基于外周动脉压力波形的脉搏传导时间获取方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过外周动脉压力波形获取脉搏传导时间PTT,进而能够计算出脉搏波传播速度PWV,用来正确评估人体的心脑血管现状或生理及病理等相关信息,具有无创、廉价、安全和操作简单等特点,医生和病人较容易接受,具有广泛的医学临床应用价值和重要的社会意义。
     外周动脉压力波形受到血液动力学参数、血液成分、血细胞生理状况、年龄和生理病理等诸多个体差异因素的影响,其波形的获取也容易受到测量传感器、测量部位和环境温度状况等测量条件因素的影响,因此获取的波形是多样变异性的,通过波形计算出的PTT数值精度难以提高,由此导致结果的重复性也较差,严重阻碍了脉搏波传导时间PTT在临床上的应用。本文以不同年龄段人群的桡动脉压力波形数据为研究对象,在总结前人研究工作的基础上,分别提出了在时域、频域和时-频域计算PTT的相关理论和方法,并对三种方法获取的结果进行了相关性分析和Bland-Altman分析,为无创法计算PTT在临床医学上的广泛应用做了一些深入性的理论工作。
     本论文首先对国内外近年内发展起来的计算PTT的各种方法进行了分类与总结,并且针对不同方法的特点进行了比较,探讨了各种方法存在的问题。从而引入本课题研究的科学问题和技术难点。
     第二,分析了桡动脉压力波形信号的时域特征以及相关研究应用的现状,概括说明了对外周动脉压力波形测试获取的自助式脉搏测量仪器的特点。重点介绍了波形分析体系的软件系统,包括嵌入式软件工作的过程和PC机软件的总体框架等操作窗口。最后给出了严格按照测量步骤获取的桡动脉、颈动脉、股动脉和足部动脉压力波形的输出结果以及各个波形的特征差异,为下一步研究外周动脉压力波形奠定了基础。
     第三,依据用于雷达和通信信号处理数据重叠的方法能够复合噪声的特点,在时域中提出一种对桡动脉压力波形进行单周期重叠的方法确定关键点e的位置,介绍了其操作理论与方法,并且用该方法计算出289位研究对象的脉搏波传导时间PTT的数值,接着对计算结果跟年龄等参数的相关性和PTT的应用展开了讨论。结果表明用该方法在馒头波形中准确识别出e点的位置存在缺陷,为此考虑了从频域入手做进一步的研究和探索。
     第四,以傅里叶变换理论为基础,介绍了改进频域分析算法的基本原理,在此基础上提出了评估动脉硬化新的评估指标,即第一峰值F1、第二峰值F2及两者的相位迁移时间τ,重点考察了138位研究对象的频域特征值(F1、F2和τ)跟年龄的相关性,结论证明提出的新参数可以作为一种简易的无创评估指标。为了更深入的研究外周动脉的频域特征,同时还研究分析了典型外周动脉的功率谱特征,如桡动脉、颈动脉、股动脉和足背动脉的生理布局特征和功率谱线特点等。
     第五,在上述对外周动脉压力波形信号频域特征研究的基础上,提出了一种利用桡动脉波形数据的频谱特性,经过巴特沃兹带通滤波去除不需要的频谱成分后,重构波形数据的方法定位关键点c和e的位置来计算脉搏波传导时间PTT。同时对频域重构法和波形重叠法计算出的PTT数据做对比分析,采用SPSS软件进行组内相关性和Bland-Altman分析,结果证明两种方法获取的PTT数值基本趋于一致,可以作为一种获取PTT的计算方法,但是频域重构法计算得出的PTT数值普遍偏大。
     第六,借鉴多分辨率小波分解和系数重构的方法,已成功应用于ECG信号的QRS波检测等方面的研究经验,引入该方法对桡动脉波形信号进行多分辨率分解获取多层细节信息,优选提取出关键层的小波系数,然后重建这些小波系数对波形c点和e点的位置识别,计算出脉搏波传导时间PTT的数值。
     最后选择时间域桡动脉波形重叠的方法作为参考标准,分别用频域重构法和多分辨率小波系数重构法计算出24位年轻人研究对象的PTT数值做比较分析,结果证明多分辨率小波系数重构算法计算出的PTT数值跟波形重叠的方法的相关性较好(R=0.910,P<0.001),优于频域带通滤波重构算法(R=0.689,P<0.001)。
Pulse transmit time (PTT) is an important physiological parameter for assessment of cardio-cerebral vascular status and reflection of some disease information; it is calculated by peripheral arterial pressure signal, and fartherly gaining pulse wave velocity (PWV). The two parameters are independent predictor of cardiovascular disease partially reflected the vascular damage, with non-invasive, inexpensive, safe and simple operation, etc. So they has a wide range of application and social significance for evaluating body healthy in clinic, and are accepted easily by doctors and patients.
