Effect of magnesium administration route on plasmaminerals in Holstein calves receiving either adequate or insufficient magnesium in theirdiets [J]. Journal of Dairy Science,1990,73(2):470-3.
    [26] FOSTER A, LIVESEY C, EDWARDS G. Magnesium disorders in ruminants [J]. In Practice,2007,29(9):534-9.
    [27] MARTENS H, GABEL G, STROZYK B. Mechanism of electrically silent Na and Cltransport across the rumen epithelium of sheep [J]. Experimental Physiology,1991,76(1):103-14.
    [28] COOK G M, WELLS J E, RUSSELL J B. Ability of Acidaminococcus fermentans tooxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end productof ruminal fermentation [J]. Applied and Environmental Microbiology,1994,60(7):2533-7.
    [29] CHAN P, WEST J, BERNARD J. Effect of prepartum dietary calcium on intake and serumand urinary mineral concentrations of cows [J]. Journal of Dairy Science,2006,89(2):704-13.
    [30] ROCHE J, DALLEY D, MOATE P, et al. Dietary cation-anion difference and the health andproduction of pasture-fed dairy cows2. Nonlactating periparturient cows [J]. Journal ofDairy Science,2003,86(3):979-87.
    [31] MARTENS H, SCHWEIGEL M. Pathophysiology of grass tetany and otherhypomagnesemias: implications for clinical management [J]. Veterinary Clinics of NorthAmerica Food Animal Practice,2000,16(2):339-68.
    [32] CRAWFORD R, MASSIE M, SLEPER D, et al. Use of an experimental high-magnesiumtall fescue to reduce grass tetany in cattle [J]. Journal of Production Agriculture,1998,11(4):491-6.
    [33] GRUNES D, STOUT P, BROWNELL J. Grass tetany of ruminants [J]. Advances inAgronomy,1970,22:331-74.
    [34] DUA K, CARE A. Impaired absorption of magnesium in theaetiology of grass tetany [J].British Veterinary Journal,1995,151(4):413-26.
    [35] HORST R, GOFF J, REINHARDT T. Calcium and vitamin D metabolism in the dairy cow[J]. Journal of Dairy Science,1994,77(7):1936-51.
    [36] DIHANICH M, KASER M, REINHARD E, et al. Prothrombin mRNA is expressed by cellsof the nervous system [J]. Neuron,1991,6(4):575-81.
    [37] HOUSE W A, BELL A W. Mineral accretion in the fetus and adnexa during late gestation inHolstein cows [J]. Journal of Dairy Science,1993,76(10):2999-3010.
    [38] WRIGHT R, BLAIR-WEST J, NELSON J, et al. Evaluation of the biological properties ofparathyroid hormone and analogues in a vascularly isolated parotid gland-based assay [J].Journal of Endocrinology,1984,102(3):375-9.
    [39] GOFF J P. Pathophysiology of calcium and phosphorus disorders [J]. Veterinary Clinics ofNorth America Food Animal Practice,2000,16(2):319-38.
    [40] MULLIGAN F, DOHERTY M. Production diseases of the transition cow [J]. The VeterinaryJournal,2008,176(1):3-9.
    [41] GRUMMER R R. Etiology of lipid-related metabolic disorders in periparturient dairy cows[J]. Journal of Dairy Science,1993,76(12):3882-96.
    [42] MULLIGAN F, O’GRADY L, RICE D, et al. A herd health approach to dairy cow nutritionand production diseases of the transition cow [J]. Animal Reproduction Science,2006,96(3):331-53.
    [43] MINOR D, TROWER S, STRANG B, et al. Effects of nonfiber carbohydrate and niacin onperiparturient metabolic status and lactation of dairy cows [J]. Journal of Dairy Science,1998,81(1):189-200.
    [44] BERTONI G, TREVISI E, HAN X, et al. Effects of inflammatory conditions on liveractivity in puerperium period and consequences for performance in dairy cows [J]. Journalof Dairy Science,2008,91(9):3300-10.
    [45] DRACKLEY J K. Biology of dairy cows during the transition period: the final frontier?[J].Journal of Dairy Science,1999,82(11):2259-73.
    [46] WENSING T, KRUIP T, GEELEN M J H, et al. Postpartum fatty liver in high-producingdairy cows in practice and in animal studies. The connection with health, production andreproduction problems [J]. Comparative Haematology International,1997,7(3):167-71.
    [47] BOBE G, YOUNG J, BEITZ D. Invited review: pathology, etiology, prevention, andtreatment of fatty liver in dairy cows [J]. Journal of Dairy Science,2004,87(10):3105-24.
    [48] BUSATO A, FAISSLER D, K PFER U, et al. Body condition scores in dairy cows:associations with metabolic and endocrine changes in healthy dairy cows [J]. Journal ofVeterinary Medicine Series A,2002,49(9):455-60.
    [49] KROGH M A, TOFT N, ENEVOLDSEN C. Latent class evaluation of a milk test, a urinetest, and the fat-to-protein percentage ratio in milk to diagnose ketosis in dairy cows [J].Journal of Dairy Science,2011,94(5):2360-7.
    [50] AMANC H, STOJI V, KIROVSKI D, et al. Thyroid hormones concentrations during themid-dry period: an early indicator of fatty liver in Holstein-Friesian dairy cows [J]. Journalof Thyroid Research,2010,(2010):1-6.
    [51] BOBE G, AMIN V R, HIPPEN A R, et al. Non-invasive detection of fatty liver in dairycows by digital analyses of hepatic ultrasonograms [J]. Journal of Rairy Research,2008,75(1):84.
