奶牛耐热性状候选基因的遗传特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究目的在于揭示与奶牛耐热性状相关候选基因的分子遗传机理,为标记辅助选择耐热性奶牛新品系提供基础资料。通过研究不同季节条件下奶牛部分生理指标、生化指标及产奶性状指标的变化规律;利用实时荧光定量PcR分析奶牛外周血淋巴细胞HSP70、ATP1A1、SOD3和GPX3基因mRNA表达水平与耐热指标的相关性,确定奶牛耐热性状的候选基因;选择牛遗传图谱上分别与耐热性状相关候选基因及影响产奶量和乳组成QTL连锁的7个微卫星标记,分析在奶牛样本群体的遗传参数,并运用最小二乘拟合一般线性模型与奶牛的耐热指标进行关联分析;采用PCR-LIS-SSCP和DNA测序技术检测奶牛耐热性状候选基因ATP1A1基因的SNPs,并研究了其多态性和奶牛耐热性状的关系。结果如下:
     1热应激对奶牛部分生理生化指标及产奶性状的影响
     为了研究不同季节条件下奶牛的部分生理指标、血液无机离子含量、红细胞膜Na+,K+一ATP酶活性、血液抗氧化指标和产奶性状的变化规律,选择3-5胎次的80头健康荷斯坦奶牛,根据夏季直肠温度和产奶量下降率两个指标分为耐热组(直肠温度在37.5-39.5℃之间,产奶量下降率<10%)和非耐热组(直肠温度>39.5℃,产奶量下降率>40%),分别于夏季8月份(牛舍日平均气温为32.5℃,THI为84.16)和同年秋季11月份(牛舍日平均气温为12.5℃,THI为56.80)条件下,测定直肠温度、耐热系数、呼吸频率、血液无机离子含量、血清SOD酶活、血清GSH-px酶活、血清MDA含量、红细胞膜Na+,K+-ATP酶活性及产奶性状等指标,结果表明:热应激对奶牛的部分生理、生化指标及产奶性状影响程度很大,导致直肠温度升高,呼吸频率增加,血清Na+和红细胞钾含量下降,红细胞膜Na+,K+-ATP酶活性下降,抗氧化能力受到损伤,产奶量下降和体细胞评分增高等,其中,直肠温度、耐热系数、红细胞钾含量、红细胞膜Na+,K+-ATP酶活、血清SOD酶活、血清GSH-px酶活、日产奶量在夏季耐热组与非耐热组间差异显著(P<0.05),表明其与奶牛耐热性关系密切,可以作为选育耐热性奶牛新品系和监测热应激程度的参考指标。
     2奶牛HSP70、ATP1A1、SOD3和GPX3基因mRNA表达水平与耐热性关系的研究
     为了研究奶牛HSP70、ATP1A1、SOD3和GPX3基因mRNA表达水平与耐热性的相关性,确定奶牛耐热性状的候选基因,为揭示奶牛耐热性状分子遗传机理提供参考。选取16头3胎次的高产健康荷斯坦奶牛,分为耐热组和非耐热组,分别于夏季8月份(牛舍日平均气温为32.5℃,THI为84.16)和同年秋季11月份(牛舍日平均气温为12.5℃,THI为56.80)条件下,采集奶牛尾静脉血液,并测定夏季直肠温度、产奶量下降率和红细胞钾含量作为耐热指标;应用RT-PCR和实时荧光定量RT-PCR技术分析不同温度条件和不同组别奶牛外周血淋巴细胞HSP70、ATP1A1、SOD3和GPX3基因mRNA表达水平的差异及其与奶牛耐热性状的关系。结果表明:与秋季相比,夏季奶牛HSP70、ATP1A1和GP.X3的]mRNA表达水平极显著上升(P<0.01), SOD3mRNA表达水平显著提高(P<0.05);夏季高温期间,耐热组的ATP1A1和SO1D3基因的mRNA表达水平极显著高于非耐热组(P<0.01),GPX3 mRNA表达水平显著高于非耐热组(P<0.05),而HSP70mRNA表达水平在二组别间差异不显著(P>0.05)。相关分析表明奶牛外周血淋巴细胞四个基因mRNA表达水平与部分耐热指标呈显著相关(P<0.05)。因此,可以得出HSP70、ATP1A1、SOD3和GPX3参与了热应激过程中分子水平上的表达调控,可能对奶牛耐热性起作用,可作为影响奶牛耐热性状的候选基因进一步研究。
     3奶牛微卫星标记与耐热性状的相关分析
     为了探讨微卫星DNA作为奶牛耐热性状遗传标记的可行性。根据牛基因组遗传图谱,选择奶牛不同染色体上分别与HSP70、ATP1A1、SOD、GPX3基因和影响产奶量和乳组成的QTL连锁的微卫星座位BMS468.BM1258、BM1815、BM723、SOD1. BMS2258和D14S31,对160头3-5胎次中国荷斯坦奶牛进行多态性检测,采用最小二乘拟合一般线性模型分析微卫星座位与耐热性状部分指标之间的关联效应。结果表明:所选7个微卫星座位在该奶牛群体中均表现出丰富的遗传多态性,多态信息含量、遗传杂合度和有效等位基因数的平均值分别为0.64089、0.6866和3.2789。微卫星座位BMS468与耐热系数、产奶量下降率和红细胞钾含量显著相关的最有利基因型为134bp/128bp(P<0.05),与红细胞膜Na+,K+-ATP酶活显著相关的最有利基因型为140bp/134bp(P<0.05);微卫星座位BM1258与产奶量下降率显著相关,最有利基因型为101bp/99bp(P<0.05);微卫星座位BM1815与耐热系数、红细胞钾含量和红细胞膜Na+,K+-ATP酶活显著相关,最有利基因型为186 bp /148 bp(P<0.05);微卫星座位BM723与产奶量下降率、红细胞膜Na+,K+-ATP酶活和红细胞钾含量显著相关,最有利基因型为161 bp/111 bp(P<0.05);微卫星座位BMS2258与产奶量下降率和血清GSH-px酶活显著相关,最有利基因型为182 bp/164 bp(P<0.05);微卫星座位SOD1与耐热系数和产奶量下降率显著相关,最有利基因型为148 bp/148 bp(P<0.05),与血清SOD酶活显著相关的最有利基因型为148 bp/146 bp(P<0.05);微卫星座位D14S31与产奶量下降率显著相关,最有利基因型为176 bp/152 bp(P<0.05).本研究发现了对奶牛耐热性状有显著效应、多态性较高的微卫星基因座,为开展奶牛耐热性的标记辅助选择提供了有价值的遗传标记。
     4 ATP1A1基因多态性及其与奶牛耐热性状的关联分析
     为了研究ATP1A1基因多态性及其与奶牛耐热性状的相关性,寻找影响奶牛耐热性状的QTL,为分子标记辅助选择奶牛耐热性新品系提供相应依据。以160头3-5胎次的健康高产中国荷斯坦奶牛为实验材料,采取PCR-LIS-SSCP和DNA测序等方法进行多态位点检测及基因型分析,研究单个多态位点基因型及不同多态位点的合并基因型与奶牛耐热性状的关系。结果表明,与GenBank ATP1A1基因(NC 007301.3)序列比较,ATP1A1基因外显子5、14和17各发现一个沉默SNP突变,分别为-4357bp处A/G、-14103bp处G/A和-15739 bp处C/A;内含子5发现1个SNP,为-4397bp处T/G;内含子14发现3个SNP,分别为-14242bp处C/T、-14829处T/-和-14997处G/A,统计分析表明4个多态位点的不同基因型个体间的耐热系数、产奶量下降率、红细胞钾含量和红细胞膜Na+,K+-ATP酶活性存在显著差异;在P5和P17位点,AA基因型为各自位点上的耐热性状最有利基因型,在P14和P15位点,AC基因型为各自位点上的耐热性状最有利基因型。合并基因型与耐热性状的关联分析表明,最佳合并基因型AAACACAA是4个多态位点上单个最优基因型的组合,但高于最好的单个基因型效应。本研究表明ATP1A1基因4个多态位点附近可能存在影响奶牛耐热性状的QTL,ATP1A1基因可能是影响奶牛耐热性状的重要基因之一
This study is aimed to investigate the molecular genetic mechanisms of candidate genes for heat tolerance traits in Chinese Holstein dairy cattle for accumulating basis to breed heat tolerance cows in China. In this paper, several physiological, biochemical and milk productivity parameters of dairy cows at different seasons were analyzed. The mRNA levels of HSP70, ATP1A1, SOD3 and GPX3 gene in lymphocytes of peripheral blood in dairy cows among various temperature groups and genotypes were studied by using real-time RT-PCR. and the correlation of these genes mRNA level with the heat tolerance traits was analysed. Genetic variation of seven microsatellite loci, which were closely linkaged with HSP70, ATP1A1, SOD. GPX3genes and QTL of major effect on milk yield and composition were analyzed in the dairy cows, relationships of the seven microsatellite loci with heat tolerance traits were also studied by least squares linear model. PCR Low Ionic Strength single-strand conformation polymorphism (PCR-LIS-SSCP) and DNA sequencing methods were used to analyze the polymorphisms within the coding region of bovine ATP1A1 gene, also, the association of the genetic polymorphisms of ATP1A1 gene with heat tolerance traits was studied, results as follows:
     1 Effect of heat stress on several physiological, biochemical and milk productivity parameters in dairy cows
     The study is aimed to compare several physiological indicators, the concentrations of inorganic ions in blood, Na+,K+-ATPase activity of erythrocyte membrane, anti-oxidative capability, and milk productivities in different seasons in dairy cows. Eighty Chinese Holstein cows were selected and divided into two groups according to rectal temperature (RT) and drop rate of milk yield (DRMY) in summer as compared with the milk yield in spring, the heat tolerance groups (RT in the range of 37.5℃to 39.5℃. DRMY<10%) and heat stress groups (RT> 39.5℃, DRMY> 40%) were classfied. These animals were subjected to a high temperature in August of summer (daily mean temperature 32.5℃temperature-humidity index (THI)=84.16) and a optimal temperature in November of autumn (daily mean temperature 12.5℃, THI=54.80), the indicators of RT. heat tolerance coefficient (HTC). respiratory rate (RR). the activity of superoxide dismutase(SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) content in plasma. plasma Na+,K+, Cl-,red blood cell potassium. Na+,K+-ATPase activity of erythrocyte membrane were determined. Results showed that the RT. RR and MDA content of dairy cows in summer were significantly higher than those in autumn (P<0.05), the activity of SOD. GSH-px in plasma and Na+,K+-ATPase activity of erythrocyte membrane, plasma Na+, red blood cell potassium, milk yields and were significantly lower than those in autumn (P<0.05), in addition, RT, HTC, red blood cell potassium. Na+,K+-ATPase activity of erythrocyte membrane, and the activity of SOD, GSH-Px in plasma were significantly differ from heat tolerance groups and heat stress groups in summer (P<0.05). Results indicated that RT, HTC. red blood cell potassium, Na+,K+-ATPase activity of erythrocyte membrane, and the activity of SOD, GSH-Px in plasma showed close relationships with heat tolerance traits, those indexes can be used as indicators of heat stress of dairy cows and for anti-heat stress traits in dairy cattle breeding.
