阻塞性睡眠呼吸暂停及其干预治疗对冠心病患者代谢紊乱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:阻塞性睡眠呼吸暂停(Obstructive sleep apnea,OSA)在人群中普遍存在,而且与心血管疾病关系密切。国外流行病学资料显示OSA发生冠心病的风险明显增加,然而国内相关的研究数据较少,本研究旨在通过横断面研究,采用多功能睡眠记录仪(Polysomnography, PSG)结合冠状动脉造影(Coronary angiography,CAG),了解国人OSA患者中冠心病(Coronary artery disease,CAD)的发生率,并探讨两者之间关系和临床特点。
     方法:连续入选2009年01月—2010年6月以胸痛待查入住阜外医院心内科五区行冠状动脉造影(CAG)的患者,详细询问病史,排除心力衰竭、慢性阻塞性肺病等疾病后,完成问卷调查,获取身高、体重、吸烟史、饮酒史、高血压病史、糖尿病史等临床资料;进行整夜的PSG,排除中枢性呼吸睡眠暂停;并于次日清晨空腹抽取静脉血,检测常规生化指标,包括血糖、血脂等。根据PSG的结果和美国睡眠医学会确定成年人睡眠呼吸暂停的诊断标准,将所有患者分为四组:(1)无OSA组:睡眠呼吸暂停低通气指数(AHI)<5;(2)轻度OSA组:5     结果:257例患者入选,无OSA组56例,轻度OSA组79例,中度OSA组61例,重度OSA组61例。四组患者的年龄、性别、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、空腹血糖、高血压的发生率等无显著性差异。四组之间方差分析显示,AHI、ODI、平均血氧饱和度、最低血氧饱和度与血氧饱和度低于90%的时间(TST)均具有显著性差异(P<0.001)。相关分析显示AHI与ODI相关性最高(r=0.978),其次是最低血氧饱和度(r=-0.561),TST(r=0.392),最后是平均血氧饱和度(r=-0.355)。无OSA组、轻度OSA组、中度OSA组和重度OSA组中,经CAG确诊CAD的患者分别为44.6%:60.0%:70.5%:72.1%(P<0.01);Logistic回归分析,最低血氧饱和度与CAD的发生显著相关(P=0.024)
     结论:OSA与冠心病的发生和发展关系密切。本研究发现在PSG的参数中,ODI与AHI相关性最高,校正混杂因素后相关系数为0.974。在评价血氧的各指标中,最低血氧饱和度与AHI相关性最高。CAD的发生率在国人OSA患者中明显增加,随着OSA的严重程度呈递增趋势;多元回归分析,OSA是冠心病的独立危险因素。
     目的:阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)普遍存在,OSA患者是罹患心血管疾病高危人群,且该人群也具有代谢性综合征的高危因素,但其机制并不十分清楚。OSA与代谢紊乱之间的独立关系可能是一条导致心血管疾病的途径。胰岛素抵抗(insulin resistance, IR)是心血管疾病和代谢性综合征的重要的共同环节之一。本文通过夜间多功能睡眠记录仪(Polysomnography, PSG),结合稳态模型胰岛素抵抗指数(HOMA-IR)及相关糖代谢指标的检测,探讨国人中OSA及与胰岛素抵抗的相关性。
     方法:连续入选2009年10月—2010年6月因打鼾在本中心行PSG检查的患者。排除糖尿病、心力哀竭以及多种内分泌性疾病等。PSG检查当晚获取患者的详细临床资料和病史,包括身高、体重、吸烟史、饮酒史、高血压病史、糖尿病史等;受试者在清晨6:00采取空腹的静脉血液标本。在本院临床检验中心检测各种血液生化指标,包括胰岛素、血糖、血脂、高敏C反应蛋白等。以HOMA2-IR指数来衡量胰岛素抵抗。HOMA2法是将空腹血糖和空腹胰岛素输入软件HOMA Calculator V2.2.2,计算HOMA2-IR。
     结果:入选符合入排标准的患者218例,其中男性176例,女性42例,平均(57.1±10.1)岁。其中无OSA组对照人群50名,轻度OSA组64名,中度OSA组61名,重度OSA组43名。四组间性别、吸烟史、饮酒史等均无显著性差异。无OSA组、中度OSA和重度OSA组之间年龄无显著性差异,而轻度OSA组的年龄较低;体重指数(Body mass index, BMI)指数在四组间存在显著差异(P<0.001)。四组之间方差分析显示,呼吸暂停低通气指数(Apnea hypopnea index, AHI)、减氧饱和度指数(Oxygen desaturation index, ODI)、平均血氧饱和度、最低血氧饱和度与血氧饱和度低于90%的时间(TST)均具有显著性差异(P<0.001)。四组间空腹胰岛素、HOMA指数存在显著差异。与无OSA组、轻度OSA组、中度OSA组三组相比,重度OSA组的空腹胰岛素显著增加;与无OSA组、中度OSA组两组相比,重度OSA组的与HOMA2指数显著增加。
