圆口铜鱼应激生理机制及缓解策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江是我国第一大河,共有鱼类约350余种,是我国鱼类资源的宝库。长江上游以山区为主,坡陡水急,流态复杂多样,特有鱼类数量达124种。近年来,由于各类水电工程设施的兴建,长江流域生态环境急剧恶化,鱼类洄游通道受阻、造成生境破碎、产卵场和栖息地被破坏或丧失,加之缺乏严格和科学的管理,多种鱼类资源接近衰竭。长江鱼类特别是珍稀特有鱼类资源已经成为目前急需解决的问题。圆口铜鱼隶属于鲤形目、鲤科、鮈亚科,属河道洄游鱼类,产漂流性卵,是长江上游特有鱼类和重要的经济鱼类。然而,近年来,由于过度捕捞,特别是受水电工程设施建设等人类活动的影响,圆口铜鱼资源量急剧下降,渔获物中低龄鱼和幼鱼个体比重逐年增加。更为严峻的是,长江干流和金沙江中下游水电工程的建设,已经阻挡了圆口铜鱼的洄游通道,并将淹没其大部分产卵场。如果不采取有效措施,这种长江上游特有的重要经济鱼类将可能面临灭绝境地。
     增殖放流被认为是保护珍稀濒危鱼类的有效措施之一,驯养足够的亲鱼是增殖放流的前提。然而,由于圆口铜鱼具有激烈的应激反应特征,且在人工养殖时极易感染小瓜虫病,死亡率较高,导致人工驯养圆口铜鱼难度较大。目前,除了零星的试验性养殖外,尚未见室内驯养成功的报道。本研究针对圆口铜鱼移养驯化过程中的关键操作程序,通过对圆口铜鱼正常、不同程度操作胁迫、麻醉与低温运输状态下其血液生理生化、关键组织形态结构以及应激蛋白HSP70/HSC70变化特征的观测,探究圆口铜鱼应激反应的基本规律,并寻找缓解圆口铜鱼应激反应的措施,具体内容及主要研究结果如下:
     对船体网箱养殖近一年的圆口铜鱼血细胞形态及生理生化参数进行了测定,建立了网箱养殖圆口铜鱼生理生化指标的参考区间。同其他鱼类相比,圆口铜鱼血液皮质醇基础水平较高(185.70ng/mL),这可能是和其具有发达的肝胰联合体、摄食能力强、代谢水平高、喜急流环境等生物学习性有关。加之圆口铜鱼驯化程度低,对人工养殖环境适应周期长等因素导致其基础皮质醇处于较高水平。和野生圆口铜鱼相比,网箱养殖圆口铜鱼血糖、甘油三酯、总蛋白和球蛋白水平均明显偏高,这可能是由于人工养殖环境下圆口铜鱼能获得更加充足的高能饵料,以及网箱高密度养殖条件下鱼类的活动范围被限制、活动量减少等原因所致。
     对网箱养殖圆口铜鱼施以低强度(30s)和高强度(60s)的急性离水胁迫,并分别于刺激后的0、1、4、12、24、72、120、168h采取血液、肝、鳃、肾组织,测定血液生理生化参数的变化特征及关键组织器官的形态结构变化。结果显示,不同强度操作胁迫刺激后的前24h,圆口铜鱼均表现出以血液皮质醇、溶菌酶活性、葡萄糖和谷丙转氨酶急剧升高为典型特征的急性应激反应。组织形态学的观察显示,不同强度的离水胁迫均可诱发圆口铜鱼鳃、肾形态结构的变化或损伤。离水胁迫后的24h发现两处理组均自然感染了小瓜虫,且随时间的延长有加剧的趋势,至实验结束时(168h),虽然圆口铜鱼血液皮质醇、谷丙转氨酶、谷草转氨酶水平已回复到正常水平,但其血液葡萄糖、乳酸和溶菌酶活性均维持在较高水平,说明圆口铜鱼依旧处于疾病感染和适应新环境的慢性应激阶段。
     通过行为观察和实践运输成活率等预实验研究,得出适于圆口铜鱼长途运输的MS-222的麻醉浓度为20-40mg/L。为考查圆口铜鱼对长途运输胁迫的应激反应特征和麻醉、低温以及二者联合使用对圆口铜鱼长途运输应激反应的缓解效果,设置了常温不麻(Hna)、常温麻醉(Ha)、低温不麻(Lna)和低温麻醉(La)四个处理组,于运输后的0h采取水样,并分别于运输后的0、4、24、72和168h采取血液。检测结果显示,经14h的长途运输,四个处理组总氨氮(TAN)、非离子氨氮(NH3-N)、亚硝酸氮(NO2-N)和总氮(TN)均明显升高(P<0.05);且除NO2-N外,这些指标在高温处理组的浓度均明显高于低温处理组。运输后及恢复过程中,血液皮质醇、葡萄糖、乳酸、转氨酶等生化指标多数呈现出明显的先升高后降低的典型急性应激反应特征。麻醉处理在抑制运输过程中圆口铜鱼的活动、能量消耗方面作用明显,低温处理则在抑制长途运输过程中圆口铜鱼皮质醇的升高、提高溶菌酶活力、降低鱼类活动方面发挥重要作用。因此,建议在高温条件下对圆口铜鱼进行长途运输时,低温麻醉处理是首选,其次是单独使用低温或MS-222处理,而且运输前的禁食时间控制在48-72h为宜。此外,运输后的前两周圆口铜鱼尚处在急性或慢性应激状态,此期间要特别注重鱼体健康护理。
     利用圆口铜鱼心脏组织克隆出HSC70和HSP70基因全长的cDNA序列,其cDNA序列全长分别为2330bp、2290bp,编码氨基酸数目为649个、643个。通过比对分析发现,圆口铜鱼HSC70和HSP70两种基因与其他动物的同源性较高。组织差异性表达结果显示,HSP/HSC70基因mRNA在圆口铜鱼不同组织中的表达有所差异,HSP70和HSC70在不同组织中的表达量从高到低依次分别为肌肉、眼、肾、鳃、脑、脾、心脏和鳍,以及肝、眼、鳃、鳍、心脏、脾、脑、肌肉和肾脏。急性操作胁迫过程中圆口铜鱼HSC70除在肝中的表达外,HSP70/HSC70两种基因mRNA在其他不同组织中的变化并不明显,与血液生理生化指标的变化一致性程度较低。因此,在圆口铜鱼的急性操作胁迫和长途运输胁迫的应激评估中,不易将HSP70和HSC70作为应激的评价指标,此方面的研究有待于深入。
As the longest river of china, Yangtze River is a treasure trove of fish resources fostering more than350fish species. The upper reaches of the Yangtze River is mainly located in the mountainous areas with steep slopes and swift streams.Due to the complicated flow pattern there are approximately124kinds of endemic fish. In recent years, as a result of the damming, thefish migration routes had been blocked, causing habitat fragmentation, spawning grounds and habitat destruction or loss. To be worse, a variety of fish stocks are close to be exhausted due to the lack of strict and scientific management. Consequently, species conservation of the endemic fish in Yangtze River are badly in need. Largemouth bronze gudgeon, Coreius guichenoti belongs to Cyprinidae in the Cypriniformes, and is one of the rare endemic fishes in the upper Yangtze River in China. The fish is a potamodromous migration species living in schools and producing pelagic eggs, and can usually be found in rivers with torrential flow. Due to its tender meat, delicious taste and high nutrition, C. guichenoti used to be an important economic fish in the upper Yangtze River. However, in recent years, the catch of this species has declined dramatically and the fish tends to become stunted owing to overcatching and construction of hydroelectrical projects. The construction of hydropower stations in the Yangtze River and in the middle and lower reaches of the Jinsha River has blocked most of the passage of C. guichenoti and submerged most of its spawning fields. This endemic and important economic fish is facing the threat of extinction if measures are not taken in the succeeding period.