     2 Relationships between the HSP70, ATP1A1, SOD3 and GPX3 gene expression and heat tolerance traits in dairy cows
     The present study was performed to investigate the relationships between the mRNA level of HSP70. ATP1A1. SOD3 and GPX3 gene in lymphocytes of peripheral blood and heat tolerance traits in dairy cows, so as to provide references for finding heat tolerance candidate gene and understanding the molecular genetic mechanism of heat tolerance in Chinese Holstein dairy cows. Sixteen healthy and high milk yields dairy cows, classified as the heat tolerance group (T) or heat stress group(S), were sacrificed for blood sampling at a high temperature in August of summer (daily mean temperature 32.5℃temperature-humidity index (THI)=84.16) and a optimal temperature in November of autumn(daily mean temperature 12.5℃, THI=54.80), and the heat tolerance traits such as heat tolerance coefficient (HTC). drop rate of milk yield in summer and red blood cell potassium were measured. The mRNA expression levels of HSP70. ATP1A1, SOD3 and GPX3 genes in lymphocytes of peripheral blood among various temperature groups and groups were analyzed were investigated by RT-PCR and real-time RT-PCR. Results showed that the HSP70. ATP1A1 and GPX3 mRNA level at temperature 32.5℃was higher than that at optimal temperature 12.5℃in dairy cows (P<0.01). the SOD3 mRNA level at temperature 32.5℃was higher than that at optimal temperature 12.5℃(P<0.05). In summer, the expression level of ATP1A1 and SOD3 mRNA in heat tolerance goup was higher than that in heat stress group (P<0.01), and the expression level of GPX3 mRNA was higher than that in heat stress group (P<0.05), but there was no significant difference of HSP70 mRNA expression level in two groups (P>0.05). Bivariate correlation analysis showed that HSP70, ATP1A1, SODS and GPX3 gene mRNA expression in lymphocytes of peripheral blood were correlated with several indicators of heat tolerance traits in dairy cows (P<0.05). It suggested that HSP70, ATP1A1, SOD3 and GPX3 gene might play a key role in anti-heat stress and might be candidate genes for heat tolerance traits in dairy cows.
     3 Correlation analysis between microsatellite loci and heat tolerance traits in Chinese Holstein dairy cows
     The aim of the present work was to research whether the microsatellite DNA could improve heat tolerance traits of dairy cows as the genetic marker. According to genetic map of cattle,7 dairy cattle microsatellite loci (BMS468, BM1258, BM1815, SOD1, BM723, BMS2258 and D14S31) closely linkaged with HSP70, ATP1A1, SOD, GPX3 gene and QTL of major effect on milk yield and composition in different chromosome were detected in 160 Chinese Holstein dairy cows of 3-5 parity. The genetic analysis and correlation analysis between microsatellite markers and heat tolerance traits were calculated. The genetic analysis showed that 7 microsatellite loci had a rich diversity in Chinese Holstein dairy cows. The mean values of the PIC, He, and Ne were 0.64089,0.6866 and 3.2789, respectively. Least square analysis evidenced that BMS468 had a significant effect on the heat tolerance coefficient (HTC), drop rate of milk yield in summer and red blood cell potassium (P<0.05), and 134 bp/128 bp were the favorable genotypes for respectively, BMS468 also had a significant effect on the Na+,K+-ATPase activity of erythrocyte membrane(P<0.05), and the 140 bp/134 bp were the favorable genotypes. BM1258 had a significant effect on drop rate of milk yield in summer (P<0.05), and the genotype 101 bp /100 bp was the most favorable genotype. BM1815 had a significant effect on the HTC, red blood cell potassium and Na+,K+-ATPase activity of erythrocyte membrane (P<0.05). and the genotypes 186 bp/148 bp were the favorable genotypes, respectively (P<0.05). BM723 had a significant effect on the drop rate of milk yield in summer, Na+,K+-ATPase activity of erythrocyte membrane and red blood cell potassium(P<0.05), and the genotypes 161 bp/111 bp was the most favorable genotypes, respectively. BMS2258 had a significant effect on drop rate of milk yield in summer and GSH-px activity in plasma (P<0.05), and the genotype 182 bp/164 bp was the most favorable genotype, respectively. SOD1 had a significant effect on the HTC and drop rate of milk yield in summer and SOD activity in plasma (P<0.05), and the genotypes 148 bp/148 bp was the most favorable genotypes, respectively. SOD1 also had a significant effect on the SOD activity in plasma (P<0.05), and the 148 bp 1146 bp were the favorable genotypes. D14S31 had a significant effect on drop rate of milk yield in summer (P<0.05), and the genotype 176 bp/152 bp was the most favorable genotype. It indicated that the 7 microsatellite loci with a rich diversity and have a significant effect on heat tolerance traits in dairy cows, and it can provided valuable genetic markers for marker-assisted selection of dairy cattle.
     4 Genetic polymorphisms of bovine A TP1A1 gene and its association with heat tolerance traits in dairy cows
     The bovine ATP1A1 gene polymorphisms were detected, and its association with heat tolerance traits were analyzed in order to find the quantitative trait locus (QTL) which providing a basis for molecular marker-assisted selection in dairy cattle breeding. PCR Low Ionic Strength single-strand conformation polymorphism (PCR-LIS-SSCP) and DNA sequencing methods were used to analyze the polymorphisms within the coding region of bovine ATP1A1 gene. According to NC_007301.3, seven novel SNPs were identified, the A/G SNP at -4357bp was in exon 5; the G/A SNPs at -14103bp was in exon 14 and C/A SNP at -15739bp was in exon 17 of ATP1A1 gene, but all of them caused no amino acids exchange, the T/G SNP at -4397bp was in intron 5, the C/T at -14242 bp, the T/-SNP at-14829 and the G/A SNP at -14997bp were in intron 14 of ATP1A1 gene, respectively. The association of the ATP1A1 gene polymorphisms with heat tolerance traits was studied, we found that the individuals with genotype AA at P5 and P17 loci showed significantly higher heat resistance than those of other genotype (P<0.05), and the most favorable genotype for heat tolerance traits was AC at P14 and P15 loci. Further, the association of the combined genotypes (haplotypes) of the four polymorphism loci of ATP1A1 gene with heat tolerance traits shows that most favorable haplotype was AAACACAA, the combination favorable genotypes of four polymorphism loci, but the genetic effect of AAACACAA was not the simple addition of different genotypic effects. It showed that there may exist QTL of heat tolerance traits near the four polymorphism loci of ATP1A1 gene, and ATP1A1 gene might be one of the candidate genes having an important influence on the heat tolerance traits in dairy cows, our findings also implied that the ATP1A1 gene polymorphism here could be potential genetic markers for anti-heat stress trait in dairy cattle breeding.