     Pearson相关分析提示HOMA指数与TST的相关性最高(r=0.305,P<0.001),其次是BMI指数(r= 0.247,P<0.001)、AHI/ODI (r=0.20, P<0.01)、平均血氧饱和度(r=-0.151,P<0.05);空腹胰岛素水平与TST的相关性最高(r=0.331,P<0.001),其次是BMI指数(r=0.227,P=0.001)、AHI/ODI (r=0.19,P>0.01).平均血氧饱和度(r=-0.170,P<0.05)。校正年龄、性别、BMI指数等指标后,偏相关分析提示:HOMA指数仍与TST的相关性最高(r=0.302,P<0.001),其次是AHI(r=0.142,P<0.05);空腹胰岛素水平也是与TST的相关性最高(r=0.328,P<0.001),其次是平均血氧饱和度(r=-0.150, P<0.05)、ODI (r= 0.136, P<0.05)
     以PSG的各指标(AHI、ODI、平均血氧饱和度、最低血氧饱和度和TST)、BMI、高密度脂蛋白胆固醇和糖化血红蛋白为自变量,以HOMA胰岛素抵抗指数为因变量,进行逐步回归分析;最后,TST、平均血氧饱和度、BMI三个参数进入回归方程,提示OSA造成的低氧血症和肥胖对胰岛素抵抗均有显著性影响(P<0.001)
     结论:与无OSA组相比,重度OSA组的空腹胰岛素水平、HOMA2胰岛素抵抗指数显著增加;Pearson相关分析提示HOMA指数与TST的相关性最高,校正年龄、性别、BMI指数等指标后,两者之间的相关性依然显著存在。多元回归分析提示胰岛素抵抗与OSA造成的低氧血症的指标和肥胖独立相关,随着血氧程度的降低,特别是随着血氧饱和度低于90%的时间的增加、平均血氧饱和度的降低,胰岛素抵抗显著增加,提示OSA是胰岛素抵抗的重要影响因素。
     目的:阻塞性睡眠呼吸暂停(Obstructive sleep apnea, OSA)在成人中普遍存在,是冠心病(Coronary heart disease, CAD)发生发展的独立危险因素。大量国内外资料显示代谢综合征是心血管疾病的独立危险因素。而且越来越多的临床证据表明OSA与代谢综合征密切相关。由于混杂因素众多(包括肥胖等),OSA与代谢综合征之间的机制十分复杂。持续气道正压通气(Continuous positive airway pressure, CPAP)是阻塞性睡眠呼吸暂停的有效的治疗方法。然而,对于已经接受最优化药物治疗的冠心病合并阻塞性睡眠呼吸暂停患者,CPAP是否能改善代谢紊乱和生活质量尚不清楚。本研究旨在通过前瞻性随机对照研究应用CPAP对OSA进行干预治疗,探讨OSA是否通过引起代谢紊乱而促进冠心病的发生发展。
     方法:本研究入选2009年3月到2010年9月期间就诊于本中心确诊中重度OSA合并冠心病的患者,而且这些冠心病患者已经应用最优化的药物治疗冠心病和高血压等。排除中枢性呼吸暂停、心力衰竭、严重的呼吸系统疾病等。56名符合入排标准的患者签署知情同意,6名患者在导入期被排除,其余50名患者按照1:1的比例随机分为两组:CPAP组和对照组。CPAP组患者接受6个月的CPAP治疗+常规治疗;对照组患者仅接受常规治疗。两组患者在随机前收集基线人口学特征和病史,检测空腹的血液生化学指标,计算稳态模型胰岛素抵抗指数(HOMA2-IR),评价患者的Epworth嗜睡评分(Epworth sleepiness score, ESS)和生活质量评价量表等。两组患者均于随机后1、3和6个月后进行诊室随访,重新评估血液生化指标、人口学特征以及生活质量等。
     结果:两组间比较,基线收集所有的数据均无显著性差异,只有糖化血红蛋白存在显著性差异(P=0.024)。经过6个月的随访,与对照组相比,CPAP治疗显著降低空腹胰岛素水平(P=0.026)。于此相对应,CPAP组的HOMA2-IR指数较对照组亦显著降低(P=0.021)。而其他血液生化学指标,在两组间比较均无显著性差异。1个月、3个月和6个月随访时,CPAP组患者的舒张压较对照组均显著降低(P=0.004)。与此相反,在随访期间,两组间收缩压和心率的变化均没有达到显著性差异。1个月治疗后,与对照组相比,CPAP组日间嗜睡症状明显改善(CPAP组△-5.24±2.35 vs对照组△-0.48±2.26,P<0.001),而且这种差异一直持续到6个月。6个月随访后,与CPAP组相比,对照组的抑郁评分显著增加(P=0.002)。焦虑评分在治疗前后的两组之间无显著变化。经过6个月的治疗,两组间SF-36生活质量量表的八个维度评分均未达到显著性差异。
     结论:本研究通过前瞻性随机对照研究证实,在中重度OSA合并最优化药物治疗的冠心病患者中,CPAP治疗可以改善胰岛素抵抗,降低系统血压,特别是舒张压,并改善ESS评分,提示OSA有可能通过引起一系列代谢性紊乱,特别是胰岛素抵抗,来促进冠心病的发生发展,为冠心病的二级预防提供了新的治疗靶点,所以积极的治疗OSA对冠心病患者大有裨益。
Objective:A number of recent studies suggest that obstructive sleep apnea (OSA) may have a tight relationship with cardiovascular diseases. The epidemiological studies overboard have suggested that patients with OSA have an increased risk for coronary artery disease (CAD). However, the data in China is rare. The objective of the current study is to determine the incidence of CAD in patients with OSA, and to evaluate the clinical relationship between CAD and OSA, using coronary angiography (CAG) and polysomnography (PSG).