     The variation wave of peripheral arteries pressure signal is acquired because of the serious influence of several factors to measurement process. These factors include experimental conditions, such as selective sensors, measurement position and environment temperature as well as the individual variations such as hemodynamic parameters, blood component and cells, age, physiological and pathological status. The high accuracy of PTT is rather difficult to calculate by the various waves, which leads to poor reducibility and limit of its application in clinical medicine.
     In this paper, analysis on radial arterial pressure wave signal was in different ages of the asymptomatic subjects, the methods of calculating PTT were presented in time domain, frequency domain and time-frequency domain based on previous studies, their computed results were assessed validity by correlations and Bland-Altman analysis. And dissertation focused on further research on the fundamental algorithm in calculating PTT non-invasively to improve it widely used in clinical.
     Firstly, the definition of PTT and PWV were given, and the importance of non-invasive detection of these parameters. Then in recent years methods and their classification of calculating PTT at home and abroad were summarized and discussed in depth. We analyzed the problems in different existed methods and proposed the scientific issues and technical difficulties of our research project.
     Secondly, we analysed in-depth characteristics and application of the radial artery pressure wave signal. In order to acquire and display peripheral artery pressure signal, an overview of the measuring pulse instrument and its hardware structure were presented in our laboratory independent research. On the other hand, the paper mainly focused on analysis system software implementation, first we described the MCU software design in detail, second introduced the system block diagram of the PC software, include of the main interface of software, the test window of cardiovascular function and results window of measurement. At last, the radial, carotid, femoral and dorsalis pedis artery pressure waveform were measured in strict accordance with the measurement procedures, and superimposed display all periods wave. So these will be the foundation for further study of peripheral artery pressure wave signal.
     Thirdly, according to processing method of the radar and communications signal, the superimposed wave can be recombination noise characteristics in the time domain, and we boldly proposed a method of detection key point e by superimposed wave in the radial artery pressure signal, its operating theory and method were given in detail. The PTT values of289asymptomatic subjects were computed by this method, its correlations with age and AI were discussed. Thus the results show some defects of this method for calculating the strange bread wave, and the location of the point e in wave is still no way to identify accurately, so we study them in the frequency domain for further research and exploration.
     Fourthly, we improved algorithm of the frequency domain analysis based on Fourier transform theory, the first peak frequency F1, the second peak F2and the phase shift time τ between two peaks were proposed to assessing atherosclerosis with ages. And the characteristic parameters(F1, F2and τ) of138subjects in the frequency domain were calculated, their correlations with age were discussed, the results indicate that the new parameters can be as simply non-invasive evaluation for atherosclerosis. On the other hand, the radial, carotid, femoral and dorsalis pedis artery physical layout in body and their power spectrum characteristics were analyzed and discussed, and we intensified to learn frequency domain features of peripheral arterial pressure signal.
     Fifthly, on the basis of study frequency domain features of peripheral artery pressure wave signal, we presented a new method based on the spectrum characteristic of the radial arterial waveform, the method which was the Butterworth band-pass filtering unwanted frequency components and reconstructing after filtering data for detection the key points c and e in the wave to calculating the pulse transit time PTT. The previous two methods were examined using SPSS software by correlation and the Bland-Altman analysis; the results show that the calculating PTT values of two ways are the basic consistent. However, comparison to the superimposed radial wave method, the PTT value of the frequency domain reconstruction method is large, and it can be as a method for computing the PTT.
     Sixthly, because the multi-resolution wavelet transform has been successfully applied to detection and evaluation of QRS characteristic points in the ECG signal, we learned from the previous studies, and presented this approach for detection of c and e key points in the radial arterial wave signal. We Selected some good multiresolution wavelet coefficients of the critical layers to reconstruct a new wave, and detected the key characteristic points of c and e in it for calculating the PTT value.
     Finally, we selected the superimposed radial wave method as a reference standard, respectively compared with the frequency domain reconstruction method and multi-resolution wavelet coefficients reconstruction method in calculating PTT value of the24young subjects. The test results show that the multi-resolution wavelet coefficients reconstruction algorithm is independently correlated with the superimposed radial wave method(R=0.910, P<0.001), and superior to the frequency domain band-pass filtering reconstruction method(R=0.689, P<0.001).