     Fishery stock enhancement and releasing has been proved to be an effective measure to protect the rare and endangered fish species. Culturing adequate broodstocks is the precondition to start the artificial propagation, but intense stress response and high susceptibility to ichthyophthiriasis are critical challenges to the collection, domestication and culture of C. guichenoti during the aquaculture practice. To date, the culture of C. guichenoti can only be performed in cages of vessels near the shore in the upper reaches of the Yangtze River from Luzhou to Hejiang. To the best of our knowledge, no report has been published about the successful indoor culture of C. guichenoti, except for experimental culture. For the key parts of the transfering and domestication in C. guichenoti, we tested the changes of blood physiology and biochemistry, the morphology and strcture of the key tissues, as well as the stress protein HSP70/HSC70. We tried to explore the basic laws of stress response of Coreius, and find measures to mitigate the corresponding stress response. And the specific content and key findings are as follows:
     We tested the morphology of blood cell and physiological and biochemical parameters of C. guichenoti cultured for almost one year in the cage; and established the corresponding reference intervals. Compared with other fish, the blood cortisol levels of C.guichenoti remained at a relatively higher level (185.70ng/mL), which may be related to the preference and physiological traits of C.guichenoti, such as preference for torrent, high swimming speed, and long-distance migration, well-developed liver and pancreas combination, and high efficiency in ingestion, digestion, and transformation. In addition, C.guichenoti the low degree of domesticatiton and the long period adapt to farmed environment may cause the high cortisol level. Compared with the wild C.guichenoti, the levels of glucose, triglycerides, total protein and globulin are singnificantly higher. This can be attributed to the large amount of high-energy food (relatively high protein, lipid and carbohydrates) that the fish get and the reduction of activities in the culturing environment versus the wild.
     We expoursed the Cage-cultured C.guichenoti to a low intensity(out of water for30s) and high intensity(out of water for50s) acute handling stress; and the tissues including blood, liver, gill and kidney were sampled at0,1,4,12,24,72,120and168h after the handling stress. We tested the changes of the blood physiology and biochemistry as well as the morphology and strcture of the key tissues. The results suggest that the treated fish all displayed typical acute stress response including the abrupt increase in plasma cortisol, lysozyme, glucose and ALT. the abservation of tissues morphology suggest that the low and high intensity acute handling stress both caused the changes or damage of the gill and kidney. The treated fish in both groups were spontaneously infected with Ichthyophthirius multifiliis. By the end of the experiment168h), the of plasma glucose, lysozyme and lactate remainded at relitively high levels, although the levels of plasma cortisol, ALT and AST had retained to the resting levels. This suggested that the fish also remainded in the state of diseases and adapting the new environment of chronic stress.
     We get the appropriate anaesthesia concentration of MS-222(20-40mg/L) used in the long-distance transport of C.guichenoti by the preliminary experiment including behavior observation and the survival rate of the pratical transport. In order to investigate the basic characteristics of the physiological stress response of fish subjected to transport stress and evaluate the effects of MS-222anesthesia, temperature reduction and the combination of both practices as sedative during transportation, we set up the four groups including Ana (ambient temperature with no anesthetic) group, Aa (ambient temperature with MS-222anesthetic) group, Lna (low temperature with no anesthetic) group, and La (low temperature with MS-222anesthetic) group. And we sampled the blood at0,4,24,72and168h. The results suggested the concentrations of TAN, NH3-N, and TN among the four treatment groups were significantly higher than before transport. Most of the examined plasma biochemical parameters, such as plasma COR, GLU, LA, ALT, and AST, displayed an increase, followed by a gradual decrease, similar to the stress responses of other bony fish. MS-222anesthesia, temperature reduction or the combination of the both had the effect of decreasing the metabolism and activity of C. guichenoti to different degrees. The results suggest that for a successful long-term transportation of C. guichenoti employing the combination of temperature reduction and MS-222is most preferable, followed by the use of temperature reduction alone, or MS-222at a relatively high temperature, and the fasting period before transport will be ensured for48-72h. In additon, the fish also remained in the acute or chronic stress state in the first two week after the transport, so it is critical to nurse the fish.