     Methods:Consecutive patients who underwent CAG from January 2009 to June 2010 in our department were enrolled into the current study. The patients who have heart failure, chronic pulmonary diseases were excluded. After overnight PSG, patients with central sleep apnea were excluded. The clinical characteristics were collected including height, weight, smoke habit, alcohol consumption, and medical history, et al. In the next morning, fasting blood samples was drawn from an antecubital vein for determination of insulin, blood glucose, lipid profiles, et al. All patients were divided into four groups according to the severity of OSA. (1) no OSA group:apnea hypopnea index (AHI)<5; (2) mild OSA group:5≤AHI<15; (3) moderate OSA group:15≤AHI<30; (3) severe OSA group:30≤AHI。
     Results:257 patients were included and divided into four groups according to the severity of OSA. There were 56 patients in no OSA group,79 patients in mild OSA group,61 patients in moderate OSA group, and 61 patients in severe OSA group. In the analysis of variance, AHI, Oxygen desaturation index (ODI), average oxygen saturation, minimal oxygen saturation, and oxygen saturation below 90%(TST) were all significantly different between the four groups (P<0.001). In Pearson correlation, ODI was the most significantly correlated with AHI (r=0.978). The other factors correlated with AHI included minimal oxygen saturation (r=-0.561), TST (r=0.392), average oxygen saturation (r=-0.355).The incidence of CAD were 44.6%:60.0%:70.5%:72.1% (P<0.01) in no OSA group, mild OSA group, moderate OSA group, and severe OSA group, respectively. In logistic regression analysis, minimal oxygen saturation was significantly correlated with CAD (P=0.024).
     Conclusions:OSA is tightly related with the development of CAD. Among all the PSG variables, ODI was the most significantly correlated with AHI even after adjustment for confounders. Among all the variables for oxygen saturation, minimal oxygen saturation was the most significantly correlated with AHI. The incidence of CAD was significantly higher in OSA patients than no OSA patients, and had an increased trend with the severity of OSA. OSA is the independent risk factors.