引文
[1]JOHNSON H D. Bioclimate effects on growth, reproduction, and milk production. Chapter 3 in bioclimatology and the adaptation of livestock,35-37. Hd johnson, ed.1987, Amsterdam, the Netherlands:Elsevier.
    [2]DU PREEZ J, HATTINGH P, GIESECKE W, et al. Heat stress in dairy cattle and other livestock under southern african conditions. Iii. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle[J]. The Onderstepoort journal of veterinary research,1990,57(4):243-248.
    [3]BERMAN A. Estimates of heat stress relief needs for holstein dairy cows[J]. J Anim Sci.2005, 83(6):1377-1384.
    [4]SILVIA E V, MIRIAM R G. Evaporative cooling for holstein dairy cows under grazing conditions[J]. International Journal of Biometeorology,2003.25:59-87.
    [5]SMITH T R, CHAPA A, WILLARD S, et al. Evaporative tunnel cooling of dairy cows in the southeast. Ii:Impact on lactation performance[J]. Journal of Dairy Science.2006,89(10): 3915-3923.
    [6]TURNER L W. CHASTAIN J P. HEMKEN R W. et al. Reducing heat stress in dairy cows through sprinkler and fan cooling[J]. Applied Engineering in Agriculture,1992,8(2):251-256.
    [7]张居农.林松涛,谢鹏贵.奶牛热应激的发生与预防[J].乳业科学与技术,2007,29(1):49-52.
    [8]SILANIKOVE N, MALTZ E. HALEVI A. et al. Metabolism of water, sodium, potassium, and chlorine by high yielding dairy cows at the onset of lactation[J]. Journal of Dairy Science,1997, 80(5):949-956.
    [9]金兰梅,伍清林,金保方,等.抗热应激中草药添加剂(夏安散)对奶牛产奶量和血液生化指标的影响[J].中国兽医学报.2008,28(7):852-857.
    [10]梁学武.张龙涛.刘庆华,等.热应激期日粮添加酵母铬对奶牛产奶性能及血液生化指标的影响[J].福建农林大学学报:自然科学版.2006,35(2):191-194.
    [11]RAVAGNOLO O, MISZTAL I, HOOGENBOOM G. Genetic component of heat stress in dairy cattle, development of heat index function[J]. Journal of Dairy Science,2000a,83(9): 2120-2125.
    [12]穆玉云.乳牛耐热性指标的数量指标和遗传力检测[J].安徽农业大学学报.1990,26(5):46.
    [13]安立龙.家畜环境卫生学[M].2004,高等教育出版社:北京.
    [14]LEMERLE C, GODDARD M. Assessment of heat stress in dairy cattle in papua new guinea[J]. Tropical Animal Health and Production,1986,18(4):232-242.
    [15]CORREA-CALDERON A. ARMSTRONG D, RAY D, et al. Thermoregulatory responses of Holstein and brown swiss heat-stressed dairy cows to two different cooling systems[J]. International Journal of Biometeorology,2004,48(3):142-148.
    [16]SRIKANDAKUMAR A, JOHNSON E. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian milking Zebu cows[J]. Tropical Animal Health and Production,2004,36(7):685-692.
    [17]KHONGDEE S, CHAIYABUTR N, HINCH G, et al. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions[J]. International Journal of Biometeorology,2006,50(5):253-257.
    [18]史彬林,闫素梅.奶牛耐热性评定指标的研究[J].中国奶牛,1996(2):20-22.
    [19]李建国,安永福.热应激对奶牛生理常值,血液生化指标,繁殖及泌乳性能的影响[J].河北农业大学学报,1998,21(4):69-75.
    [20]魏学良,张家骅,王豪举,等.高温环境对奶牛生理活动及生产性能的影响[J].2007.21(5):13-15.
    [21]何春芳.南方荷斯坦奶牛的热应激及其防治[J].广西畜牧兽医,2006,22(4):158-160.
    [22]何振华,何德肆,解竹军.不同气温对奶牛血液中部分生化指标影响的研究[J].湖南畜牧兽医.2005(4):11-13.
    [23]刘庆华.王根林.热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响[J].福建农林大学学报:自然科学版.2007,36(3):284-287.
    [24]夏东,杨淑晶,刘铁铮.季节性变化对荷斯坦奶牛红细胞钾含量及红细胞膜钠钾atpase活性的影响[J].家畜生态学报.2009(2):55-58.
    [25]杨淑晶.荷斯坦奶牛血液部分生化指标的季节性变化及其与奶牛耐热性相关性的研究[D].新疆农业大学,2005.
    [26]夏东,杨淑晶,刘铁铮.奶牛血液抗氧化酶活性的季节变化[J].家畜生态学报.2006,27(1):56-59.
    [27]李忠浩,孔丽娟.刘庆华,等.不同温度下荷斯坦奶牛外周血抗氧化指标的变化及其与淋巴细胞凋亡的关系[J].中国奶牛,2007,增刊:136-139.
    [28]李忠浩,孔丽娟,刘庆华.等.不同温湿指数下荷斯坦奶牛外周血抗氧化指标的变化及其与淋巴细胞凋亡的关系[J].福建农林大学学报:自然科学版,2008,37(3):280-285.
    [29]伍晓雄,张雄民.热应激对山羊生理生化指标的影响[J].家畜生态,2000,21(3):7-9.
    [30]蔡亚非,杜娟,张利军,等.热应激奶牛外周血淋巴细胞凋亡相关基因表达及血液学分析[J].动物学报,2005,51(2):286-293.
    [31]MCGUIRE M. BEEDE D. DELORENZO M. et al. Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating holstein cows[J]. Journal of Animal Science,1989,67(4):1050-1060.
    [32]BEATTY D. BARNES A, TAYLOR E. et al. Physiological responses of bos taurus and bos indicus cattle to prolonged, continuous heat and humidity[J]. Journal of Animal Science.2006. 84(4):972-985.
    [33]WEST J, MULLINIX B. SANDIFER T. Changing dietary electrolyte balance for dairy cows in cool and hot environments[J]. Journal of Dairy Science,1991,74(5):1662-1674.
    [34]李建国,曹玉凤.热应激对中国荷斯坦牛血液生化指标及产奶性能的影响[J].中国畜牧杂志,1999.35(2):25-26.
    [35]李俊杰,马亚宾.热应激与牛血液成分的变化[J].家畜生态.2001,22(4):56-59.
    [36]MAGDUB A, JOHNSON H, BELYEA R. Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows[J]. Journal of Dairy Science,1982,65(12):2323-2331.
    [37]JOHNSON H. Environmental physiology and shelter engineering with special reference to domestic animals, lxxvi:Short-term heat acclimation effects on hormonal profile of lactating cows[J]. Research bulletin (USA),1988.
    [38]樊华,樊丽,王峰,等.热应激对泌乳奶牛血液生化指标的影响[J].中国畜牧兽医,2007,34(4):45-46.
    [39]GILAD E. MEIDAN R, BERMAN A. et al. Effect of heat stress on tonic and GNRH-induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows[J]. Reproduction,1993,99(2):315-321.
    [40]TROUT J, MCDOWELL L, HANSEN P. Characteristics of the estrous cycle and antioxidant status of lactating holstein cows exposed to heat stress[J]. Journal of Dairy Science,1998.81(5): 1244-1250.
    [41]RONCHI B, STRADAIOLI G, VERINI SUPPLIZI A, et al. Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17 [beta], lh, fsh, prolactin and cortisol in holstein heifers[J]. Livestock Production Science.2001,68(2-3):231-241.
    [42]桑润滋,倪俊卿.热应激对荷斯坦种公牛精液品质的影响及机理[J].中国兽医学报.2002.22(4):407-41 0.
    [43]李俊杰,桑润滋,田树军,等.季节因素对种公牛血清维生素与生殖激素的影响[J].黑龙江畜牧兽医.2004(2):17-18.
    [44]穆玉云,李如治.乳牛耐热性指标的检测[J].安徽农业大学学报,1993,20(1):66-71.
    [45]ARIELI A, RUBINSTEIN A, MOALLEM U, et al. The effect of fiber characteristics on thermoregulatory responses and feeding behavior of heat stressed cows[J]. Journal of Thermal Biology,2004,29(7-8):749-751.
    [46]SANCHEZ W, MCGUIRE M. BEEDE D. Macromineral nutrition by heat stress interactions in dairy cattle:Review and original research[J]. Journal of Dairy Science,1994,77(7):2051-2079.
    [47]FUQUAY J. Heat stress as it affects animal production[J]. Journal of Animal Science.1981, 52(1):164-174.
    [48]OMINSKI K, KENNEDY A, WITTENBERG K, et al. Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress[J]. Journal of Dairy Science,2002,85(4):730-737.