     Full length cDNAs of HSC70and HSP70were cloned from the liver SMART cDNA library. The full length cDNA sequences of HSC70and HSP70are2,330bp and2,290bp respectively and encoding649amino acids and643amino acids respctively. Multiple amino acid sequence alignment suggests that the two gens HSC70and HSP70have high homology to other animals. Tissue distribution analysis revealed that the transcription levels of HSP70and HSC70were different in various tissues, with HSP70transcribed in a reduced trend in muscle, eye, kidney, gill, brain, spleen, heart and fin, together with HSC70transcribed most in liver followed by eye, gill, fin, heart, spleen, brain, muscle and kidney. Under acute handling stress, the transcription levels of HSP70and HSC70in different tissues changed not variously except in livers, and showed little consistency with the changes of the parameters of blood physiology and biochemistry. Therefore, it is not applicable to include the transcription levels of HSP70and HSC70as one of the evaluation parameters during the acute handling stress and long-term transportation stress in C. guichenoti, and further research is needed in this area.
引文
1.陈大庆,刘绍平,段辛斌,等.长江中上游主要经济鱼类的渔业生物学特征.水生生物学报,2002,26(6):618-22.
    2.陈刚,周晖,张健东,吴灶和.军曹鱼血液指标及血细胞发生的观察.水生生物学报,2005,(05):564-70.
    3.陈刚,周晖,叶富良,吴灶和.美国红鱼血细胞观察.热带海洋学报,2006,25(2):59-65.
    4.陈其才,严定友,吴政星.生理学实验.北京:科学出版社,1995.
    5.陈晓耘.南方鲶血液的研究吉首大学学报(自然科学版),2000,21(2):63-7.
    6.程鹏.长江上游圆口铜鱼的生物学研究.2008.
    7.程鹏,熊玉宇,但胜国,沈建忠,谭德清.圆口铜鱼活鱼运输方法比较.水利渔业,2008,28(04):75-7.
    8.丁金林,乐文俊.铜鱼小瓜虫病的防治.科学养鱼,2007,(10):57-8+86.
    9.丁瑞华.四川鱼类志.成都:四川科学技术出版社,1994.
    10.段辛斌,陈大庆,刘绍平,池成贵,杨如恒.长江三峡库区鱼类资源现状的研究.水生生物学报,2002,26(6):605-7.
    11.杜浩,危起伟,甘芳,刘鉴毅.美洲鲥应激后皮质醇激素和血液生化指标的变化.动物学杂志,2006,41(3):80-4.
    12.冯健,杨丹,覃志彪,杜卫平,蒋步国,潘艳云.青石爬鮡血浆生化指标、血
    13.葛清秀,王志坚,张昊星.长江铜鱼和圆口铜鱼肝胰腺的比较研究.泉州师范学院学报,2001,19(06):69-74.
    14.桂远明.水产动物机能学实验.北京:中国农业出版社,2000.
    15.何大仁.鱼类行为学.厦门:厦门大学出版社,1998.
    16.黄琇,邓中粪.宜昌葛洲坝下圆口铜鱼食性的研究.淡水渔业,1990,(06):11-4.
    17.湖北省水生生物研究所鱼类研究室,长江鱼类.北京:科学出版社,1976.
    18.胡少华,王佳喜,闵文强,郑宏萍.丁岁鱼的血液学指标研究.湖北农学院学报,2004,(01):18-21.
    19.靳晓敏,葛慕湘,孔凡里,张文香,刘艳芳.乌鳢血液指标的研究.河北渔业,2006,(02):21-4.
    20.李黎,曹振东,付世建.力竭性运动后鮎鱼幼鱼乳酸、糖原和葡萄糖水平的运动.水生生物学报,2007,31(6):880-5.
    21.林光华,张丰旺.革胡子鲶血液常数值的周年变化.动物学报,1991,(03):341-2.
    22.林启存,许宝青,蔡丽娟.生姜、辣椒治疗小瓜虫病的效用试验.水产养殖,2005,(02):40-1.
    23.刘成汉.四川长江干流主要经济鱼类若干繁殖生长特性.四川大学学报(自然科学版),1980,(2).
    24.刘飞,但胜国,王剑伟,曹文宣.长江上游圆口铜鱼的食性分析.水生生物学报,2012,(06):1081-6.
    25.刘小玲.鱼类应激反应的研究.水利渔业,2007,27(03):1-3.
    26.刘翔.垂盆草提取物对耐力训练大鼠血糖、肌糖原、肝糖原及血尿素氮的影响.中国医药指南,2012,10(2):80-2.
    27.刘军,胡兵,李惠,陈爱敬.长江上游四种特有鱼类肌肉营养组成与评价.水生生物学报,2007,31(5):763-6.
    28.刘乐和,吴国犀,王志玲.葛洲坝水利枢纽兴建后长江干流铜鱼和圆口铜鱼的繁殖生态.水生生物学报,1990,(03):205-15.
    29.卢庆萍,张宏福.动物应激生物学——动物福利的本质和基本原理.北京:中国农业出版社,2005.
    30.罗毅平,袁伦强,曹振东,谢小军.嘉陵江大鳍镬和瓦氏黄颡鱼血液学指标的研究.水生生物学报,2005,29(2):161-6.
    31.米瑞芙.草鱼、鲤和鲢血液学指标的测定.淡水渔业,1982,(4):10-6.
    32.庞显炳.淡水名优鱼小瓜虫病病因分析及防治探讨.科学养鱼,2000,(09):17-8.
    33.钱令嘉.应激与应激医学.疾病控制杂志,2003,7(5):393-6.
    34.邵燕,吴志强,王剑伟,常剑波,曹文宣.稀有鮈鲫血液学指标的研究.水生生物学报,2006,(02):232-5.
    35.四川大学生物系,四川农学院牧医系.圆口铜鱼.水产科技情报,1976:2.
    36.宋国培.I.肝功能——血清酶学检测的临床意义.临床肝胆病杂志,2003,19(4):195-7.
    37.孙中之,柳学周,庄志猛.野生半滑舌鳎的驯养技术.海洋水产研究,2005,(06):6-10.
    38.唐会元,杨志,高少波,陈金生,张轶超,万力,乔晔.金沙江中游圆口铜鱼早期资源现状.四川动物,2012,(03):416-21+25.