引文
Addison PS.2005. Wavelet transforms and the ECG:a review[J]. Physiological Measurement,26(5): R155-R199.
    Allen J.2007. Photoplethysmography and its application in clinical physiological measuremen[J], Physiological Measurement,28(3):R1-R39.
    Avolio AP.1980. Multi-branched model of the human arterial system[J]. Med & Biol Eng & Comput, 18:709-718.
    Barraco R, Persano Adorno D, Brai M.2011. An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram[J]. Computer Methods and Programs in Biomedicine, 104(3):316-324.
    Buntin CM, Silver FH.1990. Noninvasive Assessment of Mechanical Properties of Peripheral Arteries[J]. Annals of Biomedical Engineering,18:549-566.
    Cecelja M, Chowienczyk P.2009. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension:a systematic review[J]. Hypertension,54(6): 1328-1336.
    Chemla D, Nitenberg A, Teboul J-L, Richard C, Monnet X, le Clesiau H, Valensi P, Brahimi M.2008. Subendocardial Viability Ratio Estimated by Arterial Tonometry:A Critical Evaluation in Elderly Hypertensive Patients with Increased Aortic Stiffness[J]. Clinical and Experimental Pharmacology and Physiology,35(8):909-915.
    Chen CH, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan WL, Kass DA.1997. Estimation of Central Aortic pressure waveform by mathemaical Transformation of Radial Tonometry Pressure-Validation of Generalized Transfer Function[J], Circulation,95:1827-1836.
    Chowienczyk PJ, Kelly RP, MacCallum H, Millasseau SC, Andersson TLG, Gosling RG, Putter JM, Anggard EE.1999. Photoplethysmographic assessment of pulse wave wave reflection-blunted response to mellitus endothelium-dependent beta 2-adrenergic vasodilation in type II diabetes[J]. J Am Coll Cardiol,34:2007-2014.
    Crilly M, Coch C, Bruce M, Clark H, Williams D.2007. Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry:a measurement repeatability study[J]. Vascular Medicine,12(3):189-197.
    Drzewiecki GM, Melbin J, Noordergraaf A.1983. Arterial tonometry:review and analysis[J], Journal of Biomechanics,16(2):141-152.
    Edwards DG, Mastin CR, Kenefick RW.2008. Wave reflection and central aortic pressure are increased in response to static and dynamic muscle contraction at comparable workloads[J]. J Appl Physiol,104: 439-445.
    Foo JYA, Lim CS.2006. Pulse transit time as an indirect marker for variations in cardiovascular related reactivity[J]. Technology and Health Care,14:97-108.
    Foo JYA, Lim CS, Wang P.2006. Evaluation of blood pressure changes using vascular transit time[J]. Physiological Measurement,27(8):685-694.
    Frimodt-Moller M, Nielsen AH, Kamper AL, Strandgaard S.2007. Reproducibility of pulse-wave analysis and pulse-wave velocity determination in chronic kidney disease[J]. Nephrology Dialysis Transplantation,23(2):594-600.
    Gil E, Orini M, Bailon R, Vergara JM, Mainardi L, Laguna P.2010. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions[J]. Physiological Measurement,31(9):1271-1290.
    Haller MJ, Silverstein JH, Shuster JJ.2007. Correlation between radial artery tonometry-and fingertip tonometry-derived augmentation index in children with type 1 diabetes [J]. Diabetes & vascular disease research,4(1):66-66.
    Huang CM, Wei CC, Liao YT, Chang HC, Kao ST, Li TC.2011. Developing the effective method of spectral harmonic energy ratio to analyze the arterial pulse spectrum[J]. Evidence-Based Complementary and Alternative Medicine,2011:1-7.
    Kawasaki T, Sasayama S, Yagi SI, Asakawa T, Hirai T.1987. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries[J]. Cardiovascular Research,21(9): 678-687.
    Kazuhiko A, Hitoshi I, Hiroshi K, Kazuo U.1998. The Classification of Time-frequency Analysis of the Radial Pressure Pulse Waves using Pulse Diagnosis Sensor System[C]. proceedings of the Proceedings of the Symposium on Biological and Physiological Engineering, pp.369-372.
    Kelly RP, Hayward CS, Avolio AP, O'Rourke MF. 1989. Noninvasive determination of age-related changes in the human arterial pulse[J]. Circulation,80:1652-1659.