    [52] RUKKWAMSUK T, WENSING T, GEELEN M J H. Effect of fatty liver on hepaticgluconeogenesis in periparturient dairy cows [J]. Journal of Dairy Science,1999,82(3):500-5.
    [53] KALAITZAKIS E, ROUBIES N, PANOUSIS N, et al. Evaluation of ornithine carbamoyltransferase and other serum and liver-derived analytes in diagnosis of fatty liver andpostsurgical outcome of left-displaced abomasum in dairy cows [J]. Journal of the AmericanVeterinary Medical Association,2006,229(9):1463-71.
    [54] NAFIKOV R, AMETAJ B, BOBE G, et al. Prevention of fatty liver in transition dairy cowsby subcutaneous injections of glucagon [J]. Journal of Dairy Science,2006,89(5):1533-45.
    [55] BERNE R, LEVY M. The peripheral circulation and its control [J]. Physiology St Louis,Missouri: Mosby-Year Book,1993,478-93.
    [56] BROCKMAN W W. Transformation of BALB/c-3T3cells by tsA mutants of simian virus40: temperature sensitivity of the transformed phenotype and retransofrmation by wild-typevirus [J]. Journal of Virology,1978,25(3):860-70.
    [57] KAHN M G, HUANG D, BUSSMANN S A, et al. Diabetes data analysis and interpretationmethod [M]. Google Patents.1993.
    [58] YALOW R S, BERSON S A. Radioimmunoassay of gastrin [J]. Gastroenterology,1970,58(1):1.
    [59] SANO H, HATTORI N, TODOME Y, et al. Plasma insulin and glucagon responses tointravenous infusion of propionate and their autonomic control in sheep [J]. Journal ofAnimal Science,1993,71(12):3414-22.
    [60] SESTI G. Pathophysiology of insulin resistance [J]. Best Practice&Research ClinicalEndocrinology&Metabolism,2006,20(4):665-79.
    [61] PETERSEN H V, SERUP P, LEONARD J, et al. Transcriptional regulation of the humaninsulin gene is dependent on the homeodomain protein STF1/IPF1acting through the CTboxes [J]. Proceedings of the National Academy of Sciences,1994,91(22):10465-9.
    [62] CHRISTENSON R, PRIOR R. Uterine blood flow and nutrient uptake during late gestationin ewes with different number of fetuses [J]. Journal of Animal Science,1978,46(1):189.
    [63] GUESNET P M, MASSOUD M, DEMARNE Y. Regulation of adipose tissue metabolismduring pregnancy and lactation in the ewe: the role of insulin [J]. Journal of Animal Science,1991,69(5):2057-65.
    [64] HAYIRLI A. The role of exogenous insulin in the complex of hepatic lipidosis and ketosisassociated with insulin resistance phenomenon in postpartum dairy cattle [J]. VeterinaryResearch Communications,2006,30(7):749-74.
    [65] BROWNING J D, HORTON J D. Molecular mediators of hepatic steatosis and liver injury[J]. Journal of Clinical Investigation,2004,114(147-52.
    [66] CASTILLO C, HERN NDEZ J, GARC A VAQUERO M, et al. Effect of moderate Cusupplementation on serum metabolites, enzymes and redox state in feedlot calves [J].Research in Veterinary Science,2012,93(1):269-74.
    [67] GOFF J, HORST R. Physiological changes at parturition and their relationship to metabolicdisorders [J]. Journal of Dairy Science,1997,80(7):1260-8.
    [68] MILLER J, BRZEZINSKA-SLEBODZINSKA E, MADSEN F. Oxidative stress,antioxidants, and animal function [J]. Journal of Dairy Science,1993,76(9):2812.
    [69] SORDILLO L M, AITKEN S L. Impact of oxidative stress on the health and immunefunction of dairy cattle [J]. Veterinary Immunology and Immunopathology,2009,128(1):104-9.
    [70] BERNABUCCI U, RONCHI B, LACETERA N, et al. Influence of body condition score onrelationships between metabolic status and oxidative stress in periparturient dairy cows [J].Journal of Dairy Science,2005,88(6):2017-26.
    [71] HALLIWELL B, CHIRICO S. Lipid peroxidation: Its mechanism, measurement, andsignificance [J]. The American Journal of Clinical Nutrition,1993,57(5):715S-24S.
    [72] UELAND P M. Homocysteine species as components of plasma redox thiol status [J].Clinical Chemistry,1995,41(3):340-2.
    [73] WALDRON M. Metabolic implications for transition cow immunity [J]. LivestocktrailIllinois Edu,22-27.
    [74] BURTON J L, KEHRLI M, KAPIL S, et al. Regulation of L-selectin and CD18on bovineneutrophils by glucocorticoids: effects of cortisol and dexamethasone [J]. Journal ofLeukocyte Biology,1995,57(2):317-25.
    [75] BURTON J, MADSEN S, YAO J, et al. An immunogenomics approach to understandingperiparturient immunosuppression and mastitis susceptibility in dairy cows [J]. ActaVeterinaria Scandinavica,2001,42(3):407.
    [76] KEHRLI JR M, KIMURA K, GOFF J, et al. Periparturient immunosuppression in dairycows: nutrition and lactation effects [J]. Production Diseases in Farm Animals,1998,10th:41-55.
    [77] ONODERA T, TANIGUCHI T, YOSHIHARA K, et al. Reovirus type2-induced diabetes inmice prevented by immunosuppression and thymic hormone [J]. Diabetologia,1990,33(4):192-6.
    [78] SURIYASATHAPORN W, HEUER C, NOORDHUIZEN-STASSEN E N, et al.Hyperketonemia and the impairment of udder defense: a review [J]. Veterinary Research,2000,31(4):397-412.