    39.王文博,汪建国,李爱华,蔡桃珍.振荡胁迫后鲫血液皮质醇和溶菌酶水平的变化.水生生物学报,2004,28(6):682.
    40.尾崎久雄.鱼类血液与循环生理.上海:上海科学技术出版社,1982.
    41.肖明珠,郭庆芳.运动性疲劳方法学研究之一—不同刺激方法对大鼠跑台运动疲劳及恢复期糖代谢的影响.中国运动医学杂志,1998,17(4):334-8.
    42.邢湘臣.北方铜鱼(鸽子鱼)的生态及其养殖.西北师范学院学报(自然科学版),1985,(1):47-8.
    43.邢湘臣.北方铜鱼(鸽子鱼)的生态及其养殖(续).西北师范学院学报(自然科学版),1985,(2):32-4.
    44.徐钢春,唐雪,顾若波,闻海波.似刺鳊鮈外周血细胞显微结构和血清生化指标的初步研究.动物学杂志,2008,(05):128-33.
    45.徐树英,张燕,汪登强,李志华,陈大庆.长江宜宾江段圆口铜鱼遗传多样性的微卫星分析.淡水渔业,2007,(03):76-9.
    46.许晓娟,李加儿,区又君,郭根喜,陶启友.深水网箱养殖卵形鲳鯵血液指标.动物学杂志,2008,(06):109-16.
    47.严进,路长林,刘振全.现代应激理论概述.北京:科学出版社,2007.
    48.袁希平,严莉,徐树英,汪登强,张燕,陈大庆.长江流域铜鱼和圆口铜鱼的遗传多样性.中国水产科学,2008,(03):377-85.
    49.虞功亮,刘军,许蕴玕,常剑波.葛洲坝下游江段中华鲟产卵场食卵鱼类资源量估算.水生生物学报,2002,(6):9.
    50.余志堂,梁秩燊,易伯鲁.铜鱼和圆口铜鱼的早期发育.水生生物学集刊,1984,(04):371-88.
    51.余红卫,薛良义.加州鲈血液生理生化指标的测定.水利渔业,2004,(04):41-2.
    52.曾祥琮.长江水系渔业资源.北京:海洋出版社,1990.
    53.张其中,陈达丽.患小瓜虫病圆口铜鱼的组织病理学观察.西南师范大学学报:自然科学版,2005,30(6):1112-5.
    54.赵建华,杨德国,朱永久,陈建武.鱼类应激生物学研究与应用.生命科学,2011,23(4):394-401.
    55.赵海鹏.长吻鮠血液生理、生化指标和血流变特性初步研究[硕士].西南师范大学,重庆,2005.
    56.赵海鹏.长江中上游几种经济鱼类的血液学研究[博士]..西南大学生命科学学院,重庆,2008.
    57.赵刚,陈先均,周剑,谭德清.圆口铜鱼活鱼运输技术.科学养鱼,2007,(12):33.
    58.郑曙明.铜鱼和圆口铜鱼肌肉氨基酸的初步研究.四川畜牧兽医学院学报,1998,(Z1):23-5.
    59.郑曙明,吴青.铜鱼和圆口铜鱼耗氧率的研究.四川畜牧兽医学院学报,1998,(Z1):6-8.
    60.周玉,郭文场,杨振国,邹啸环,张凯,文兴豪,王铁东.欧洲鳗鲡外周血细胞的显微和超微结构.动物学报,2002,(03):393-401.
    61.周剑,陈先均.野生岩原鲤亲鱼驯养与培育.四川农业科技,2006,(09):30.
    62.周顺伍.动物生物化学(第三版).北京:中国农业出版社,2009.
    63.朱晏苹,曹振东,付世建.力竭性运动后瓦氏黄颡鱼幼鱼乳酸和血糖变化.重庆师范大学学报(自然科学版),2010.
    64. Acerete L, Balasch JC, Espinosa E, Josa A, Tort L. Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture, 2004, 237(1-4):167-78.
    65. Ackerman PA, Iwama GK. Physiological and cellular stress responses of juvenile rainbow trout to vibriosis. Journal of Aquatic Animal Health, 2001,13(2):173-80.
    66. Afonso J, Gines R, Montero D, Robaina L, Fernandez H, Izquierdo M. Selection programmes for stress tolerance in fish. Seminar of the CIHEAM Network on Technology of Aquaculture in the Mediterranean (TECAM). Zaragoza: CIHEAM-IAMZ,1997:235-45.
    67. Ard6 L, Yin G, Xu P, Vdradi L, Szigeti G, Jeney Z, Jeney G Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture, 2008, 275(1-4):26-33.
    68. Arends RJ, Mancera JM, Munoz JL, Wendelaar Bonga SE, Flik G The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. J Endocrinol,1999,163(1):149-57.
    69. Bahmani M, Kazemi R, Donskaya P. A comparative study of some hematological features in young reared sturgeons (Acipenser persicus and Huso huso). Fish Physiology and Biochemistry, 2001,24(2):135-40.
    70. Barcellos LJG, Kreutz LC, Quevedo RM. Previous chronic stress does not alter the cortisol response to an additional acute stressor in jundia (Rhamdia quelen, Quoy and Gaimard) fingerlings. Aquaculture, 2006, 253(1-4):317-21.
    71. Barcellos LJG, Kreutz LC, Quevedo RM, Fioreze I, Cericato L, Soso AB, Fagundes M, Conrad J, Baldissera RK, Bruschi A, Ritter F. Nursery rearing of jundia, Rhamdia quelen (Quoy & Gaimard) in cages:cage type, stocking density and stress response to confinement. Aquaculture, 2004, 232(1-4):383-94.
    72. Barton B. Stress in fishes:a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 2002, 42(3):517.
    73. Barton BA. Stress in fishes:A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 2002, 42(3):517-25.
    74. Barton BA, Ribas L, Acerete L, Tort L. Effects of chronic confinement on physiological responses of juvenile gilthead sea bream, Sparus aurata L., to acute handling. Aquaculture Research, 2005,36(2):172-9.
    75. Berka R. The transport of live fish: a review: Food and Agriculture Organization of the United Nations, 1986.
    76. Bolasina S. Cortisol and hematological response in Brazilian codling, Urophycis brasiliensis (Pisces, Phycidae) subjected to anesthetic treatment. Aquaculture International,2006,14(6):569-75.