    Kohara K, Tabara Y, Oshiumi A, Miyawaki Y, Kobayashi T, Miki T.2005. Radial augmentation index: A useful and easily obtainable parameter for vascular aging[J]. American Journal of Hypertension,18: 11-14.
    Lacy PS, O'Brien DG, Stanley AG, Dewar MM, Swales PP, Williams B.2004. Increased pulse wave velocity is not associated with elevated augmentation index in patients with diabetes[J]. Journal of Hypertension,22(10):1937-1944.
    Lee CT, Wei LY.1983. Spectrum analysis of human pulse [J]. IEEE Transactions on Biomedical Engineering,30:348-353.
    Liang HG, Geng M, Wu L, Yin HD.2010. Research on methods of ABI and PWV measurement[C]. proceedings of the 20103rd International Congress on Image and Signal Processing (CISP2010), pp. 4130-4134.
    Lionel HO.1998. The Heart Physiology, from Cell to Circulation/Third Edition [M]. Lippincott Willianms & Wilkins Inc., U. S. A.
    Lu WA.2006. Pulse spectrum analysis in primary hypertension patients [J]. Taipei City Medical Journal,3:22-32.
    Ma HT, Zhang YT.2006. Spectral analysis of pulse transit time variability and its coherence with other cardiovacular variabilities[C]. proceedings of the Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, pp.6442-6445.
    Mahmoodabadi SZ, Ahmadian A, Abolhasani MD.2005. ECG feature extraction using Daubechies wavelets [C]. proceedings of the Proceedings of the fifth IASTED International conference on Visualization, Imaging and Image Processing, pp.343-348.
    Mahmoodabadi SZ, Ahmadian A, Abolhasani MD, Eslami M, Bidgoli JH.2005. ECG feature extraction based on multiresolution wavelet transform[C]. proceedings of the Proceedings of the 2005 IEEE.Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp.3902-3905.
    Mahomed FA.1872. The physiology and clinical use of the sphygmograph[J]. Medical Time Gazette,1: 62-64.
    Manisty C, Mayet J, Tapp RJ, Parker KH, Sever P, Poulter NH, Thom SAM, Hughes AD.2010. Wave reflection predicts cardiovascular events in hypertensive individuals independent of blood pressure and other cardiovascular risk factors[J]. Journal of the American College of Cardiology,56(1):24-30.
    McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR.2005. Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity-The Anglo-Cardiff Collaborative Trial (ACCT)[J]. Journal of the American College of Cardiology,46(9):1753-1760.
    McLeod AL, Uren NG, Wilkinson IB, Webb DJ, Maxwell SR, Northridge DB, Newby DE.2004. Non-invasive measures of pulse wave velocity correlate with coronary arterial plaque load in humans[J]. Journal of Hypertension,22(2):363-368.
    Millasseau S, Kelly RP, Ritter JM, Chowienczyk PJ.2002. Determination of age-related increases in large artery stiffness by digital pulse contour analysis[J]. Clinical Science,103:371-377.
    Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ.2005. Evaluation of carotid-femoral pulse wave velocity:influence of timing algorithm and heart rate[J]. Hypertension, 45(2):222-226.
    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ.2010. Arterial Stiffness and Cardiovascular Events:The Framingham Heart Study[J]. Circulation, 121(4):505-511.
    Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D.2004. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women:The Framingham Heart Study[J]. Hypertension,43(6):1239-1245.
    Nelson MR, Stepanek J, Cevette M, Covalciuc M, Hurst RT, Tajik AJ.2010. Noninvasive measurement of central vascular pressures with arterial tonometry:Clinical revival of the pulse pressure waveform? [J]. Mayo Clinic Proceedings,85:460-472.
    Nichols W, O'Rourke MF.1998. McDonald's Blood Flow in Arteries:Theoretical, Experimental and Clinical Principles.4th ed. [M]. London, United Kingdom:Arnold.
    Nichols WW.2005. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms[J]. American Journal of Hypertension,18:3-10.
    O'Rourke MF.2009. Time domain analysis of the arterial pulse in clinical medicine[J]. Med Biol Eng Comput,47:119-129.
    O'Rourke MF, Gallagher DE.1996. Pulse wave analysis[J]. Journal of Hypertension,14 (suppI5): S147-S157.
    O'Rourke MF, Nichols WW.2005. Aortic Diameter, Aortic Stiffness, and Wave Reflection Increase With Age and Isolated Systolic Hypertension[J]. Hypertension,45(4):652-658.