    [49]WILSON S, MARION R. SPAIN J. et al. Effects of controlled heat stress on ovarian function of dairy cattle.1. Lactating cows[J]. Journal of Dairy Science,1998,81(8):2124-2131.
    [50]赖登明,谭志明.红细胞钾含量对奶牛耐热性的影响[J].中国奶牛,1997(2):15-16.
    [51]何英俊,柯闽田.气候条件对荷斯坦奶牛泌乳量及乳蛋白质的影响[J].中国畜牧杂志.2005.41(6):47-48.
    [52]BEEDE D. SHEARER J. Nutritional management of dairy cattle during hot weather. Iv[J]. Agri-Practice (USA).1991.
    [53]RAVAGNOLO O, MISZTAL I. Genetic component of heat stress in dairy cattle, parameter estimation[J]. Journal of Dairy Science,2000b,83(9):2126-2130.
    [54]HUANG C, TSURUTA S, BERTRAND J K. et al. Environmental effects on conception rates of holsteins in new york and georgia[J]. Journal of Dairy Science,2008,91(2):818-825.
    [55]EALY A, DROST M, HANSEN P. Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows[J]. Journal of Dairy Science,1993,76(10):2899-2905.
    [56]谢庄,王元兴,金穗华.季节对种公牛精液品质的影响[J].当代畜牧.1996:21-22.
    [57]周祥吉,裴国献,魏宽海,等.高温高湿环境下犬肢体火器伤后细胞免疫学变化[J].解放军医学杂志.2003,28(4):297-299.
    [58]宁章勇,刘思当,赵德明,等.热应激对肉仔鸡呼吸,消化和内分泌器官的形态和超微结构的影响[J].畜牧兽医学报,2003,34(6):558-561.
    [59]何英俊.热应激对荷斯坦奶牛的危害与调控[J].中国畜牧杂志,2005.41(3):48-50.
    [60]赵宗胜,孙延鸣,刘贤侠,等.主要气象指标对奶牛临床型乳房炎影响的研究[J].中国奶牛.2005(2):41-42.
    [61](WMO) W M O. Animal health and production in extreme environments. Wmo technical note[J]. 1989.NO.191:181.
    [62]JOHNSON H D. Environmental management of cattle to minimize the stress of climate changes[J]. Int. J. Biometeor,1980,24(Suppl.7. Part 2):65-78.
    [63]LOEWE, S. Relationship between stimulus and response[J]. Science,1959,130:692-695.
    [64]BADR M F. The effect of roughage on body temperature and respiration rate of cows and buffaloes during summer in egypt[J]. Indian J. Dairy Sci.,1957,10:176-183.
    [65]RHOAD A O. The iberia heat tolerance test for cattle[J]. Tropical Agriculture,1944,21(9): 162-164.
    [66]刘玉庆,徐魁梧.荷斯坦牛红细胞钾含量分布的研究[J].南京农业大学学报,1997,20(1):55-59.
    [67]史彬林,林全曾.红细胞钾作为乳牛耐热性选择指标的遗传可靠性研究[J].南京农业大学学报,1993,16(3):64-68.
    [68]苏光华.肖兵南.燕海峰,等1.红细胞钾作为南方中国荷斯坦牛耐热性遗传标记的研究[J].中国牛业科学,2006,32(4):9-11.
    [69]夏东,谭志明.中国黑白花奶牛红细胞钾含量遗传性的研究[J].中国奶牛,2000.2:17-19.
    [70]王泽英,黄金明,王长法.等.荷斯坦牛血红细胞Na+-K+-ATP酶活力与其耐热性的相关性研究[J].中国牛业科学.2009,35(3):1-5.
    [71]刘海林,李志才,肖兵南,等荷斯坦奶牛耐热性标记的检测[J].湖南畜牧兽医,2006(3):8-9.
    [72]BRUEMMER-SMITH S, STuBER F. SCHROEDER S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis[J]. Intensive care medicine,2001,27(12):1835-1841.
    [73]HENDRICK J. HARTL F. Molecular chaperone functions of heat-shock proteins[J]. Annual Review of Biochemistry,1993.62(1):349-384.
    [74]FLAHERTY K, WILBANKS S, DELUC A-FLAHERTY C, et al. Structural basis of the 70-kilodalton heat shock cognate protein atp hydrolytic activity. Ii. Structure of the active site with adp or atp bound to wild type and mutant ATPase fragment[J]. Journal of Biological Chemistry,1994,269(17):12899-12907.
    [75]YU S. Na+,K+-ATPase:The new face of an old player in pathogenesis and apoptotic/hybrid cell death[J]. Biochemical pharmacology.2003,66(8):1601-1609.
    [76]SKOU J C. ESMANN M. The Na.K-ATPase[J]. J Bioenerg Biomembr,1992,24(3):249-261.
    [77]DOBRETSOV M, HASTINGS S L, SIMS T J, et al. Stretch receptor-associated expression of α3 isoform of the Na+,K+-ATPase in rat peripheral nervous system[J]. Neuroscience,2003. 116(4):1069-1080.
    [78]KAPLAN J. Ion movements through the sodium pump[J]. Annual review of physiology,1985, 47(1):535-544.
    [79]SERLUCA F. SIDOW A. MABLY J, et al. Partitioning of tissue expression accompanies multiple duplications of the Na+,K+-ATPase a subunit gene[J]. Genome research,2001. 11(10):1625-1631.
    [80]KOTYK A, AMLER E. Na, k-adenosinetriphosphatase:The paradigm of a membrane transport protein[J]. Physiological Research,1995,44:261-274.
    [81]BEGUIN P, WANG X. FIRSOV D, et al. The gamma subunit is a specific component of the na.k-atpase and modulates its transport function[J]. EMBO J,1997,16(14):4250-4260.
    [82]SWEADNER K J, WETZEL R K, ARYSTARKHOVA E. Genomic organization of the human fxyd2 gene encoding the gamma subunit of the Na.K-ATPase[J]. Biochem Biophys Res Commun,2000,279(1):196-201.
    [83]VAGUE P. COSTE T, JANNOT M, et al. C-peptide, Na+, K+-ATPase, and diabetes[J]. Experimental Diabesity Research,2004,5(1):37-50.
    [84]GLORIOSO N, HERRERA V. BAGAMASBAD P, et al. Association of ATP1A1 and DEAR single-nucleotide polymorphism haplotypes with essential hypertension:Sex-specific and haplotype-specific effects[J]. Circulation research,2007,100(10):1522-1529.
    [85]BERNABUCCI U. RONCHI B. LACETERA N. et al. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season[J]. Journal of Dairy Science,2002. 85(9):2173-2179.
    [86]CALAMARI L, MAIANTI M. AMENDOLA F. et al. On some aspects of the oxidative status and on antioxidants in blood of dairy cows during summer[J]. Proceedings of 13th Associazione Scientifica Produzioni Animali Congress,1999:449-451.
    [87]CHENG J, SHARMA R, YANG Y, et al. Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress[J]. Journal of Biological Chemistry,2001,276(44): 41213-41223.
    [88]高玉鹏,郭久荣.热应激环境蛋鸡免疫力变化机理研究-Ⅱ免疫力,氧自由基代谢,耐热力间的关系[J].西北农林科技大学学报,2001,29(5):33-36.
    [89]KLECZKOWSKI M. Role of antioxidants in the protection against oxidative stress in cattle--trace elements and enzymatic mechanisms (part 3)[J]. Polish journal of veterinary sciences,2004,7(3):233-240.
    [90]TOWNSEND D, TEW K, TAPIERO H. The importance of glutathione in human disease[J]. Biomedecine & Pharmacotherapy,2003,57(3-4):145-155.
    [91]LADENSTEIN R. EPP O, BARTELS K, et al. Structure analysis and molecular model of the selenoenzyme glutathione peroxidase at 2.8 resolution[J]. Journal of molecular biology,1979. 134(2):199-218.
    [92]杨笃宝,吕品.热应激对奶牛抗氧化性能的影响[J].动物医学进展,2006,27(增):99-100.
    [93]WILLIAMS J, KUBELIK A. LIVAK K, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic acids research,1990,18(22):6531-6535.
    [94]杜立新,万海伟,王爱华,等.用RAPD技术筛选中国荷斯坦牛产奶量性状遗传标记[J].畜牧兽医学报.2005,36(9):882-886.
    [95]龚泽修,肖定福.荷斯坦奶牛耐热分子遗传标记的研究[J].上海畜牧兽医通讯,2007,4:14-15.
    [96]胡雄贵.肖定福,燕海峰.等.荷斯坦奶牛耐热性状的RAPD标记研究[J].中国奶牛.2007,(7):9-12.
    [97]苏光华,胡雄贵,燕海峰,等.荷斯坦牛耐热性RAPD和SCAR标记的研究[J].畜牧兽医学报.2008,39(9):1278-1284.