    77. Brown C, Laland K, Krause J. Fish cognition and behavior. Oxford:Blackwell Pub, 2006.
    78. Chen D, Xiong F, Wang K, Chang Y. Status of research on Yangtze fish biology and fisheries. Environmental Biology of Fishes, 2009, 85(4):337-57.
    79. Chen RG, Lochmann R, Goodwin A, Praveen K, Dabrowski K, Lee KJ. Alternative complement activity and resistance to heat stress in golden shiners (Notemigonus crysoleucas) are increased by dietary vitamin C levels in excess of requirements for prevention of deficiency signs. Journal of Nutrition, 2003, 133(7): 2281-6.
    80. Clarkson K, Kieffer J, Currie S. Exhaustive exercise and the cellular stress response in rainbow trout. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2005,140(2):225-32.
    81. Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G. Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquaculture Research, 2004, 35(15):1434-40.
    82. Cooke SJ, Suski CD, Ostrand KG, Tufts BL, Wahl DH. Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture, 2004,239(1-4):509-29.
    83. Coz-Rakovac R, Strunjak-Perovic I, Hacmanjek M, Popovic NT, Lipej Z, Sostaric B. Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the North Adriatic Sea. Veterinary Research Communications,2005,29(8):677-87.
    84. Davison W. Training and its effects on teleost fish. Comparative Biochemistry and Physiology Part A:Physiology, 1989, 94(1):1-10.
    85. Davison W, Herbert N. Swimming-Enhanced Growth. Swimming Physiology of Fish,2012:177-202.
    86. Deane EE, Woo NYS. Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquatic Toxicology, 2006, 79(1):9-15.
    87. Deane EE, Woo NYS. Advances and perspectives on the regulation and expression of piscine heat shock proteins. Reviews in Fish Biology and Fisheries, 2011,21(2):153-85.
    88. Delaney MA, Klesius PH. Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus (L.). Aquaculture, 2004,236(1-4):633-44.
    89. Demers NE, Bayne CJ. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Developmental & Comparative Immunology, 1997, 21(4):363-73.
    90. Di Marco P, Priori A, Finoia MG, Massari A, Mandich A, Marino G. Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture, 2008,275(1-4):319-28.
    91. Ellis T, James J, Stewart C, Scott A. A non-invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology, 2004,65(5):1233-52.
    92. Ellis T, James J, Sundh H, Fridell F, Sundell K, Scott A. Non-invasive measurement of cortisol and melatonin in tanks stocked with seawater Atlantic salmon. Aquaculture,2007,272(1-4):698-706.
    93. Engelsma MY, Hougee S, Nap D, Hofenk M, Rombout JHWM, van Muiswinkel WB, Lidy Verburg-van Kemenade BM. Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L. Fish & Shellfish Immunology, 2003,15(5):397-410.
    94. Fagundes M, Urbinati EC. Stress in pintado (Pseudoplatystoma corruscans) during farming procedures. Aquaculture, 2008, 276(1-4):112-9.
    95. Fast MD, Hosoya S, Johnson SC, Afonso LOB. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short-and long-term stress. Fish & Shellfish Immunology, 2008,24(2):194-204.
    96. Feng G, Zhuang P, Zhang L, Kynard B, Shi X, Duan M, Liu J, Huang X. Effect of anaesthetics MS-222 and clove oil on blood biochemical parameters of juvenile Siberian sturgeon (Acipenser baerii). Journal of Applied Ichthyology, 2011, 27(2):595-9.
    97. Forsyth R, Candido E, Babich S, Iwama G Stress protein expression in coho salmon with bacterial kidney disease. Journal of Aquatic Animal Health, 1997, 9(1):18-25.
    98. Frisch A, Anderson T. The response of coral trout (Plectropomus leopardus) to capture, handling and transport and shallow water stress. Fish Physiology and Biochemistry, 2000, 23(1):23-34.
    99. Gabryelak T, Zalesna G, Roche H, Peres G. The effect of MS 222 an anaesthetic on the peroxide metabolism enzymes in erythrocytes of freshwater and marine fish species. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1989,92(1):5-8.
    100. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. Journal of Clinical Investigation, 1989, 83(5):1774.
    101. Golombieski JI, Silva LVF, Baldisserotto B, da Silva JHS. Transport of silver catfish (Rhamdia quelen) fingerlings at different times, load densities, and temperatures. Aquaculture, 2003,216(1-4):95-102.
    102. Guerriero G, Di Finizio A, Ciarcia G. Stress-induced changes of plasma antioxidants in aquacultured sea bass, Dicentrarchus labrax. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology, 2002, 132(1):205-11.
    103. Gul Y, Gao ZX, Qian XQ, Wang WM. Haematological and serum biochemical characterization and comparison of wild and cultured northern snakehead (Channa argus Cantor,1842). Journal of Applied Ichthyology, 2011,27(1):122-8.
    104. Gwak W. Effects of shelter on growth and survival in age-0 black sea bass, Centropristis striata (L.). Aquaculture Research, 2003,34(15):1387-90.
    105. Harmon TS. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks:a review of the basics. Reviews in Aquaculture, 2009, 1(1):58-66.
    106. Hoffnagle TL, Carmichael RW, Keniry PJ. The effect of moderately increased and variable raceway flow rates on juvenile physiology, survival, and adult return of hatchery-reared Chinook salmon. Transactions of the American Fisheries Society, 2006, 135(6):1567-77.
    107. Hosoya S, Johnson SC, Iwama GK, Gamperl AK, Afonso LOB. Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology, 2007, 146(1):78-86.
    108. Hovda J, Linley TJ. The potential application of hypothermia for anesthesia in adult Pacific Salmon. North American Journal of Aquaculture, 2000, 62(1):67-72.
    109. Hrubec TC, Cardinale JL, Smith SA. Hematology and Plasma Chemistry Reference Intervals for Cultured Tilapia (Oreochromis Hybrid). Veterinary Clinical Pathology, 2000, 29(1):7-12.