    Oliver JJ, Webb DJ.2003. Noninvasive Assessment of Arterial Stiffness and Risk of Atherosclerotic Events[J]. Arteriosclerosis, Thrombosis, and Vascular Biology,23(4):554-566.
    Pal S, Mitra M.2009. ECG feature extraction by multiresolution wavelet analysis based selective coefficient method[C]. proceedings of the ICBME 2008, Proceedings, pp.590-593.
    Pal S, Mitra M.2010. Detection of ECG characteristic points using Multiresolution Wavelet Analysis based Selective Coefficient Method[J]. Measurement,43(2):255-261.
    Pannier BM, Avolio AP, Hoeks A, Mancia G, Takazawa K.2002. Methods and device for measuring arterial compliance in humans[J]. Am J Hypertens,15:743-753.
    Parati G, Saul JP, Rienzo MD, Mancia G.1995. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation-a critical appraisal[J]. Hypertension,25:1276-1286. Pitson DJ, Sandell A, van ven Hout R, Stradling JR.1995. Use of pulse transit time as a measure of inspiratory effort in patients with obstructive sleep apnoea[J]. European Respiratory Journal,8(10): 1669-1674.
    Qasem A, Avolio A.2008. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse[J]. Hypertension,51(2):188-195.
    Rajzer MW, Wojciechowska W, Klocek M, Palka I, Brzozowska-Kiszka M, Kawecka-Jaszcz K.2008. Comparison of aortic pulse wave velocity measured by three techniques:Complior, SphygmoCor and Arteriograph[J]. Journal of Hypertension,26(10):2001-2007.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB.2011. Heart disease and stroke statistics-2012 update:a report from the American Heart Association[J], Circulation,125(1):e2-e220.
    Safar ME.2009. Thirty-five years of clinical works on arterial stiffness and wave reflections in hypertension[J]. Artery Research,3(2):44-48.
    Sahambi JS, Tandonz SN, Bhatt RKP.1997. Using wavelet transforms for ECG characterization:an on-line digital signal processing[J]. IEEE engineering in medicine and biology,77:77-83.
    Segers P, Rietzschel ER, De Buyzere ML, De Bacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR.2007. Assessment of pressure wave reflection:getting the timing right[J]. Physiological Measurement,28(9):1045-1056.
    Song BG, Park JB, Cho SJ, Lee SY, Kim JH, Choi SM, Park JH, Park YH, Choi J-O, Lee S-C, Park SW. 2009. Pulse wave velocity is more closely associated with cardiovascular risk than augmentation index in the relatively low-risk population[J]. Heart and Vessels,24(6):413-418.
    Sugawara J, Hayashi K, Tanaka H.2010. Distal shift of rrterial pressure wave reflection sites with aging[J]. Hypertension,56(5):920-925.
    Sugawara J, Komine H, Hayashi K, Maeda S, Matsuda M.2007. Relationship between augmentation index obtained from carotid and radial artery pressure waveforms[J]. Journal of Hypertension,25: 375-381.
    Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, Havlik R, Lakatta EG, Spurgeon H, Kritchevsky S, Pahor M, Bauer D, Newman A.2005. Elevated aortic pulse wave velocity,a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults[J]. Circulation,111(25):3384-3390.
    Sylviea M, Anniee R, Antonya L, Carolinea B, Claudeb S, Athanased B, Michel E.c S.2001. Aortic pulse wave velocity as a marker of cardiovascular disease in subjects over 70 years old[J]. Journal of Hypertension,19(5):871-877.
    Tardy Y.1991. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements[J]. Clin Phys Physiol Meas 1239,12(1):39-54. Unser M, Aldroubi A.1996. A review of wavelets in biomedical applications [J]. Proceedings of the IEEE,84(4):626-638.
    Van Bortel LM, Vermeersch S, De Backer T, Kips J, Huybrechts S, Segers P.2011. Travel distance estimation for carotid femoral pulse wave velocity[J]. Journal of Hypertension,29(12):2491-2493. Wang BH, Xiang JL.1998. Detecting system and power-spectral analysis of pulse signals of human body[C]. proceedings of the Proceedings of ICSP' 98, pp.1646-1650.
    Wang Y, Zhang S, Yang YM, Luo ZC, Zhang JH, Zeng Y.2005. An analysis of frequency response for the blood flow of volume pulse in microcirculation[J], Bio-Medical Materials and Engineering,15: 189-197.
    Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC, Hayman LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel LP.2011. Value of primordial and primary prevention for cardiovascular disease:a policy statement from the American Heart Association[J]. Circulation,124(8): 967-990.
    Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ.2000. The influence of heart rate on augmentation index and central arterial pressure in humans[J], Journal of Physiology, 525(1):263-270.
    Wong MYM, Pickwell-MacPherson E, Zhang YT.2009. The acute effects of running on blood pressure estimation using pulse transit time in normotensive subjects[J]. European Journal of Applied Physiology,107(2):169-175.
    Wu HT, Liu CC, Lin PH, Chung HM, Liu MC, Yip HK, Liu AB, Sun CK.2010. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects[J]. Atherosclerosis,213(1):173-177.
    Xu D, Ryan KL, Rickards CA, Zhang GQ, Convertino VA, Mukkamala R.2010. Robust pulse wave velocity estimation by application of system identification to proximal and distal arterial waveforms[C]. proceedings of the 32nd Annual International Conference of the IEEE EMBS, pp.3559-3562.
    Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y.2002. Validity, reproducibility and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement[J]. Hypertens Res,25(3):359-364.
    Yang HF, Zhou Q, Xiao J.2009. Relationship between Vascular Elasticity and Human Pulse Waveform Based on FFT Analysis of Pulse Waveform with Different Age [C]. proceedings of the New York, IEEE ICBBE 3rd International Conference, pp.1-4.
    Zhang YL, Zheng YY, Ma ZC, Sun YN.2011. Radial pulse transit time is an index of arterial stiffness[J]. Hypertension Research,34:884-887 Zheng YY, Lung CW, Zhang YL, Li XQ, Ma ZC, Sun YN.2011. Radial diastolic augmentation index is
    a useful predictor of arterial stiffness[J]. Journal of Mechanics in Medicine and Biology. Zheng YY, Zhang YL, Liu Y.2010. The research of pulse wave signal denosing based on EMD and
    ICA[C]. proceedings of the Computational Science and Optimization (CSO),2010 Third International Joint Conference on, pp.482-485.
    Foo JYA, Lim CS.2006. Pulse transit time as an indirect marker for variations in cardiovascular related reactivity[J]. Technology and Health Care,14:97-108.
    周宁,谢建洪.2010.老年高血压患者脉搏波传导速度与颈动脉内膜中层厚度的相关性研究[J].心脑血管病防治,10(5):363-365.
    王虎林,司良毅.2008.同步臂踝脉搏波传导速度研究及应用现状[J].心血管康复医学杂志,17(3):307-309.
    王炳和,王海燕,职利琴,郑薇.1999.高血压患者脉博信号的采集与频谱分析[J].声学技术,18(3):135-138.
    王炳和,相敬林,职利琴,郑薇.1999.基于信号检测的人体脉搏系统传递函数的估计[J].科学通报,44(10):1069-1073.
    王炳和,罗建.2001.人体脉博功率谱分析与中医脉诊机理研究[J].西北大学学报:自然科学版,31(001):21-25.
    王炳和,相敬林,职利琴.2000.倒谱与解卷积技术在人体脉搏系统分析中的应用[J].西北工业大学学报,18(4):600-603.
    王家庆.2006脉搏信号处理方法研究与脉搏测量系统设计[D]:北京工业大学.
    王晨迪,汪丰.2009.一种脉搏波小波降噪算法[J].中国体视学与图像分析,14(1):99-105.
    王登科,张海南,史仪凯,陈鎏.2007.基于DSP的心电信号除噪声方法研究[J].西安工业大学学报,27(3):238-241.
    王超文,吕扬生,黄玉玺.2001.用于ECG信号检测与重建的双正交样条小波滤波器[J].北京生物医学工程,20(1):25-28.
    王睛棍,安鸿伟,李仁甫.1998.组合声波波形数据的预测处理[J].石油物探译丛,4:82-87.
    王彦隆,闫旭龙.2010.颈动脉内中膜厚度-脉搏波传导速度及踝臂指数对冠状动脉硬化的早期预测[J].包头医学院学报,26(1):112-115.
    王钢.2008.脉搏波传导速度变化在动脉粥样硬化性疾病诊治中的意义[J].心血管康复医学杂志,17(5):507-510.
    向定成,王峰.2009.脉搏波传导速度在心血管疾病防治中的地位与前景[J].岭南心血管病杂志,15(1):9-12.
    行鸿彦,王长松.2009.基于经验模态分解的脉搏信号特征研究[J].仪器仪表学报,30(3):596-613.
    何宇航,曹益平,钟立俊,程旭升.2010.采用频域滤波提高数字相位测量轮廓术的测量精度[J].中国激光,37(1):220-224.