    [98]BACHTROG D, AGIS M, IMHOF M, et al. Microsatellite variability differs between dinucleotide repeat motifs--evidence from drosophila melanogaster[J]. Molecular Biology and Evolution,2000,17(9):1277-1285.
    [99]Z Buzas, L Varga. Rapid method for separation of microsatellite alleles by the phastsystem[J], Genome research,1995,4(6):380-381.
    [100]何高明,李大全,赵宗胜,等1.隐性乳房炎奶牛4个微卫星座位的遗传变异分析[J].中国农学通报,2008(4):23-28.
    [101]徐宁迎,THONSE H.利用微卫星进行奶牛数量性状基因位点定位的研究[J].遗传学报,2000,27(9):772-776.
    [102]SCHROOTEN C, BOVENHUIS H. COPPIETERS W, et al. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle[J]. Journal of Dairy Science,2000,83(4):795-806.
    [103]李大齐,刘延鑫,张军民,等.不同季节荷斯坦牛3个微卫星座位与GSH-px、SOD和Na+/K+-ATP酶活性及日产奶量的关系[J].遗传.2010.32(4):1-6.
    [104]杨昭庆,洪坤学.单核苷酸多态性的研究进展[J].国外医学:遗传学分册,2000.23(1):4-8.
    [105]CARTEGNI L, CHEW S L, KRAINER A R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing[J]. Nat Rev Genet,2002,3(4):285-298.
    [106]KUDLA G, MURRAY A W, TOLLERVEY D, et al. Coding-sequence determinants of gene expression in escherichia coli[J]. Science,2009,324(5924):255-258.
    [107]TVETEN K. KHOO K L. BERGE K E, et al. Functional analysis of the synonymous R385R mutation in the low-density lipoprotein receptor gene[J]. Genet Test Mol Biomarkers,2009. 13(2):243-248.
    [108]ORITA M, IWAHANA H. KANAZAWA H. et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Natl Acad Sci U S A,1989.86(8):2766-2770.
    [109]MARUYA E. SAJI H. YOKOYAMA S. PCR-LIS-SSCP (low ionic strength single-stranded conformation polymorphism)-a simple method for high-resolution allele typing of HLA-DRB1,-DQB1,and-DPB1 [J]. Genome Res,1996,6(1):51-57.
    [110]BRYM P. KAMI-1/2SKI S, WOJCIK E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits[J]. Journal of applied genetics.2005,46(2):179-185.
    [111]YOUNGERMAN S, SAXTON A, OLIVER S, et al. Association of cxcr2 polymorphisms with subclinical and clinical mastitis in dairy cattle[J]. Journal of Dairy Science,2004,87(8): 2442-2448.
    [112]YAFEI C. QINGHUA L. GUANGDONG X. et al. Polymorphism of the promoter region of HSP70 gene and its relationship with the expression of HSP70mRNA. HSF1mRNA. Bcl-2mRNA and bax-a mRNA in lymphocytes in peripheral blood of heat shocked dairy cows[J]. Asian-Australasian Journal of Animal Sciences.2005,18(5):734-740.
    [113]LIU YX. LI DQ. CUI QW, et al. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows[J]. Molecular Biology Reports,2010, DOI 10.1007/s11033-010-0080-8.
    [114]晏兆莉.张成忠.家畜育种中MAS的遗传标记与QTL[J].西南民族学院学报:自然科学版,1996.22(2):206-210.
    [115]鲁绍雄.吴常信.动物遗传标记辅助选择研究及其应用[J].遗传.2002.24(3):359-362.
    [116]CHRISTINAZ P, SCHATZMANN H. High potassium and low potassium erythrocytes in cattle [J]. The Journal of Physiology.1972,224(2):391-406.
    [117]ELLORY J. TUCKER E. High potassium type red cells in cattle [J]. J. Agric. Sci., Camb,1970, 74:595-596.
    [118]Yedy Israel, Alain Macdonald, Jaime Bernstein, et al. Changes from high potassium (HK) to low potassium (LK)in bovine red cells [J]. Journal of General Physiology,1972,59(3):270-284.
    [119]OLSON T A, LUCENA C. CHASE JR C C, et al. Evidence of a major gene influencing hair length and heat tolerance in bos taurus cattle[J]. Journal of Animal Science,2003,81(1):80-90.
    []] BERMAN A. Estimates of heat stress relief needs for holstein dairy cows[J]. Journal of Animal Science,2005.83(6):1377-1384.
    [2]DU PREEZ J, HATTINGH P, GIESECKE W, et al. Heat stress in dairy cattle and other livestock under southern african conditions. lii. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle[J]. The Onderstepoort journal of veterinary research,1990.57(4):243-248.
    [3]JOHNSON H D. Environmental management of cattle to minimize the stress of climate changes[J]. Int. J. Biometeor,1980,24(Suppl.7, Part 2):65-78.
    [4]李建国,安永福.热应激对奶牛生理常值,血液生化指标,繁殖及泌乳性能的影响[J].河北农业大学学报,1998.21(4):69-75.
    [5]刘庆华,王根林.热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响[J].福建农林大学学报:自然科学版.2007,36(3):284-287.
    [6]王泽英,黄金明,王长法,等.荷斯坦牛血红细胞Na--K+ATP酶活力与其耐热性的相关性研究[J].中国牛业科学.2009.35(3):1-5.
    [7]夏东,杨淑晶,刘铁铮.季节性变化对荷斯坦奶牛红细胞钾含量及红细胞膜钠钾ATPase活性的影响[J].家畜生态学报.2009(2):55-58.
    [8]杨淑晶.荷斯坦奶牛血液部分生化指标的季节性变化及其与奶牛耐热性相关性的研究[D].新疆农业大学,2005.
    [9]夏东,杨淑晶,刘铁铮.奶牛血液抗氧化酶活性的季节变化[J].家畜生态学报.2006.27(1):56-59.
    [10]于军方,梁学武,张良荣,等.热应激对荷斯坦牛与荷-娟F1牛抗氧化能力的影响[J].福建畜牧兽医.2007(增刊):4-6.
    [11]李忠浩,孔丽娟,刘庆华,等.不同温度下荷斯坦奶牛外周血抗氧化指标的变化及其与淋巴细胞凋亡的关系[J].中国奶牛.2007(增刊):136-139
    [12](WMO) W M O. Animal health and production in extreme environments. Wmo technical note[J]. 1989,NO.191:181.
    [13]RHOAD A O. The iberia heat tolerance test for cattle[J]. Tropical Agriculture,1944,21(9): 162-164.
    [14]史彬林,闫素梅.奶牛耐热性评定指标的研究[J].中国奶牛.1996(2):20-22.
    [15]SRIKANDAKUMAR A, JOHNSON E. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in holstein. jersey and australian milking zebu cows[J]. Tropical Animal Health and Production,2004,36(7):685-692.
    [16]SHALIT U, MALTZ E, SILANIKOVE N. et al. Water, sodium, potassium, and chlorine metabolism of dairy cows at the onset of lactation in hot weather[J]. Journal of Dairy Science. 1991.74(6):1874-1883.
    [17]MCMANUS C. PALUDO G R. LOUVANDINI H. et al. Heat tolerance in naturalised cattle in brazil:Physical factors[J]. Archivos de Zootecnia.2005,206:453-458.
    [18]ABDEL-SAMEE A M. Response of new zealand white rabbits to thermal stress and its amelioration during winter and summer of north sinai, egypt[J]. Journal of Arid Environments. 1997.36(2):333-342.
    [19]穆玉云,李如治.乳牛耐热性指标的检测[J].安徽农业大学学报,1993,20(1):66-71
    [20].BLACKSHAW J, BLACKSHAW A. Heat stress in cattle and the effect of shade on production and behaviour:A review[J]. Australian journal of experimental agriculture,1994,34(2): 285-296.
    [21]WEST J, MULLINIX B. SANDIFER T. Changing dietary electrolyte balance for dairy cows in cool and hot environments [J]. Journal of Dairy Science,1991,74(5):1662-1674.
    [22]MONTAGUE J. BORTNER C. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis[J]. Steroids,1999,64(9):563-569.
    [23]XIAO A. WEI L. XIA S. et al. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons[J]. Journal of Neuroscience,2002,22(4): 1350-1362.
    [24]COPPOCK C, GRANT P, PORTZER S, et al. Lactating dairy cow responses to dietary sodium, chloride, and bicarbonate during hot weather[J]. Journal of Dairy Science,1982,65(4):566-576.
    [25]SCHNEIDER P. BEEDE D, WILCOX C. Responses of lactating cows to dietary sodium source and quantity and potassium quantity during heat stress[J]. Journal of Dairy Science,1986,69(1): 99-110.
    [26]魏学良,张家骅.王豪举.等.高温环境对奶牛生理活动及生产性能的影响[J].中国农学通报.2005,21(5):13-15.
    [27]刘思当.宁章勇.谭勋,等.热应激对肉仔鸡血液生化指标影响的观察[J].中国兽医杂志,2003.39(9):20-23.