    110. Huntingford F, Adams C. Behavioural syndromes in farmed fish: implications for production and welfare. Behaviour, 2005,9(10):1207-21.
    111. Iversen M, Finstad B, Nilssen KJ. Recovery from loading and transport stress in Atlantic salmon (Salmo salar L.) smolts. Aquaculture, 1998, 168(1-4):387-94.
    112. Iwama G, Afonso L, Vijayan M. Stress in fish. Annals-New York Academy of Sciences,1998,851:304-10.
    113. Iwama G, Afonso L, Vijayan M. Stress in fish. Annals-New York Academy of Sciences,2004,851:304-10.
    114. Iwama G, Vijayan M, Forsyth R, Ackerman P. Heat shock proteins and physiological stress in fish. Integrative and Comparative Biology, 1999,39(6):901.
    115. Iwama G, Afonso L, Todgham A, Ackerman P, Nakano K. Are hsps suitable for indicating stressed states in fish? Journal of Experimental Biology, 2004,207(1):15.
    116. Jayakumar J, Suzuki K, Sammut I A, Smolenski RT, Khan M, Latif N, Abunasra H, Murtuza B, Amrani M, Yacoub MH. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury. Circulation, 2001,104(suppl 1):I-303-I-7.
    117. Kagawa N, Ryo K, Mugiya Y. Enhanced expression of stress protein 70 in the brains of goldfish, Carassius auratus, reared with bluegills, Lepomis macrochirus. Fish Physiology and Biochemistry, 1999, 21(2):103-10.
    118. Kittilsen S, Ellis T, Schjolden J, Braastad BO, Overli O. Determining stress-responsiveness in family groups of Atlantic salmon (Salmo salar) using non-invasive measures. Aquaculture, 2009, 298(1-2):146-52.
    119. Knowles S, Hrubec TC, Smith SA, Bakal RS. Hematology and plasma chemistry reference intervals for cultured shortnose sturgeon (Acipenser brevirostrum). Veterinary Clinical Pathology, 2006, 35(4):434-40.
    120. Lays N, Iversen MMT, Frantzen M, Jorgensen EH. Physiological stress responses in spotted wolffish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture, 2009, 295(1-2):126-33.
    121. Li D. Liu Z, Xie C. Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Fish Physiology and Biochemistry, 2011.
    122. Lin H, Li Z, Chen Y, Zheng W, Yang K. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253(1-4):495-501.
    123. Locke M. The cellular stress response to exercise: role of stress proteins. Exercise and sport sciences reviews, 1997, 25:105.
    124. Lupatsch I, Santos GA, Schrama JW, Verreth JAJ. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax. Aquaculture, 2010, 298(3-4).
    125. Lynne U S. Clinical Anesthesia and Analgesia in Fish. Journal of Exotic Pet Medicine,2012,21(1):32-43.
    126. Manera M, Britti D. Assessment of blood chemistry normal ranges in rainbow trout. Journal of Fish Biology, 2006, 69(5):1427-34.
    127. McArdle A, Jackson M. Stress proteins and exercise-induced muscle damage. Exercise and Stress Response:The Role of Stress Proteins, 2002, 6:137.
    128. McKenzie D, Hoglund E, Dupont-Prinet A, Larsen B, Skov P, Pedersen P, Jokumsen A. Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture, 2012, 338-341:216-22.
    129. Misra S, Behera S. Evaluation of toxic effects of mercuric chloride on hematological parameters of a freshwater fish Channa punctatus(Bloch). Environment and ecology. Kalyani, 1992, 10(2):394-6.
    130. Moberg G, Mench J. The biology of animal stress:basic principles and implications for animal welfare. New York: CABI, 2000.
    131. Molinero A, Gonzalez J. Comparative effects of MS 222 and 2-phenoxyethanol on gilthead sea bream (Sparus aurata L.) during confinement. Comparative Biochemistry and Physiology Part A: Physiology, 1995, 111(3):405-14.
    132. Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts:dynamics, mechanisms of action, and metabolic regulation Reviews in Fish Biology and Fisheries 1999,9(3):211-68.
    133.Montero D,Marero M,Izquierdo MS,Robaina L. Effect of vitamin E and Cdietary supplementation on some immune parameters of gilthead seabream Sparus aurata/juveniles subjected to crowding stress. Aquaculture, 1999, 171(3-4):269-78.
    134. Montero D, Izquierdo M, Tort L, Robaina L, Vergara J. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiology and Biochemistry, 1999, 20(1):53-60.
    135. Morales AE, Perez-Jimenez A, Carmen Hidalgo M, Abellan E, Cardenete G Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2004, 139(1-3):153-61.
    136. Murray MJ. Fish surgery. Seminars in Avian and Exotic Pet Medicine, 2002,11(4):246-57.
    137. Newberry RC. Environmental enrichment: Increasing the biological relevance of captive environments. Applied Animal Behaviour Science, 1995, 44(2-4):229-43.
    138. Ortuno J, Esteban M, Meseguer J. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response. Fish & Shellfish Immunology, 2001,11(2):187-97.
    139. Overli O, Sorensen C, Nilsson GE. Behavioral indicators of stress-coping style in rainbow trout: Do males and females react differently to novelty? Physiology & Behavior, 2006,87(3):506-12.
    140. Overli O, Serensen C, Kiessling A, Pottinger TG, Gjoen HM. Selection for improved stress tolerance in rainbow trout (Oncorhynchus mykiss) leads to reduced feed waste. Aquaculture, 2006, 261(2):776-81.
    141. Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S. Biomarkers of oxidative stress:a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). The Science of the Total Environment, 2003, 309(1-3):105-15.
    142. Papoutsoglou S, Mylonakis G, Miliou H, Karakatsouli N, Chadio S. Effects of background color on growth performances and physiological responses of scaled carp (Cyprinus carpio L.) reared in a closed circulated system. Aquacultural Engineering, 2000, 22(4):309-18.
    143. Pawar HB, Sanaye SV, Sreepada RA, Harish V, Suryavanshi U, Tanu, Ansari ZA. Comparative efficacy of four anaesthetic agents in the yellow seahorse, Hippocampus kuda (Bleeker, 1852). Aquaculture, 2011,311(1 - 4):155-61.