    何为,余传祥.2009.心血管动力学参数测量原理和临床应用[M].科学出版社.
    余志强,刘建华,何朝峰,刘宁宁,石彦辉.2007.巴特沃兹数字滤波及其在智能测控系统中的应用[J].电测与仪表,44(497):6-10.
    李音华,刘延勇,向海燕,秦瑜斐,张宏金,俞梦孙.2007.应用阻抗心动图测量脉搏波传导时间[J].北京生物医学工程,26(3):289-292.
    李雪情.2011基于示波法和高斯拟合的腕式电子血压计设计与验证[D]:中国科学技术大学.
    李雪情,张永亮,郑莹莹,占礼葵,马祖长,孙怡宁.2010.基于示波法和高斯拟合的血压测量方法[J].传感技术学报,30(12):1679-1685.
    李凯丽.2008.桡动脉与足背动脉的解剖学特点及其临床意义[J].解剖学研究,30(4):294-297.
    李凯丽,王建社,林卡莉,李光千.2008.国人足背动脉的解剖学测量及临床意义[J].解剖学杂志,31(1):304-305.
    肖沪生,银浩强,徐智章,张爱宏,徐芳,彭欣,靳炜,陆盈,邬云燕,朱蓓菁,高东雯,王奇.
    2008.瞬时波强(WI)技术中脉搏波传导时间检测及临床应用[J].上海医学影像,17(4):273-276.
    周丹.2008短时傅里叶变换和提升小波变换在脉象信号分析中的应用[D]:重庆大学.
    周淋,陈源源,刘喜荣,马志毅,孙宁玲.2009.血压正常年轻人的动脉弹性[J].中华高血压杂志,17(8):711-715.
    周霞.2003中医脉象信号时频特性的分析[D]:重庆大学.
    周红标.2009.基于小波变换的脉搏信号特征提取[J].电子测量技术,32(9):77-80.
    孟兆辉,白净,王苏中,崔树起.2002.高血压病人的光电容积脉搏波的频域分析[J].北京生物医学工程,21(11):1-3.
    武一平,张忠波,林杰,刘晋宁,李凯,闫明坤,薛斌,宋丽倩.2011.599例健康人群脉搏波传导
    速度的测定及其相关危险因素分析[J].脑与神经疾病杂志,19(3):161-163.
    姜春良,江汉红,张朝亮,彭艳芳.2011.基于频域滤波的噪声识别去噪算法[J].船海工程,40(2):146-148.
    姜斌,宋蜇存.2007.脉象信号的频谱分析[J].自动化技术与应用,26(8):38-41.
    胡光锐.1995.信号与系统[M].上海交通大学出版社.
    范宝林,彭屹.2005.小波变换用于心电信号消噪及QRS波检测的研究进展[J].北京生物医学工 程,24(2):147-150.
    姬军.2006胸_头脉搏波传导时间测量技术研究[D]:第四军医大学.
    徐可欣,王继寸,余辉,杜非.2009.脉搏波时域特征与血压相关性的研究[J].研究论著,24(8):42-46.
    郝晓霞.2009基于脉搏波的动脉硬化识别方法的研究[D]:内蒙古大学.
    高月花,张梅,张运,张园园.2010.颈动脉粥样硬化与股动脉粥样硬化的比较[J].医学影像学杂志,20(11):1605-1608.
    曹丁.2009基于倒谱特征的脉象信号识别算法研究[D]:重庆大学.
    章慎磊.2007心气虚证(冠状动脉供血不足)脉象信息时频分析[D]:山东中医药大学.
    喻学红,曹秉振.2006.颈动脉内-中膜厚度的影响因素[J].中国临床康复,10(37):120-123.
    曾鸣,冯建鑫,于志伟.2008.基于角速度频域重构的旋转矢量解算[J].中国惯性技术学报,16(2):144-148.
    程莲,孙红光.2011.医学超声早期发现颈动脉粥样硬化的应用进展[J].生物医学工程与临床,15(3):298-301.
    逯科,王元利,刘军利.2009.灵巧噪声波形设计研究及仿真[J].压电与声光,31(5):757-759.
    黎秀龙.2011基于外周动脉波形分析的Multi_PWV获取方法[D]:中国科学技术大学.
    黎秀龙,马祖长,张永亮,孙怡宁.2011.基于波形分析的多种PWV获取系统的设计[J].生物医学工程研究,30(2):72-77.
    瞿年清,谢梦洲.2007.脉搏波形释义[J].中国中医药信息杂志,14(6):3-4.