    [79] KIMURA K, REINHARDT T, GOFF J. Parturition and hypocalcemia blunts calciumsignals in immune cells of dairy cattle [J]. Journal of Dairy Science,2006,89(7):2588-95.
    [80] ZHAO X, LACASSE P. Mammary tissue damage during bovine mastitis: causes and control[J]. Journal of Animal Science,2008,86(13suppl):57-65.
    [81] HOLTENIUS P, HOLTENIUS K. New aspects of ketone bodies in energy metabolism ofdairy cows: a review [J]. Journal of Veterinary Medicine Series A,1996,43(1‐10):579-87.
    [82] YOUSEF A A, SULIMAN G A, ELASHRY O M, et al. A randomized comparison betweenthree types of irrigating fluids during transurethral resection in benign prostatic hyperplasia[J]. BMC Anesthesiology,2010,10(1):7.
    [83] LEBLANC S. Monitoring metabolic health of dairy cattle in the transition period [J].Journal of Reproduction and Development,2010,56(S):29-35.
    [84] OSPINA P, NYDAM D, STOKOL T, et al. Evaluation of nonesterified fatty acids andβ-hydroxybutyrate in transition dairy cattle in the northeastern United States: Criticalthresholds for prediction of clinical diseases [J]. Journal of Dairy Science,2010,93(2):546-54.
    [85] TAO N, DEPETERS E, GERMAN J, et al. Variations in bovine milk oligosaccharidesduring early and middle lactation stages analyzed by high-performance liquidchromatography-chip/mass spectrometry [J]. Journal of Dairy Science,2009,92(7):2991-3001.
    [86] HORST R, GOFF J, REINHARDT T. Role of vitamin D in calcium homeostasis and its usein prevention of bovine periparturient paresis [J]. Acta Veterinaria ScandinavicaSupplementum,2003,97(35-50.
    [87] CRAIGE JR A, STOLL I. Milk fever (parturient paresis) as a manifestation of alkalosis [J].American Journal of Veterinary Research,1947,8(27):168.
    [88] SCHWARTZ G G, WHITLATCH L W, CHEN T C, et al. Human prostate cells synthesize1,25-dihydroxyvitamin D3from25-hydroxyvitamin D3[J]. Cancer Epidemiology Biomarkers&Prevention,1998,7(5):391-5.
    [89] LI Y C, KONG J, WEI M, et al.1,25-Dihydroxyvitamin D3is a negative endocrineregulator of the renin-angiotensin system [J]. Journal of Clinical Investigation,2002,110(2):229-38.
    [90] NAVEH-MANY T, MARX R, KESHET E, et al. Regulation of1,25-dihydroxyvitamin D3receptor gene expression by1,25-dihydroxyvitamin D3in the parathyroid in vivo [J].Journal of Clinical Investigation,1990,86(6):1968.
    [91] GOFF J, HORST R. Role of acid-base physiology on the pathogenesis of parturienthypocalcaemia (milk fever)-the DCAD theory in principal and practice [J]. Acta VeterinariaScandinavica Supplementum,2003,97(suppl):51-6.
    [92] GOFF J, HORST R. Oral administration of calcium salts for treatment of hypocalcemia incattle [J]. Journal of Dairy Science,1993,76(1):101-8.
    [93] SLATOPOLSKY E, FINCH J, RITTER C, et al. A new analog of calcitriol,19-nor-1,25-(OH)2D, suppresses parathyroid hormone secretion in uremic rats in the absence ofhypercalcemia [J]. American Journal of Kidney Diseases,1995,26(5):852-60.
    [94] HOVE K, HORST R L, LITTLEDIKE E T, et al. Infusions of parathyroid hormone inruminants: hypercalcemia and reduced plasma1,25-dihydroxyvitamin D concentrations [J].Endocrinology,1984,114(3):897-903.
    [95] RUDE R K. Magnesium deficiency: a cause of heterogenous disease in humans [J]. Journalof Bone and Mineral Research,1998,13(4):749-58.
    [96] LEAN I, DEGARIS P, MCNEIL D, et al. Hypocalcemia in dairy cows: meta-analysis anddietary cation anion difference theory revisited [J]. Journal of Dairy Science,2006,89(2):669-84.
    [97] GOFF J P, HORST R L. Calcium salts for treating hypocalcemia: carrier effects, acid-basebalance, and oral versus rectal administration [J]. Journal of Dairy Science,1994,77(5):1451-6.
    [98] THILSING-HANSEN T, J RGENSEN R. Hot topic: prevention of parturient paresis andsubclinical hypocalcemia in dairy cows by zeolite A administration in the dry period [J].Journal of Dairy Science,2001,84(3):691-3.
    [99] GOFF J, HORST R, MUELLER F, et al. Addition of chloride to a prepartal diet high incations increases1,25-dihydroxyvitamin D response to hypocalcemia preventing milk fever[J]. Journal of Dairy Science,1991,74(11):3863-71.
    [100] GOFF J P, KIMURA K, HORST R L. Effect of mastectomy on milk fever, energy, andvitamins A, E, and β-carotene status at parturition [J]. Journal of Dairy Science,2002,85(6):1427-36.
    [101] RAMBERG C, JOHNSON E, FARGO R, et al. Calcium homeostasis in cows, with specialreference to parturient hypocalcemia [J]. American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,1984,246(5): R698-R704.
    [102] REINHARDT T A, LIPPOLIS J D, MCCLUSKEY B J, et al. Prevalence of subclinicalhypocalcemia in dairy herds [J]. The Veterinary Journal,2011,188(1):122-4.