    144. Percin F, Konyalioglu S. Serum biochemical profiles of captive and wild northern bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean. Aquaculture Research, 2008, 39(9):945-53.
    145. Pickering A, Stewart A. Acclimation of the interrenal tissue of the brown trout, Salmo trutta L., to chronic crowding stress. Journal of Fish Biology, 1984, 24(6):731-40.
    146. Pirhonen J, Schreck C. Effects of anaesthesia with MS-222, clove oil and CO2 on feed intake and plasma cortisol in steelhead trout (Oncorhynchus mykiss). Aquaculture, 2003,220(1-4):507-14.
    147. Polla B, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proceedings of the National Academy of Sciences, 1996,93(13):6458-63.
    148. Portz D, Woodley C, Cech J. Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology and Fisheries, 2006, 16(2):125-70.
    149. Pottinger TG. Changes in blood cortisol, glucose and lactate in carp retained in anglers'keepnets. Journal of Fish Biology, 1998,53(4):728-42.
    150. Pottinger TG, Yeomans WE, Carrick TR. Plasma cortisol and 17β-oestradiol levels in roach exposed to acute and chronic stress. Journal of Fish Biology, 1999, 54(3):525-32.
    151. Pottinger TG, Carrick TR, Appleby A, Yeomans WE. High Blood Cortisol Levels and Low Cortisol Receptor Affinity: Is the Chub, Leuciscus cephalus, a Cortisol-Resistant Teleost? General and Comparative Endocrinology, 2000, 120(1):108-17.
    152. Pramod PK, Ramachandran A, Sajeevan TP, Thampy S, Pai SS. Comparative efficacy of MS-222 and benzocaine as anaesthetics under simulated transport conditions of a tropical ornamental fish Puntius filamentosus (Valenciennes). Aquaculture Research, 2010, 41(2):309-14.
    153. Pratt W. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. Journal of Biological Chemistry, 1993, 268:21455-.
    154. Prieto AI, Pichardo S, Jos A, Moreno I, Camedn AM. Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquatic Toxicology, 2007, 84(3):337-45.
    155. Rehulka J, Minarik B. Blood parameters in brook trout Salvelinus fontinalis (Mitchill, 1815), affected by columnaris disease. Aquaculture Research, 2007, 38(11):1182-97.
    156. Rodman DT. Anesthetizing and air-transporting young white sturgeons. The Progressive Fish-Culturist, 1963,25(2):71-8.
    157. Ross LG, Sanchez Blanco J, Martinez - Palacios C, Racotta IS, Toledo Cuevas M. Anaesthesia, sedation and transportation of juvenile Menidia estor (Jordan) using benzocaine and hypothermia. Aquaculture Research, 2007, 38(9):909-17.
    158. Roubach R, Gomes LC, Chippari-Gomes AR, Oliveira AM, Saraiva NA, Val AL. Induction and recovery from anesthesia in juveniles of matrinxa, Brycon cephalus, exposed to tricaine methane sulfonate (MS-222). Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2000, 126, Supplement 1(0):S82.
    159. Ruiz-Gomez MdL, Kittilsen S, Hoglund E, Huntingford FA, Sorensen C, Pottinger TG, Bakken M, Winberg S, Korzan WJ, Overli O. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles:When doves become hawks. Hormones and Behavior,2008,54(4):534-8.
    160. Sala-Rabanal M, Sanchez J, Ibarz A, Fernandez-Borras J, Blasco J, Gallardo M. Effects of low temperatures and fasting on hematology and plasma composition of gilthead sea bream (Sparus aurata). Fish Physiology and Biochemistry, 2003, 29(2):105-15.
    161. Salonius K, Iwama GK. Effects of early rearing environment on stress response, immune function, and disease resistance in juvenile coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences,1993,50(4):759-66.
    162. Sandodden R, Finstad B, Iversen M. Transport stress in Atlantic salmon (Salmo salar L.):anaesthesia and recovery. Aquaculture Research, 2001,32(2):87-90.
    163. Shimeno S, Shikata T, Hosokawa H, Masumoto T, Kheyyali D. Metabolic response to feeding rates in common carp, Cyprinus carpio. Aquaculture, 1997, 151(1-4):371-7.
    164. Sink TD, Neal JW. Stress Response and Posttransport Survival of Hybrid Striped Bass Transported with or without Clove Oil. North American Journal of Aquaculture, 2009,71(3):267-75.
    165. Smit GL, Hattingh J. Anaesthetic potency of MS-222 and neutralized MS-222 as studied in three freshwater fish species. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1979,62(2):237-41.
    166. Spieler RE, Noeske TA. Effects of photoperiod and feeding schedule on diel variations of locomotor activity, cortisol, and thyroxine in goldfish. Transactions of the American Fisheries Society, 1984,113(4):528-39.
    167. Sumpter JP, Pickering AD, Pottinger TG. Stress-induced elevation of plasma alpha-MSH and endorphin in brown trout, Salmo trutta L. Gen Comp Endocrinol, 1985,59(2):257-65.
    168. Svobodova Z, Vykusovd B, Modra H, Jarkovsky J, Smutna M. Haematological and biochemical profile of harvest-size carp during harvest and post-harvest storage. Aquaculture Research, 2006,37(10):959-65.
    169. Tavares-Dias M, Moraes FR. Haematological and biochemical reference intervals for farmed channel catfish. Journal of Fish Biology, 2007, 71:383-8.
    170. Taylor JF, Needham MP, North BP, Morgan A, Thompson K, Migaud H. The influence of ploidy on saltwater adaptation, acute stress response and immune function following seawater transfer in non-smolting rainbow trout. General and Comparative Endocrinology, 2007, 152(2-3):314-25.
    171. Terova G, Gornati R, Rimoldi S, Bernardini G, Saroglia M. Quantification of a glucocorticoid receptor in sea bass (Dicentrarchus labrax, L.) reared at high stocking density. Gene, 2005,357(2): 144-51.
    172. Turnbull J, Bell A, Adams C, Bron J, Huntingford F. Stocking density and welfare of cage farmed Atlantic salmon:application of a multivariate analysis. Aquaculture, 2005,243(1-4):121-32.