    刘明才.2005.小波分析及其应用[M].清华大学出版社.
    刘玥,齐新,冀云萍,刘克强,庞建.2011.臂踝脉搏波传导速度与心血管危险因素的相关性[J].心脏杂志,23(4):518-521.
    刘雪红,吴爱平,王立业,李川勇.2003.小波变换去除心电信号中呼吸信号干扰[J].生物医学工程与临床,7(2):78-80.
    刘国涛,王先菊,艾保全,刘良钢.2003.复杂动脉血管内血液流动的研究进展[J].中国医学物理学杂志,20(3):168-171.
    刘宝华,任晓华.2010.脉搏波传导速度测量算法的研究及其进展[J].生物医学工程学杂志,27(1):231-235.
    刘广斌,雷毅华.1990.两种滑脉患者与健康妇女指端血管容积脉搏波的谱分析[J].西安医科大学学报,11(003):201-205.
    卢宗武.2007基于脉搏波阻抗谱的血液电特性无创检测[D]:天津大学.
    吴艳,邓昌明.2009.脉搏波传导速度应用研究进展[J].重庆医学,38(18):2372-2374.
    孙文青.1996.光电容积脉搏波的FFT分析与研究[J].苏州大学学报(自然科学版),12(1):50-54.
    张石,杜恺,董建威.2006.基于小波变换的脉搏波标志点检测方法[J].数据采集与处理,21:40-43.
    张俊利,蔺嫦燕.2007.容积脉搏波的检测方法及其在评价心血管功能方面的应用[J].北京生物医学工程,26(2):220-224.
    张彬,张业宏,李明彩.2011.小波变换与形态学运算相结合的脉搏波检测算法[J].电子测量技术,34(6):23-26.
    张富强.2008脉搏波信号处理算法及实验研究[D]:哈尔滨工业大学.
    张丽琼,王炳和.2004.基于小波变换的脉象信号特征提取方法[J].数据采集与处理,19(3):323-328.
    杨琳,杨益民,罗志昌.2008.基于重搏波谷点的脉搏波波形特征量分析[J].北京生物医学工程,27(3):229-234.
    杨福生.1999.小波变换的工程分析与应用[M].科学出版社.
    罗志昌,张松,杨文鸣.1996.脉搏波波形特征信息的研究[J].北京工业大学学报,22(1):71-79.
    罗志昌,张松,杨益民.2006.脉搏波的工程分析与临床应用[M].科学出版社.
    苏丽.2006远程心电监护诊断系统心电信号处理方法研究[D]:哈尔滨工程大学.
    许智僳.2008新型中医脉诊系统之研究及应用[D]:台湾中原大学.
    谢晓亮,李觉,胡大一.2007.脉搏波传导速度测定方法及临床意义[J].中国心血管病研究杂志,5(6):465-468.
    赵光宇,舒勤.2001.信号分析与处理[M].机械工业出版社.
    赵安.2008基于光电容积脉搏波的亚临床动脉弹性功能研究[D]:第三军医大学.
    邹园园,葛庆平,韩煜,沈兰溪,张存林.2009.基于频域滤波的THz图像条纹噪声处理[J].计算机工程与应用,45(17):241-243.
    郑莹莹.2011基于桡动脉波形分析的动脉硬化评估指标研究[D]:中国科学技术大学.
    闫坤丽,黄秀先,白真真,李国杰,梁树俊,马辉,张红叶,崔焱.2011.成年人脉搏波传导速度与
    肾功能之间的关系[J].中华高血压杂志,19(3):269-272.
    陈展明.2008心内直视手术中桡动脉—足背动脉压力梯度的临床研究[D]:协和临床学院.
    陈国平,顾建平,楼文胜,何旭,陈亮,苏浩波,宋进华,汪涛,徐克.2011.股深动脉血流重建改
    善下肢缺血的临床应用[J].介入放射学杂志,20(10):782-786.
    韩阳,黄元伟,孙坚.2000.高血压病患者桡动脉搏动波谐波分析[J].心脏杂志,12(3):179-182.
    黄博强.2010基于Context模型和矢量-标量量化器的ECG信号压缩[D]:复旦大学.
    黄晖明,陶宏军,李森,许浩.2011.脉搏波传导速度(PWV)在体质综合评价中的应用[J].中国体育科技,47(4):91-95.
    齐跃,王春燕.2010.心血管疾病脉搏波传导速度特征分析研究[J].现代中西医结合杂志,19(29):3812-3813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700