    [28]BORGES S, FISCHER DA SILVA A, MAJORKA A. et al. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram)[J]. Poultry science,2004.83(9):1551-1558.
    [29]赖登明,谭志明.红细胞钾含量对奶牛耐热性的影响[J].中国奶牛.1997(2):15-16.
    [30]刘玉庆,徐魁梧.荷斯坦牛红细胞钾含量分布的研究[J].南京农业大学学报.1997,20(1):55-59.
    [31]史彬林,林全曾.红细胞钾作为乳牛耐热性选择指标的遗传可靠性研究[J].南京农业大学学报.1993.16(3):64-68.
    [32]苏光华,肖兵南,燕海峰,等.红细胞钾作为南方中国荷斯坦牛耐热性遗传标记的研究[J].中国牛业科学.2006.32(4):9-11.
    [33]夏东.谭志明.中国黑白花奶牛红细胞钾含量遗传性的研究[J].中国奶牛,2000,(2)17-19.
    [34]CHRISTINAZ P, SCHATZMANN H. High potassium and low potassium erythrocytes in cattle[J]. The Journal of Physiology.1972.224(2):391-406.
    [35]EVANS J. Adaptation to subtropical environments by zebu and british breeds of cattle in relation to erythrocyte characters [J]. Australian Journal of Agricultural Research,1963,14: 559-571.
    [36]徐瑞成,张敏Na+-K+ATP酶抑制引起的细胞凋亡和杂合性细胞死亡[J].细胞生物学杂志,2004,26(5):467-470.
    [37]李莉,陈菁菁,李方序.等.氧应激毒性产物丙二醛(MDA)对小鼠体能的影响及其体内代谢[J].湖南师范大学自然科学学报.2006.29(2):97-101.
    [38]曾静,罗海吉.微量元素硒的研究进展[J].微量元素与健康研究,2003.20(2):52-56.
    [39]赵先英,刘毅敏,覃军.等.微量元素硒,锰,氟对SOD活性的影响[J]. Mol Pathol,2003. 74(3):336-340.
    [40]RODRIGO R, BAECHLER J, ARAYA J. et al. Relationship between (Na+-K+)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects[J]. Molecular and cellular biochemistry,2007,303(1):73-81.
    [41]ORSENIGO M. FAELLI A, PORTA C, et al. Oxidative stress reduces transintestinal transports and (Na+,K+)-ATPase activity in rat jejunum[J]. Archives of biochemistry and biophysics,2007, 466(2):300-307.
    [42]KADZERE C, MURPHY M, SILANIKOVE N. et al. Heat stress in lactating dairy cows:A review[J]. Livestock Production Science,2002,77(1):59-91.
    [43]RAVAGNOLO O, MISZTAL I, HOOGENBOOM G. Genetic component of heat stress in dairy cattle, development of heat index function[J]. Journal of Dairy Science,2000a,83(9): 2120-2125.
    [44]BARASH H, SILANIKOVE N, SHAMAY A, et al. Interrelationships among ambient temperature. day length, and milk yield in dairy cows under a mediterranean climate[J]. Journal of Dairy Science,2001.84(10):2314-2320.
    [45]BEEDE D.K. and SHEARER J.K. Nutritional management of dairy cattle during hot weather[J]. Agri-Practice,1991,12:5-13
    [46]杨加梅.荷斯坦牛耐热特性的研究[D].南京农业大学.2008.
    [47]BARKEMA H. PLOEG J. SCHUKKEN Y, et al. Management style and its association with bulk milk somatic cell count and incidence rate of clinical mastitis[J]. Journal of Dairy Science, 1999.82(8):1655-1663.
    [48]HANSEN L, YOUNG C. MILLER K, et al. Health care requirements of dairy cattle. I. Response to milk yield selection[J]. Journal of Dairy Science,1979,62(12):1922-1931.
    [1]RAVAGNOLO O. MISZTAL I. Genetic component of heat stress in dairy cattle, parameter estimation[J]. Journal of Dairy Science,2000b,83(9):2126-2130.
    [2]YENARI M, LIU J, ZHENG Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection[J]. Ann NY Acad Sci,2005,1053(8):74-83.
    [3]BERNABUCCI U. RONCHI B, LACETERA N, et al. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season[J]. Journal of Dairy Science,2002, 85(9):2173-2179.
    [4]夏东.杨淑晶,刘铁铮.奶牛血液抗氧化酶活性的季节变化[J].家畜生态学报.2006.27(1):56-59.
    [5]于军方,梁学武.张良荣.等.热应激对荷斯坦牛与荷-娟F1牛抗氧化能力的影响[J].福建畜牧兽医,2007(增刊):4-6.
    [6]夏东,杨淑晶,刘铁铮.季节性变化对荷斯坦奶牛红细胞钾含量及红细胞膜钠钾ATPase活性的影响[J].家畜生态学报,2009(2):55-58.
    [7]杨淑晶.荷斯坦奶牛血液部分生化指标的季节性变化及其与奶牛耐热性相关性的研究[D].新疆农业大学,2005.
    [8]FEIGE U. Stress-inducible cellular responses[M]:Birkh user,1996.
    [9]LACETERA N. BERNABUCCI U, BASIRIC L. et al. Heat shock impairs DNA synthesis and down-regulates gene expression for leptin and ob-rb receptor in concanavalin a-stimulated bovine peripheral blood mononuclear cells[J]. Veterinary immunology and immunopathology, 2009,127(1-2):190-194.
    [10]YAFEI C, QINGHUA L. GUANGDONG X, et al. Polymorphism of the promoter region of HSP70 gene and its relationship with the expression of HSP70mRNA,HSF1mRNA, Bcl-2mRNA and Bax-amRNA in lymphocytes in peripheral blood of heat shocked dairy cows[J]. Asian-Australasian Journal of Animal Sciences,2005,18(5):734-740.
    [11]蔡亚非.奶牛热应激的细胞免疫调控及其分子机理研究[D].南京农业大学.2005.
    [12](WMO) W M O. Animal health and production in extreme environments. Wmo technical note[J].1989. NO.191:181.
    [13]RHOAD A O. The iberia heat tolerance test for cattle[J]. Tropical Agriculture,1944,21(9): 162-164.
    [14]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25(4):402-408.
    [15]庾蕾,刘建平,庄志雄.等.实时RT-PCR基因表达相对定量REST软件分析与2-ΔCt法比较[J].热带医学杂志.2007.7(10):956-958.
    [16]BUSTIN S. Absolute quantification of mrna using real-time reverse transcription polymerase chain reaction assays[J]. Journal of molecular endocrinology,2000,25(2):169-193.
    [17]陈凤花.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志,2005,23(5):393-395.
    [18]FINNEGAN M, GOEPEL J, HANCOCK B, et al. Investigation of the expression of housekeeping genes in non-hodgkin's lymphoma[J]. Leukemia and Lymphoma,1993,10(4): 387-393.
    [19]ZHU G, CHANG Y, ZUO J. et al. Fudenine. a c-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH [J]. Biochemical and Biophysical Research Communications,2001,281(4):951-956.
    [20]蔡亚非,杜娟,张利军.等.热应激奶牛外周血淋巴细胞凋亡相关基因表达及血液学分析[J].动物学报,2005,51(2):286-293.
    [21]JTTEL M. Heat shock proteins as cellular lifeguards[J]. Annals of medicine,1999,31(4): 261-271.
    [22]BRUEMMER-SMITH S, ST-1BER F, SCHROEDER S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis[J]. Intensive care medicine.2001.27(12):1835-1841.
    [23]SAKAI T, TAKAYA S. FUKUDA A. et al. Evaluation of warm ischemia-reperfusion injury using heat shock protein in the rat liver[J]. Transplant International.2003.16(2):88-99.
    [24]HWANG T. HAN H, CHOI H, et al. Differential, stage-dependent expression of HSP70, HSP110 and Bcl-2 in colorectal cancer[J]. Journal of gastroenterology and hepatology,2003, 18(6):690-700.
    [25]ZHANG Y, HUANG L. ZHANG J, et al. Targeted disruption of hsfl leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible hsp molecular chaperones[J]. Journal of cellular biochemistry,2002,86(2):376-393.
    [26]AHN S. THIELE D. Redox regulation of mammalian heat shock factor 1 is essential for hsp gene activation and protection from stress[J]. Genes & development,2003,17(4):516-528.
    [27]MOSSER D, CARON A, BOURGET L, et al. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis[J]. Molecular and cellular biology,1997,17(9): 5317-5327.
    [28]SWEADNER K. Isozymes of the Na+/K+-ATPase[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1989,988(2):185-220.
    [29]徐瑞成,张敏Na+-K+-ATP酶抑制引起的细胞凋亡和杂合性细胞死亡[J].细胞生物学杂志,2004,26(5):467-470.
    [30]YU S. Isozymes of the Na+.K+-ATPase:The new face of an old player in pathogenesis and apoptotic/hybrid cell death[J]. Biochemical pharmacology,2003.66(8):1601-1609.