    173. Van Der Boon J, Van Den Thillart GE, Addink ADF. The effects of cortisol administration on intermediary metabolism in teleost fish. Comparative Biochemistry and Physiology Part A:Physiology, 1991,100(1):47-53.
    174. Van Dijk PLM, Van den Thillart GEEJM, Bonga SEW. Is there a synergistic effect between steady-state exercise and water acidification in carp? Journal of Fish Biology, 1993,42(5):673-81.
    175. Van Ham EH, Van Anholt RD, Kruitwagen G, Imsland AK, Foss A, Sveinsbo BO, FitzGerald R, Parpoura AC, Stefansson SO, Wendelaar Bonga SE. Environment affects stress in exercised turbot. Comparative Biochemistry and Physiology - Part A:Molecular & Integrative Physiology, 2003, 136(3):525-38.
    176. Van Raaij M, Pit D, Balm P, Steffens A, van den Thillart G. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Hormones and Behavior, 1996, 30(1):85-92.
    177. Varsamos S, Flik G, Pepin JF, Bonga SEW, Breuil G. Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, Dicentrarchus labrax. Fish & Shellfish Immunology, 2006, 20(1):83-96.
    178. Verbeek P, Iwamoto T, Murakami N. Variable stress-responsiveness in wild type and domesticated fighting fish. Physiology & Behavior, 2008, 93(1-2):83-8.
    179. Verburg-van Kemenade B, Nowak B, Engelsma M, Weyts F. Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish & Shellfish Immunology, 1999, 9(5):405-15.
    180. Vijayan M, Pereira C, Kruzynski G, Iwama G. Sublethal concentrations of contaminant induce the expression of hepatic heat shock protein 70 in two salmonids. Aquatic Toxicology, 1998, 40(2-3):101-8.
    181. Vijayan MM, Pereira C, Forsyth RB, Kennedy CJ, Iwama GK. Handling stress does not affect the expression of hepatic heat shock protein 70 and conjugation enzymes in rainbow trout treated with [beta]-naphthoflavone. Life Sciences, 1997, 61(2):117-27.
    182. Volpato G Challenges in assessing fish welfare. ILAR J, 2009, 50(4):329-37.
    183. Wang Y, Xu J, Sheng L, Zheng Y. Field and laboratory investigations of the thermal influence on tissue-specific Hsp70 levels in common carp (Cyprinus carpio). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2007, 148(4):821-7.
    184. Washburn B, Moreland J, Slaughter A, Werner I, Hinton D, Sanders B. Effects of handling on heat shock protein expression in rainbow trout (Oncorhynchus mykiss). Environmental toxicology and chemistry, 2002, 21(3):557-60.
    185. Weber RA, Peleteiro JB, Martin LOG, Aldegunde M. The efficacy of 2-phenoxyethanol, metomidate, clove oil and MS-222 as anaesthetic agents in the Senegalese sole (Solea senegalensis Kaup 1858). Aquaculture, 2009, 288(1-2):147-50.
    186. Weber RA, Perez-Maceira JJ, Peleteiro JB, Garcia-Martin L, Aldegunde M. Effects of acute exposure to 2-phenoxyethanol, clove oil, MS-222, and metomidate on primary and secondary stress responses in Senegalese sole (Solea senegalensis Kaup 1858). Aquaculture, 2011,321(1 - 2):108-12.
    187. Wedemeyer GA. Physiology of fish in intensive culture systems: Springer, 1996.
    188. Wendelaar Bonga SE. The stress response in fish. Physiol Rev, 1997, 77(3):591-625.
    189. Wunderink YS, Engels S, Halm S, Yufera M, Martinez-Rodriguez G, Flik G, Klaren PHM, Mancera JM. Chronic and acute stress responses in Senegalese sole (Solea senegalensis):The involvement of cortisol, CRH and CRH-BP. General and Comparative Endocrinology, 2011,171(2):203-10.
    190. Y. Fujimaki, M. Isoda. Fine-structural study of leucocytes in the goldfish, Carassius auratus[J]. J. Fish Biol.,1990,36:821-831.
    191. Yin G, Ardo L, Thompson K, Adams A, Jeney Z, Jeney G. Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp, Cyprinus carpio, and protection against Aeromonas hydrophila. Fish & Shellfish Immunology, 2009, 26(1):140-5.
    192. Yonemori Y, Takahashi E, Ren H, Hayashi T, Endo H. Biosensor system for continuous glucose monitoring in fish. Analytica Chimica Acta, 2009, 633(1):90-6.
    193. Yoshikawa H, Ueno S, Mitsuda H. Short-and long-term cold-anesthesia in carp. Bulletin of the Japanese Society of Scientific Fisheries, 1989, 55.
    194. Zahl IH, Kiessling A, Samuelsen OB, Hansen MK. Anaesthesia of Atlantic cod (Gadus morhua) - Effect of pre-anaesthetic sedation, and importance of body weight, temperature and stress. Aquaculture, 2009, 295(1-2):52-9.
    195. Zahl IH, Kiessling A, Samuelsen OB, Hansen MK. Anaesthesia of Atlantic halibut (Hippoglossus hippoglossus) Effect of pre-anaesthetic sedation, and importance of body weight and water temperature. Aquaculture Research, 2011, 42(9):1235-45.
    196. Zarate J, Bradley TM. Heat shock proteins are not sensitive indicators of hatchery stress in salmon. Aquaculture, 2003,223(1-4):175-87.
    197. Zhang H, Xie C, Li D, Xiong D, Liu H, Suolang S, Shang P. Haematological and blood biochemical characteristics of Glyptosternum maculatum (Siluriformes: Sisoridae) in Xizang (Tibet). Fish Physiology and Biochemistry, 2009, 36(3):797-801.
    198. Zhao J, Zhu Y, Yang D, Chen J, He Y, Li X, Feng X, Xiong B. Cage-cultured Largemouth Bronze Gudgeon, Coreius guichenoti:Biochemical Profile of Plasma and Physiological Response to Acute Handling Stress. Journal of the World Aquaculture Society, 2013,44(5):628-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700