    [103] ZHIGANG Z, GUOWEN L, HONGBIN W, et al. Detection of subclinical ketosis in dairycows [J]. Pakistan Veterinary Journal,2012,32(2):156-60.
    [104]张志刚.奶牛亚临床酮病诊断试纸条研制及其初步应用[D];吉林大学,2009.
    [105] DUFFIELD T, HERDT T. Subclinical ketosis in lactating dairy cattle [J]. Veterinary Clinicsof North America, Food Animal Practice,2000,16(2):231-53.
    [106] IWERSEN M, FALKENBERG U, VOIGTSBERGER R, et al. Evaluation of an electroniccowside test to detect subclinical ketosis in dairy cows [J]. Journal of Dairy Science,2009,92(6):2618-24.
    [107] VOYVODA H, ERDOGAN H. Use of a hand-held meter for detecting subclinical ketosis indairy cows [J]. Research in Veterinary Science,2010,89(3):344-51.
    [108] HANSEN P W. Screening of dairy cows for ketosis by use of infrared spectroscopy andmultivariate calibration [J]. Journal of Dairy Science,1999,82(9):2005-10.
    [109] HEUER C, LUINGE H, LUTZ E, et al. Determination of acetone in cow milk by Fouriertransform infrared spectroscopy for the detection of subclinical ketosis [J]. Journal of DairyScience,2001,84(3):575-82.
    [110] DE ROOS A, VAN DEN BIJGAART H, H RLYK J, et al. Screening for subclinical ketosisin dairy cattle by Fourier transform infrared spectrometry [J]. Journal of Dairy Science,2007,90(4):1761-6.
    [111] BJERRE-HARP TH V, FRIGGENS N, THORUP V M, et al. Metabolic and productionprofiles of dairy cows in response to decreased nutrient density to increase physiologicalimbalance at different stages of lactation [J]. Journal of Dairy Science,2012,95(5):2362-80.
    [112] KATOH N, NAKAGAWA-UETA H. Concentrations of apolipoprotein C-III in healthy cowsduring the peripartum period and cows with milk fever [J]. The Journal of VeterinaryMedical Science/the Japanese Society of Veterinary Science,2001,63(6):597.
    [113] YAMAMOTO M, NAKAGAWA-UETA H, KATOH N, et al. Decreased concentration ofserum apolipoprotein C-III in cows with fatty liver, ketosis, left displacement of theabomasum, milk fever and retained placenta [J]. The Journal of Veterinary MedicalScience/the Japanese Society of Veterinary Science,2001,63(3):227.
    [114] KUROSAKI N, YAMATO O, SATO J, et al. Biomarkers for the activation of calciummetabolism in dairy cows: Elevation of tartrate-resistant acid phosphatase activity bylowering dietary cation-anion difference is associated with the prevention of milk fever [J].Journal of Veterinary Medical Science,2007,69(3):265-70.
    [115] LIESEGANG A, EICHER R, KRAENZLIN M, et al. Determination of bone markers indairy cows with parturient paresis][J]. Schweizer Archiv Für Tierheilkunde,1998,140(10):405.
    [116] SCALIA D, LACETERA N, BERNABUCCI U, et al. In vitro effects of nonesterified fattyacids on bovine neutrophils oxidative burst and viability [J]. Journal of Dairy Science,2006,89(1):147-54.
    [117] HOUWELING M, VAN DER DRIFT S, JORRITSMA R, et al. Technical note:Quantification of plasma1-and3-methylhistidine in dairy cows by high-performance liquidchromatography–tandem mass spectrometry [J]. Journal of Dairy Science,2012,95(6):3125-30.
    [118] SINGER R B, HASTINGS A B. An improved clinical method for the estimation ofdisturbances of the acid-base balance of human blood [J]. Medicine,1948,27(2):223.
    [119] CONSTABLE P D, STREETER R N, KOENIG G J, et al. Determinants and utility of theanion gap in predicting hyperlactatemia in cattle [J]. Journal of Veterinary Internal Medicine,1997,11(2):71-9.
    [120] ENEVOLDSEN C. Nutritional risk factors for milk fever in dairy cattle: meta-analysisrevisited [J]. Acta Veterinaria Scandinavica Supplementum,1993,89(131.
    [121] INGRAHAM R, KAPPEL L. Metabolic profile testing [J]. The Veterinary Clinics of NorthAmerica Food Animal Practice,1988,4(2):391.
    [122] PAYNE J, DEW S M, MANSTON R, et al. The use of a metabolic profile test in dairy herds[J]. Veterinary Record,1970,87(150-7;8.
    [123] OETZEL G, EMERY K, KAUTZ W, et al. Direct-fed microbial supplementation and healthand performance of pre-and postpartum dairy cattle: a field trial [J]. Journal of DairyScience,2007,90(4):2058-68.
    [124] MOORBY J M, EVANS R T, SCOLLAN N D, et al. Increased concentration ofwater-soluble carbohydrate in perennial ryegrass (Lolium perenne L.). Evaluation in dairycows in early lactation [J]. Grass and Forage Science,2006,61(1):52-9.
    [125] INGVARTSEN K L, DEWHURST R, FRIGGENS N. On the relationship betweenlactational performance and health: is it yield or metabolic imbalance that cause productiondiseases in dairy cattle? A position paper [J]. Livestock Production Science,2003,83(2):277-308.
    [126] WHITAKER D, MACRAE A, BURROUGH E. Disposal and disease rates in British dairyherds between April1998and March2002[J]. Veterinary Record,2004,155(2):43-7.
    [127] VAN KNEGSEL A, VAN DEN BRAND H, DIJKSTRA J, et al. Dietary energy source indairy cows in early lactation: energy partitioning and milk composition [J]. Journal of DairyScience,2007,90(3):1467-76.