    [31]VAGUE P, COSTE T, JANNOT M, et al. C-peptide, Isozymes of the Na+/K+-ATPase, and diabetes[J]. Experimental Diabesity Research,2004,5(1):37-50.
    [32]GLORIOSO N, HERRERA V. BAGAMASBAD P, et al. Association of atplal and dear single-nucleotide polymorphism haplotypes with essential hypertension:Sex-specific and haplotype-specific effects[J]. Circulation research,2007,100(10):1522-1529.
    [33]王泽英,黄金明.王长法,等.荷斯坦牛血红细胞Na+-K+-ATP酶活力与其耐热性的相关性研究[J].中国牛业科学.2009,35(3):1-5.
    [34]JAMME I, PETIT E. DIVOUX D. et al. Modulation of mouse cerebral Na+. K+-ATPase activity by oxygen free radicals[J]. Neuroreport,1995.7(1):333-339.
    [35]BREZIS M, ROSEN S. Hypoxia of the renal medulla--its implications for disease[J]. New England Journal of Medicine,1995,332(10):647-655.
    [36]SRIKANDAKUMAR A. JOHNSON E. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in holstein, jersey and australian milking zebu cows[J]. Tropical Animal Health and Production,2004,36(7):685-692.
    [37]刘庆华.于根林.热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响[J].福建农林大学学报:自然科学版.2007.36(3):284-287.
    [38]BARADA K. OKOLO C, FIELD M. et al. Na+/K+-ATPase in diabetic rat small intestine. Changes at protein and mrna levels and role of glucagon[J]. Journal of Clinical Investigation, 1994,93(6):2725-2731.
    [39]TSIMARATO M, COSTE T, DJEMLI-SHIPKOLYE A. et al. Evidence of time-dependent changes in renal medullary Na+/K+-ATPase activity and expression in diabetic rats[J]. Cellular and molecular biology (Noisy-le-Grand. France),2001.47(2):239-245.
    [40]FRIDOVICH I. Superoxide radical and superoxide dismutases[J]. Annual Review of Biochemistry,1995,64(1):97-112.
    [41]朱月.超氧化物歧化酶[J].昭乌达蒙族师专学报:汉文哲学社会科学版.2003.24(5):33-35.
    [42]KNAPEN M, ZUSTERZEEL P, PETERS W, et al. Glutathione and glutathione-related enzymes in reproduction a review[J]. European Journal of Obstetrics and Gynecology,1999,82(2): 171-184.
    [43]周玫,陈瑗.谷胱甘肽过氧化物酶[J].生命的化学,1985.4:16-17.
    [44]SENTHEL K, ARANGANATHAN S. NALINI N. Evidence of oxidative stress in the circulation of ovarian cancer patients[J]. Clinica Chimica Acta,2004,339(1-2):27-32.
    [45]董卫星,王冬梅.李征.等.纳米硒和维生素E对热应激奶牛抗氧化性能的影响[J].中国奶牛.2009(9):22-24.
    [46]李绍钰,吴胜耀.有机铬改善高温季节下奶牛生产性能的研究[J].中国奶牛,1999(5):18-19.
    [47]HERNANDEZ-NISTAL J, DOPICO B, LABRADOR E. Cold and salt stress regulates the expression and activity of a chickpea cytosolic cu/zn superoxide dismutase[J]. Plant Science, 2002,163(3):507-514.
    [48]高俊杰,张琳,秦爱国,等.氯化钠胁迫下嫁接黄瓜叶片SOD和CATMMA基因表达及其活性[J].应用生态学报,2008,19(8):1754-1758.
    [49]穆玉云,李如治.乳牛耐热性指标的检测[J].安徽农业大学学报,1993.20(1):66-71.
    [50]赖登明,谭志明.红细胞钾含量对奶牛耐热性的影响[J].中国奶牛,1997(2):15-16.
    [1]穆玉云,李如治.乳牛耐热性指标的检测[J].安徽农业大学学报.1993.20(1):66-71.
    [2]GEORGES M, NIELSEN D, MACKINNON M, et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J]. Genetics.1995. 139(2):907-920.
    [3]OLSEN H. LIEN S, SVENDSEN M. et al. Fine mapping of milk production QTL on BTA6 by-combined linkage and linkage disequilibrium analysis[J]. Journal of Dairy Science,2004.87(3): 690-698.
    [4]RON M. HEYEN D. BAND M. et al. Detection of individual loci affecting economic traits in the us holstein population with the aid of DNA microsatellites[J]. Anim. Genet,1996.27(Suppl 2):105-112.
    [5]SPELMAN R. COPPIETERS W, KARIM L. et al. Quantitative trait loci analysis for five milk production traits on chromosome six in the dutch holstein-friesian population[J]. Genetics,1996. 144(4):1799-1808.
    [6]单雪松.李宁.奶牛微卫星基因座与产奶性能关系的研究[J].遗传学报.2002.29(5):430-433.
    [7]徐宁迎THONSE H利用微卫星进行奶牛数量性状基因位点定位的研究[J].遗传学报,2000.27(9):772-776.
    [8]LACETERA N. BERNABUCCI U. BASIRIC L. et al. Heat shock impairs DNA synthesis and down-regulates gene expression for leptin and ob-rb receptor in concanavalin a-stimulated bovine peripheral blood mononuclear cells[J]. Veterinary immunology and immunopathology. 2009.127(1-2):190-194.
    [9]YAFEI C, QINGHUA L, GUANGDONG X, et al. Polymorphism of the promoter region of HSP70 gene and its relationship with the expression of HSP70mRNA, HSF1mRNA. Bcl-2mRNA and bax-amRNA in lymphocytes in peripheral blood of heat shocked dairy cows[J]. Asian-Australasian Journal of Animal Sciences,2005,18(5):734-740.
    [10]BRUEMMER-SMITH S, ST-1BER F, SCHROEDER S. Protective functions of intracellular heat-shock protein (HSP)70-expression in patients with severe sepsis[J]. Intensive care medicine,2001,27(12):1835-1841.
    [11]王泽英,黄金明,王长法,等.荷斯坦牛血红细胞Na+-K+-ATP酶活力与其耐热性的相关性研究[J]_中国牛业科学.2009,35(3):1.5.
    [12]杨淑晶.荷斯坦奶牛血液部分生化指标的季节性变化及其与奶牛耐热性相关性的研究[D].新疆农业大学.2005.
    [13]夏东,杨淑晶,刘铁铮.奶牛血液抗氧化酶活性的季节变化[J]_家畜生态学报,2006727(1):56-59.
    [14]杨笃宝,吕品.热应激对奶牛抗氧化性能的影响[J]_动物医学进展,2006.27(1).
    [15]于军方,梁学武,张良荣,等.热应激对荷斯坦牛与荷-娟F1牛抗氧化能力的影响[J].福建畜牧兽医,2007,1.
    [16]Barker J.S.F.. A global protocol for determining genetic distances among domestic livestock breeds, in:Proceeding of the 5thWorld Congress on Genetics Applied to Livestock Production, 7-12 August 1994, Vol.21. University of Guelph, Ontario,501-508.
    [17]BOTSTEIN D, WHITE R. SKOLNICK M. et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980,32(3):314-331.
    [18]李建国.安永福.热应激对奶牛生理常值,血液生化指标,繁殖及泌乳性能的影响[J].河北农业大学学报,1998,21(4):69-75.
    [19]穆玉云.乳牛耐热性指标的数量指标和遗传力检测[J].安徽农业大学学报,1990.26(5):46.
    [20]赖登明,谭志明.红细胞钾含量对奶牛耐热性的影响[J].中国奶牛,1997(2):15-16.
    [21]刘玉庆,徐魁梧.荷斯坦牛红细胞钾含量分布的研究[J].南京农业大学学报.1997,20(1):55-59.
    [22]史彬林,林全曾.红细胞钾作为乳牛耐热性选择指标的遗传可靠性研究[J].南京农业大学学报.1993,16(3):64-68.
    [23]HUGHES A. Optimization of microsatellite analysis for genetic mapping[J]. Genomics,1993, 15(2):433-434.
    [24]MURRAY V, MONCHAWIN C. ENGLAND P. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR[J]. Nucleic acids research,1993,21(10):2395.
    [25]李延璐,储明星.陈宏权.等.绵羊微卫星BMS2508和FECB基因的多态及连锁分析[J].遗传.2009.31(5):500-507.
    [26]孙伟,常洪,金银,等.湖羊产羔性状的微卫星标记与可能生产力的关联性分析[J].畜牧兽医学报,2009.40(1):7-14.
    [27]李大齐.刘延鑫,张军民.等.不同季节荷斯坦牛3个微卫星座位与GSH-px、SOD和Na+/K+-ATP酶活性及日产奶量的关系[J].遗传.2010.32(4):1-6.
    [1]BERMAN A. Estimates of heat stress relief needs for holstein dairy cows[J]. Journal of Animal Science,2005,83(6):1377-84.
    [2]CORREA-CALDERON A, ARMSTRONG D, RAY D. et al. Thermoregulatory responses of Holstein and Brown swiss heat-stressed dairy cows to two different cooling systems[J]. International Journal of Biometeorology,2004,48(3):142-148.
    [3]郭辉,杨膺白.李丽莉.奶牛热应激研究进展[J].乳业科学与技术.2007.29(2):101-104.
    [4]张居农,林松涛,谢鹏贵.奶牛热应激的发生与预防[J]_乳业科学与技术.2007,29(1):49-52.
    [5]穆玉云.李如治.乳牛耐热性指标的检测[J].安徽农业大学学报.1993.20(1):66-71.
    [6]RAVAGNOLO O. MISZTAL I. Genetic component of heat stress in dairy cattle, parameter estimation[J]. Journal of Dairy Science,2000b,83(9):2126-30.
    [7]王敏,金润铭Na+.K+-ATP酶信号转导功能的分子机制[J].国际病理科学与临床杂志,2006.26(3):228-231.
    [8]LIANG M, TIAN J. LIU L, et al. Identification of a pool of non-pumping Na+/K+-ATP [J]. J Biol Chem,2007.282(14):10585-10593.
    [9]XIE Z, XIE J. The Na+,K+-ATP-mediated signal transduction as a target for new drug development[J]. Front Biosci,2005,10:3100-3109.
    [10]BARCROFT L, GILL S. WATSON A. The gamma-subunit of the Na+,K+-ATP as a potential regulator of apical and basolateral Na+-pump isozymes during development of bovine pre-attachment embryos[J]. Reproduction,2002,124(3):387-397.
    [11]VAGUE P, COSTE T, JANNOT M, et al. C-peptide, Na+,K+-ATPase, and diabetes[J]. Experimental Diabesity Research,2004,5(1):37-50.
    [12]YU S. Na+,K+-ATPase:The new face of an old player in pathogenesis and apoptotic/hybrid cell death[J]. Biochemical pharmacology,2003,66(8):1601-1609.
    [13]徐瑞成.张敏Na+,K+-ATP酶抑制引起的细胞凋亡和杂合性细胞死亡[J].细胞生物学杂志,2004.26(5):467-470.
    [14]MARUYA E, SAJI H. YOKOYAMA S. PCR-LIS-SSCP (Low ionic strength single-stranded conformation polymorphism)--a simple method for high-resolution allele typing of HLA-DRB1.-DQB1. and-DPB1.[J]. Genome Research,1996,6(1):51-57.
    [15]ORITA M. SUZUKI Y. SEKIYA T. et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction[J]. Genomics,1989.5(4):874-879.
    [16]SHEFFIELD V. BECK J. KWITEK A. et al. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions[J]. Genomics,1993,16(2): 325-332.
    [17]HAYASHI K. PCR-SSCP:A simple and sensitive method for detection of mutations in the genomic DNA [J]. Genome Research,1991.1(1):34-38.
    [18]HAYASHI K. Manipulation of DNA by PCR. The Polymerase chain reaction[M].1994.
    [19]陈艳珍.影响牛乳成分含量变化的因素[J].乳业科学与技术2005,27(4):186-188.
    [20]穆玉云.乳牛耐热性指标的数量指标和遗传力检测[J].安徽农业大学学报,1990.26(5):46.
    [21]ARMSTRONG D V. Heat stress interaction with shade and cooling[J]. Journal of Dairy Science. 1994,77(7):2044-2050.
    [22]VALTORTA S E, GALLARDO M R. Evaporative cooling for Holstein dairy cows under grazing conditions[J]. Int J Biometeorol, 2004,48(4):213-217.
    [23]穆玉云,谢瑞宝.品系.胎次,泌乳阶段对荷斯坦乳牛耐热性的影响[J].安徽农业大学学报.1995.22(1):77-81.
    [24]王萍,王宏.胎次、产犊间隔对荷斯坦泌乳牛产奶量的影响[J].畜禽业.2006(2):49.
    [25]赖登明.谭志明.红细胞钾含量对奶牛耐热性的影响[J]_中国奶牛,1997(2):15-16.
    [26]史彬林.林全曾.红细胞钾作为乳牛耐热性选择指标的遗传可靠性研究[J].南京农业大学学报.1993,16(3):64-68.
    [27]苏光华,肖兵南,燕海峰,等.红细胞钾作为南方中国荷斯坦牛耐热性遗传标记的研究[J].中国牛业科学.2006.32(4):9-11.
    [28]王泽英,黄金明,王长法,等.荷斯坦牛血红细胞Na+,K+-ATP酶活力与其耐热性的相关性研究[J].中国牛业科学.2009,35(3):1-5
    [29]CARTEGNI L. CHEW S L, KRAINER A R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing[J]. Nat Rev Genet,2002,3(4):285-298.
    [30]KUDLA G, MURRAY A W, TOLLERVEY D. et al. Coding-sequence determinants of gene expression in escherichia coli[J]. Science,2009,324(5924):255-258.
    [31]TVETEN K. KHOO K L. BERGE K E. et al. Functional analysis of the synonymous r385r mutation in the low-density lipoprotein receptor gene[J]. Genet Test Mol Biomarkers,2009, 13(2):243-248.
    [32]GORSHKOVA E V. KALEDIN V I, KOBZEV V F, et al. Lung cancer-associated SNP at the beginning of mouse k-ras gene intron 2 is essential for transcription factor binding[J]. Bull Exp Biol Med,2006.141(6):731-733.
    [33]VIMALES WARAN K S. RADHA V. RAMYA K. et al. A novel association of a polymorphism in the first intron of adiponectin gene with type 2 diabetes, obesity and hypoadiponectinemia in asian indians[J]. Hum Genet,2008.123(6):599-605.
    [34]KHATKAR M S. NICHOLAS F W. COLLINS A R. et al. Extent of genome-wide linkage disequilibrium in australian holstein-friesian cattle based on a high-density SNP panel[J]. BMC Genomics,2008.9:187-205.
    [35]杨海,李秋玲.王洪梅.等.中国荷斯坦牛POULF1基因第6外显子多态性与产奶性能相关研究[J].安徽农业大学学报2008.35(3):452-455.
    [36]毛海霞.陈宏,陈付英,等.郏县红牛DGAT2基因多态性与生长性状的相关性分析[.J].遗传.2008,30(3):329-332.
    [37]徐敏.平富强,陈仕毅,等CXCR2基因多态性与奶牛乳房炎和乳品质的关联[J].遗传,2008.30(4):463-468.
    [38]JANNOT M, RACCAH D, DE LA TOUR D, et al. Genetic and environmental regulation of Na/K adenosine triphosphatase activity in diabetic patients[J]. Metabolism,2002,51(3): 284-291.
    [39]GLORIOSO N. HERRERA V, BAGAMASBAD P. et al. Association of ATP1A1 and DEAR single-nucleotide polymorphism haplotypes with essential hypertension:Sex-specific and haplotype-specific effects[J]. Circulation research,2007,100(10):1522-1529.
    [40]VANMOLKOT K. KORS E, HOTTENGA J. et al. Novel mutations in the Na+,K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions[J]. Annals of neurology,2003,54(3):360-366.
    [41]张现伟,何玉琴,吴宣富Na+/K+-ATP酶ATP1A2基因突变与偏头痛[J].国际脑血管病杂志ISTIC PKU.2006,14:12.
    [42]BERNABUCCI U, RONCHI B, LA CETERA N, et al. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season[J]. Journal of Dairy Science,2002, 85(9):2173.
    [43]SRIKANDAKUMAR A, JOHNSON E. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in holstein, jersey and australian milking zebu cows[J]. Tropical Animal Health and Production,2004,36(7):685-692.
    [44]刘庆华,王根林.热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响[J].福建农林大学学报:自然科学版,2007,36(3):284-287.
    [45]COPPOCK C. GRANT P. PORTZER S. et al. Lactating dairy cow responses to dietary sodium, chloride, and bicarbonate during hot weather[J]. Journal of Dairy Science,1982.65(4): 566-576.
    [46]SCHNEIDER P. BEEDE D. WILCOX C. Responses of lactating cows to dietary sodium source and quantity and potassium quantity during heat stress[J]. Journal of Dairy Science.1986.69(1): 99-110.
    [47]MOREL P, TALLINEAU C, PONTCHARRAUD R, et al. Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes[J]. Neurochemistry international.1998.33(6):531-540.
    [48]洪坤月,汪峰,虞得兵,等.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J].西北农业学报.2007,16(5):11-14.
    [49]李婧.民猪产仔数候选基因研究:[学位论文][D].哈尔滨:东北农业大学,2003.
    [50]束婧婷.鸡肌苷酸相关候选基因遗传效应及表达规律研究:[学位论文][D].扬州:扬州大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700