    [128] INGVARTSEN K L, ANDERSEN J B. Integration of metabolism and intake regulation: areview focusing on periparturient animals [J]. Journal of Dairy Science,2000,83(7):1573-97.
    [129] HUMBLET M F, GUYOT H, BOUDRY B, et al. Relationship between haptoglobin, serumamyloid A, and clinical status in a survey of dairy herds during a6-month period [J].Veterinary Clinical Pathology,2006,35(2):188-93.
    [130] OIKAWA S, KATOH N. Decreases in serum apolipoprotein B-100and AI concentrations incows with milk fever and downer cows [J]. Canadian Journal of Veterinary Research,2002,66(1):31.
    [131] STENG RDE L, HOLTENIUS K, EMANUELSON U, et al. Blood parameters in Swedishdairy herds with high or low incidence of displaced abomasum or ketosis [J]. The VeterinaryJournal,2011,190(1):124-30.
    [132] STENG RDE L, HOLTENIUS K, TR V N M, et al. Blood profiles in dairy cows withdisplaced abomasum [J]. Journal of Dairy Science,2010,93(10):4691-9.
    [133] ITOH F, OBARA Y, ROSE M T, et al. Insulin and glucagon secretion in lactating cowsduring heat exposure [J]. Journal of Animal Science,1998,76(8):2182-9.
    [134] STENG RDE L U, PEHRSON B G. Effects of management, feeding, and treatment onclinical and biochemical variables in cattle with displaced abomasum [J]. American Journalof Veterinary Research,2002,63(1):137-42.
    [135] ADEWUYI A, GRUYS E, VAN EERDENBURG F. Non esterified fatty acids (NEFA) indairy cattle. A review [J]. Veterinary Quarterly,2005,27(3):117-26.
    [136] HERDT T H. Ruminant adaptation to negative energy balance. Influences on the etiology ofketosis and fatty liver [J]. The Veterinary Clinics of North America Food Animal Practice,2000,16(2):215.
    [137] ALLEN M, BRADFORD B, OBA M. BOARD-INVITED REVIEW: The hepatic oxidationtheory of the control of feed intake and its application to ruminants [J]. Journal of AnimalScience,2009,87(10):3317-34.
    [138] HERDT T H. Variability characteristics and test selection in herd-level nutritional andmetabolic profile testing [J]. The Veterinary Clinics of North America Food Animal Practice,2000,16(2):387.
    [139] RABASA-LHORET R, BASTARD J-P, JAN V, et al. Modified quantitative insulinsensitivity check index is better correlated to hyperinsulinemic glucose clamp than otherfasting-based index of insulin sensitivity in different insulin-resistant states [J]. Journal ofClinical Endocrinology&Metabolism,2003,88(10):4917-23.
    [140] AL-TRAD B. Effects of increasing intravenous glucose infusions on lactation performance,metabolic profiles, and metabolic gene expression in dairy cows [D]; Pfizer,2010.
    [141]桑玉胜,史国忠,董林生,等.影响牛奶蛋白质和脂肪含量的因素及调整措施[J].畜牧兽医科技信息,2007,12:121-2.
    [142]孟宁生.直接饲用微生物(DFM)对反刍动物的影响[J]. Journal of Jining TeachersCollege,2006,28(4).
    [143] SURIYASATHAPORN W, NIELEN M, DIELEMAN S, et al. A Cox proportional-hazardsmodel with time-dependent covariates to evaluate the relationship between body-conditionscore and the risks of first insemination and pregnancy in a high-producing dairy herd [J].Preventive Veterinary Medicine,1998,37(1):159-72.
    [144] NIEUWENHUIZEN W F, DEKKER H L, GR NEVELD T, et al.Transglutaminase-mediated modification of glutamine and lysine residues in native bovineβ-lactoglobulin [J]. Biotechnology and Bioengineering,2003,85(3):248-58.
    [145]李鹏.酮病奶牛肝脏脂肪酸氧化代谢特征及其调控[D];吉林大学,2012.
    [146] BAUCHART D, GRUFFAT D, DURAND D. Lipid absorption and hepatic metabolism inruminants [J]. Proceedings of the Nutrition Society,1996,55(1):39-48.
    [147] TURK R, JURETI D, GERE D, et al. Serum paraoxonase activity in dairy cows duringpregnancy [J]. Research in Veterinary Science,2005,79(1):15-8.
    [148] BERGMAN R. The pathogenesis and clinical significance of xanthelasma palpebrarum [J].Journal of the American Academy of Dermatology,1994,30(2):236-42.
    [149] LEPLAIX-CHARLAT L, BAUCHART D, DURAND D, et al. Plasma lipoproteins inpreruminant calves fed diets containing tallow or soybean oil with and without cholesterol[J]. Journal of Dairy Science,1996,79(7):1267-77.
    [150] CAVESTANY D, BLANC J, KULCSAR M, et al. Studies of the transition cow under apasture-based milk production system: metabolic profiles [J]. Journal of VeterinaryMedicine Series A,2005,52(1):1-7.
    [151] HORNBUCKLE W, TENNANT B. Gastrointestinal function [J]. Clinical Biochemistry ofDomestic Animals,1997,367-406.
    [152] MOHAMED T, SATO H, KUROSAWA T, et al. Bile acid extraction rate in the liver of cowsfed high-fat diet and lipid profiles in the portal and hepatic veins [J]. Journal of VeterinaryMedicine Series A,2002,49(3):151-6.
    [153] JUN-FU Z, HUI L, HUI-GUO D. Analysis of clinical and pathological characteristics inChinese herbal drug-induced hepatitis patients [J]. Chinese Journal of Clinicians,2011,5(3):720-5.
    [154] KALAITZAKIS E, PANOUSIS N, ROUBIES N, et al. Clinicopathological evaluation ofdowner dairy cows with fatty liver [J]. The Canadian Veterinary Journal,2010,51(6):615.
    [155] REICHEL J, H NSEL W, H NSCH T. Atomic micromanipulation with magnetic surfacetraps [J]. Physical Review Letters,1999,83(17):3398-401.
    [156] ZUREK E, FOXCROFT G, KENNELLY J. Metabolic status and interval to first ovulationin postpartum dairy cows [J]. Journal of Dairy Science,1995,78(9):1909-20.
    [157] LUBOJACKA V, PECHOVA A, DVO K R, et al. Liver steatosis followingsupplementation with fat in dairy cow diets [J]. Acta Veterinaria Brno,2005,74(2):217-None.
    [158] WHITAKER D, GOODGER W, GARCIA M, et al. Use of metabolic profiles in dairy cattlein tropical and subtropical countries on smallholder dairy farms [J]. Preventive VeterinaryMedicine,1999,38(2):119-31.
    [159] ROWLANDS G, LITTLE W, KITCHENHAM B. Relationships between blood compositionand fertility in dairy cows–a field study [J]. Journal of Dairy Research,1977,44(01):1-7.
    [160] GODDEN S, LISSEMORE K, KELTON D, et al. Factors associated with milk ureaconcentrations in Ontario dairy cows [J]. Journal of Dairy Science,2001,84(1):107-14.
    [161] BOUCHARD L, BLAIS S, DESROSIERS C, et al. Nitric oxide production duringendotoxin-induced mastitis in the cow [J]. Journal of Dairy Science,1999,82(12):2574-81.
    [162] STRANG B, BERTICS S, GRUMMER R, et al. Effect of long-chain fatty acids ontriglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes [J].Journal of Dairy Science,1998,81(3):728-39.
    [163] CARDOSO F C D, ESTEVES V S, OLIVEIRA S T D, et al. Hematological, biochemicaland ruminant parameters for diagnosis of left displacement of the abomasum in dairy cowsfrom Southern Brazil [J]. Pesquisa Agropecuária Brasileira,2008,43(1):141-7.
    [164] PECHOVA A, PODHORSK A, LOKAJOVA E, et al. Metabolic effects of chromiumsupplementation in dairy cows in the peripartal period [J]. Acta Veterinaria Brno,2002,71(1):9-None.
    [165] KUPCZY SKI R, CHUDOBA-DROZDOWSKA B. Values of selected biochemicalparameters of cows’blood during their drying-off and the beginning of lactation [J].Veterinary Medicine,2002,5(1):01.
    [166] KRONFELD-SCHOR N, RICHARDSON C, SILVIA B A, et al. Dissociation of leptinsecretion and adiposity during prehibernatory fattening in little brown bats [J]. AmericanJournal of Physiology-Regulatory, Integrative and Comparative Physiology,2000,279(4):R1277-R81.
    [167]ABE E, MARIANS R C, YU W, et al. TSH is a negative regulator of skeletal remodeling [J].Cell,2003,115(2):151-62.
    [168] KIMURA K, GOFF J P, KEHRLI M E. Effects of the presence of the mammary gland onexpression of neutrophil adhesion molecules and myeloperoxidase activity in periparturientdairy cows [J]. Journal of Dairy Science,1999,82(11):2385-92.
    [169] BONIZZI L, MENANDRO M, PASOTTO D, et al. Transition cow: non-specific immuneresponse [J]. Veterinary Research Communications,2003,27(1):137-42.
    [170] PETERSEN H H, NIELSEN J P, HEEGAARD P M H. Application of acute phase proteinmeasurements in veterinary clinical chemistry [J]. Veterinary Research,2004,35(2):163-87.
    [171] TREVISI E, AMADORI M, BAKUDILA A, et al. Metabolic changes in dairy cows inducedby oral, low-dose interferon-alpha treatment [J]. Journal of Animal Science,2009,87(9):3020-9.
    [172] SMALL G W, RABINS P V, BARRY P P, et al. Diagnosis and treatment of Alzheimerdisease and related disorders [J]. Consensus statement of the American Association forGeriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics SocietyJAMA,1997,278(16):1363-71.
    [173] KRONQVIST P, KUOPIO T, NYK NEN M, et al. Predicting aggressive outcome inT1N0M0breast cancer [J]. British Journal of Cancer,2004,91(2):277-81.
    [174] ZHANG Z, LIU G, LI X, et al. Evaluation of the change of serum copper and zincconcentrations of dairy cows with subclinical ketosis [J]. Biological Trace ElementResearch,2010,138(1):8-12.
    [175] LIESEGANG A, SASSI M-L, RISTELI J, et al. Comparison of bone resorption markersduring hypocalcemia in dairy cows [J]. Journal of Dairy Science,1998,81(10):2614-22.
    [176] AKAMATSU H, SAITOH Y, SERIZAWA M, et al. Changes of serum3-methylhistidineconcentration and energy-associated metabolites in dairy cows with ketosis [J]. Journal ofVeterinary Medical Science,2007,69(10):1091-3.
    [177]张辉,王哲.围产期奶牛能量代谢障碍性疾病概述[J].中国兽医杂志,2007,43(4):72-4.
    [178] XU C, LIU G-W, LI X-B, et al. Decreased complete oxidation capacity of fatty acid in theliver of ketotic cows [J]. Asian-Australasian Journal Animal,2010,23(312-7.
    [179] INGVARTSEN K L. Feeding-and management-related diseases in the transition cow:Physiological adaptations around calving and strategies to reduce feeding-related diseases[J]. Animal Feed Science and Technology,2006,126(3):175-213.
    [180] XIA C, WANG Z, XU C, et al. Concentrations of plasma metabolites, hormones, andmRNA abundance of adipose leptin and hormone-sensitive lipase in ketotic and nonketoticdairy cows [J]. Journal of Veterinary Internal Medicine,2012,
    [181] XU C, WANG Z. Comparative proteomic analysis of livers from ketotic cows [J].Veterinary Research Communications,2008,32(3):263-73.
    [182]夏成,王哲,张洪友,等.患脂肪肝奶牛的代谢、内分泌和组织基因表达特征[J].中国农业科学,2010,43(8):1696-1702.
    [183] VAZQUEZ-A ON M, BERTICS S, LUCK M, et al. Peripartum liver triglyceride and plasmametabolites in dairy cows [J]. Journal of Dairy Science,1994,77(6):1521-8.
    [184]李光伟,潘孝仁.血浆葡萄糖,胰岛素比值是可靠的胰岛素敏感性指数吗?[J].中华心血管病杂志,1996,24(1):57-62.
    [185] BOBE G, AMETAJ B, YOUNG J, et al. Potential treatment of fatty liver with14-daysubcutaneous injections of glucagon [J]. Journal of Dairy Science,2003,86(10):3138-47.
    [186]车英玉.代谢信号对犊牛脂肪细胞脂联素,激素敏感脂肪酶基因表达的影响[D];吉林农业大学,2007.
    [187]夏成,王哲,张才,等. INS, GLN和LP对体外培养牛脂肪细胞内HSL, LP的mRNA丰度的影响[J].畜牧兽医学报,2007,37(12):1312-8.
    [188] INGVARTSEN K L, BOISCLAIR Y. Leptin and the regulation of food intake, energyhomeostasis and immunity with special focus on periparturient ruminants [J]. DomesticAnimal Endocrinology,2001,21(4):215-50.
    [189]付世新,夏成,张洪友,等.脂肪肝对奶牛生产性能机体代谢及内分泌的影响[J].中国兽医杂志,2008,44(11):34-6.
    [190] VLAMINCK K, OYAERT W, MUYLLE E, et al. Blood levels of somatostatin, pancreaticpolypeptide and gastrin in normal cows and in cows suffering from abomasal dilatation [J].Journal of Veterinary Medicine Series A,1986,33(1-10):241-6.
    [191] RHOADS M, MEYER J, KOLATH S, et al. Growth hormone receptor, insulin-like growthfactor (IGF)-1, and IGF-binding protein-2expression in the reproductive tissues of earlypostpartum dairy cows [J]. Journal of Dairy Science,2008,91(5):1802-13.
    [192] WANG J, ZHU X, CHEN C, et al. Effect of insulin-like growth factor-1(IGF-1) on thegluconeogenesis in calf hepatocytes cultured in vitro [J]. Molecular and CellularBiochemistry,2012,1-5.
    [193] REIST M, ERDIN D, VON EUW D, et al. Estimation of energy balance at the individualand herd level using blood and milk traits in high-yielding dairy cows [J]. Journal of DairyScience,2002,85(12):3314.
    [194] KALAITZAKIS E, ROUBIES N, PANOUSIS N, et al. Clinicopathologic evaluation ofhepatic lipidosis in periparturient dairy cattle [J]. Journal of Veterinary Internal Medicine,2007,21(4):835-45.
    [195] PECHOVA A, ILLEK J, HALOUZKA R. Diagnosis and control of the development ofhepatic steatosis in dairy cows in the postparturient period [J]. Acta Veterinaria,1997,66(4)235-43.
    [196]杜纪坤,黄青阳.脂蛋白脂酶基因的研究进展[J].遗传,2007,29(1):8-16.
    [197] BAUCHART D. Lipid absorption and transport in ruminants [J]. Journal of Dairy Science,1993,76(12):3864-81.
    [198] MARCOS E, MAZUR A, CARDOT P, et al. Serum apolipoproteins B and AI and naturallyoccurring fatty liver in dairy cows [J]. Lipids,1990,25(9):575-7.
    [199] YOUINOU P, JAMIN C, PERS J O, et al. B lymphocytes are required for development andtreatment of autoimmune diseases [J]. Annals of the New York Academy of Sciences,2006,1050(1):19-33.
    [200] WATKINS L, GOEHLER L, RELTON J, et al. Mechanisms of tumor necrosis factor-α(TNF-α) hyperalgesia [J]. Brain Research,1995,692(1):244-50.
    [201] SARTORELLI P, PALTRINIERI S, AGNES F. Non-specific immunity and ketone bodies. I:in vitro studies on chemotaxis and phagocytosis in ovine neutrophils [J]. Journal ofVeterinary Medicine Series A,2002,46(10):613-9.
    [202]薛俊欣,缪德年,黄克和,等.亚临床酮病对围产期奶牛免疫功能的影响[J].上海交通大学学报:农业科学版,2011,29(1):48-53.
    [203] LACETERA N, SCALIA D, BERNABUCCI U, et al. Lymphocyte functions inoverconditioned cows around parturition [J]. Journal of Dairy Science,2005,88(6):2010-6.
    [204] GRUYS E, TOUSSAINT M, NIEWOLD T, et al. Review: Acute phase reaction and acutephase proteins [J]. Journal of Zhejiang University Science B,2005,6(11):1045.
    [205] TOTHOVA C, NAGY O, SEIDEL H, et al. Acute phase proteins and variables of proteinmetabolism in dairy cows during the pre-and postpartal period [J]. Acta Veterinaria Brno,2008,77(1):51-7.
    [206] LOOR J J, EVERTS R E, BIONAZ M, et al. Nutrition-induced ketosis alters metabolic andsignaling gene networks in liver of periparturient dairy cows [J]. Physiological Genomics,2007,32(1):105-16.
    [207]马世波,孙立婷,韩璐,等.骨保护素[J].中国兽医杂志,2007,43(2):71-2.
    [208] AKOBENG A K. Understanding diagnostic tests3: receiver operating characteristic curves[J]. Acta Paediatrica,2007,96(5):644-7.
    [209] XIA C, WANG Z, LIU G, et al. Changes of plasma metabolites, hormones, and mRNAexpression of liver PEPCK-C in spontaneously ketotic dairy cows [J]. Asian-australasianJournal of Animal Sciences,2010,23(1):47-51.
    [210] LEBLANC S. Monitoring metabolic health of dairy cattle in the transition period [J].Journal of Reproduction and Development,2010,56(S): S29-S35.
    [211]牛庆斐,唐新叶,张小飞.引起“奶牛卧倒不起综合征"的常见原因及其诊治[J].天津农学院学报,2004,11(2):004.
    [212]曾芳馨,熊中云.抗酒石酸酸性磷酸酶与骨代谢[J].华西医学,2005,20(3):545.
    [213] WRIGHT C S, GAVILANES F, PETERSON D L. Primary structure of wheat germagglutinin isolectin2. Peptide order deduced from X-ray structure [J]. Biochemistry,1984,23(2):280-7.
    [214] MARTENS H, K SEBIETER H. In vitro studies of the effect of sodium and potassium ionson magnesium transport across the isolated rumen mucosa of sheep][J]. Zentralblatt FürVeterin rmedizin Reihe A,1983,30(1):1.
    [215] WANG J, ZHU X, LI X, et al. Effects of copper on proliferation and autocrine secretion ofinsulin-like growth factor-1(IGF-1) and igf-binding protein-3(IGFBP-3) in chondrocytesfrom newborn pigs in vitro [J]. Biological Trace Element Research,2011,144(1):588-96.
    [216] SPEARS J W, WEISS W P. Role of antioxidants and trace elements in health and immunityof transition dairy cows [J]. The Veterinary Journal,2008,176(1):70-6.
    [217] GOFF J P, STABEL J R. Decreased plasma retinol, α-tocopherol, and zinc concentrationduring the periparturient period: effect of milk fever [J]. Journal of Dairy Science,1990,73(11):3195-9.
    [218] DUFTY J, BINGLEY J, COVE L Y. The plasma zinc concentration of nonpregnant,pregnant and parturient Hereford cattle [J]. Australian Veterinary Journal,2008,53(11):519-22.
    [219] CHAMBERLIN W G. Influence of subclinical hypocalcemia on plasma biochemicalparameters, liver histologic changes, and common postpartum diseases in dairy cows [D];University of Missouri,2011.
    [220] HORST R L, GOFF J P, REINHARDT T A. Adapting to the transition between gestationand lactation: differences between rat, human and dairy cow [J]. Journal of Mammary GlandBiology and Neoplasia,2005,10(2):141-56.
    [221] MOORE E W. Ionized calcium in normal serum, ultrafiltrates, and whole blood determinedby ion-exchange electrodes [J]. Journal of Clinical Investigation,1970,49(2):318.
    [222] SIGGAARD-ANDERSEN O, THODE J, FOGH-ANDERSEN N. Nomograms forcalculating the concentration of ionized calcium of human blood plasma from total calcium,total protein and/or albumin, and pH [J]. Scandinavian Journal of Clinical&LaboratoryInvestigation,1983,43(S165):57-64.
    [223]丁彩屏.血钙与离子钙之间的关系[J].广东医学,2001,4:9.
    [224] AGNES F, SARTORELLI P, BISSO M, et al. Ionized calcium in calf serum: relation to totalserum calcium, albumin, total protein and pH [J]. Journal of Veterinary Medicine Series A,1993,40(1‐10):605-8.
    [225] CEBRA C K, GARRY F B, GETZY D M, et al. Hepatic lipidosis in anorectic, lactatingHolstein cattle: a retrospective study of serum biochemical abnormalities [J]. Journal ofVeterinary Internal Medicine,1997,11(4):231-7.
    [226] STOJEVI Z, PIR LJIN J, MILINKOVI-TUR S, et al. Activities of AST, ALT and GGTin clinically healthy dairy cows during lactation and in the dry period [J]. Veterinarski Arhiv,2005,75(1):67-73.
    [227] BLOCK S, BUTLER W, EHRHARDT R, et al. Decreased concentration of plasma leptin inperiparturient dairy cows is caused by negative energy balance [J]. Journal of Endocrinology,2001,171(2):339-48.
    [228] LOISELLE M, STER C, TALBOT B, et al. Impact of postpartum milking frequency on theimmune system and the blood metabolite concentration of dairy cows [J]. Journal of DairyScience,2009,92(5):1900-12.
    [229] JANEWAY C A, TRAVERS P, WALPORT M, et al. Immunobiology: the immune system inhealth and disease [J]. Garland Science Publishing, New York, USA, S,2000,6:90-1.
    [230] SHWARTZ G. Effects of flunixin meglumine on pyrexia, production, and bioenergeticvariables in postparturient dairy cows [M]. The University of Arizona Campus Repositiry,2007.
    [231] LYDYARD P. Instant notes in immunology [M]. BIOS Scientific Publ,2004.
    [232] KUBY J. Immunology,(1994)[M]. WH Freeman and Company (New York, NY).1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700