     Objective:Obstructive sleep apnea (OSA) has high prevalence and wide spectrum in adults. OSA patients are in high risk of cardiovascular diseases, and also have high risk factors for metabolic syndrome. However, the mechanism of OSA is not very clear. The independent relationship between OSA and metabolic disorders might be one pathway contributing to cardiovascular diseases. Insulin resistance is an important linkage between cardiovascular diseases and metabolic syndrome. The aim of the current study is to determine the relationship between OSA and insulin resistance by polysomnography (PSG) and homeostatic model assessment of insulin resistance (HOMA-IR).
     Methods:Consecutive snoring patients were enrolled from the Sleep Center of Fuwai Hospital from October 2009 to June 2010. All patients underwent overnight PSG using an Embletta recording device in the current study. The patients who have diabetes, heart failure, and other endocrine diseases were excluded. The clinical characteristics were collected including height, weight, smoke habit, alcohol consumption, and medical history. In the morning at 6:00, fasting blood samples were drawn from an antecubital vein for determination of insulin, blood glucose, lipid profiles, high sensitivity C-reactive protein, et al at the local clinical testing center. Insulin resistance was evaluated by HOMA2-IR. HOMA2-IR was calculated by software HOMA Calculator V2.2.2 where fasting blood glucose and fasting insulin levels were enrolled.
     Results:218 patients after matched with the Inclusion and Exclusion criteria were enrolled.176 patients were males while 42 were females. The average age is (57.1±10.1) years. All patients were divided into four groups according to the severity of OSA. There were 50 patients in no OSA group,64 patients in mild OSA group,61 patients in moderate OSA group, and 43 patients in severe OSA group. There were no significant differences in sex, smoker, and alcohol consumption between the four groups. The age of mild OSA group is significantly lower than the other three groups. Body mass index (BMI) is also significantly different between the four groups. In the analysis of variance, apnea hypopnea index (AHI), Oxygen desaturation index (ODI), average oxygen saturation, minimal oxygen saturation, and oxygen saturation below 90%(TST) were all significantly different between the four groups. Fasting insulin levels and HOMA-IR indexes were also significantly different between the four groups. Fasting insulin levels were significantly higher in severe OSA group than the other three groups. HOMA-IR indexes were significantly higher in severe OSA group than no OSA group, and moderate OSA group.
     In Pearson correlation, TST was the most significantly correlated with HOMA index (r= 0.305, P<0.001). The other factors correlated with HOMA index included BMI index (r= 0.247, P<0.001)、AHI/ODI(r= 0.20, P<0.01)、average oxygen saturation (r=-0.151, P<0.05). Meanwhile, TST was also the most significantly correlated with fasting insulin levels (r= 0.331,P<0.001). The other factors correlated with fasting insulin levels included BMI index (r= 0.227,P=0.001)、AHI/ODI(r= 0.19, P<0.01)、average oxygen saturation (r=-0.170, P<0.05). In partial correlation adjusted for age, sex, and BMI index, TST was still the most significantly correlated with HOMA index (r=0.302, P<0.001), and the other factor significantly correlated HOMA index was AHI(r= 0.142, P<0.05); moreover, TST was still the most significantly correlated with fasting insulin levels (r= 0.328, P<0.001), and the other two factors significantly correlated fasting insulin levels were average oxygen saturation (r=-0.150, P<0.05) and ODI (r=0.136, P<0.05).In multiple logistic regression analysis, TST, average oxygen saturation, and BMI were significantly correlated with HOMA-IR (P<0.001).
     Conclusions:Fasting insulin levels and HOMA-IR index were significantly higher in severe OSA group than no OSA groups. In Pearson correlation, TST was the most significantly correlated with both HOMA index and fasting insulin levels, even after adjustment for age, sex, and BMI. In multiple logistic regression analysis, insulin resistance was independently correlated with the variables of hypoxemia and obesity. Insulin resistance increased with the severity of hypoxemia. OSA is independently related with insulin resistance.
     Background:Obstructive sleep apnea (OSA) is prevalent in adult and is an independent risk factor for the development of coronary artery disease (CAD). Lots of data suggest that metabolic syndrome is also an independent risk factor for CAD. More and more clinical studies reveal that OSA is tightly related with metabolic syndrome. However, due to many confounding factors, the mechanism between OSA and metabolic syndrome is very complicated. Continuous positive airway pressure (CPAP) is an effective therapy for OSA. However, for patients who already have OSA and CAD with optimal medications, whether CPAP can improve metabolic disorders and quality of life is not clear. This is a prospective randomized controlled study to evaluate the effects of CPAP on metabolic disorders in Chinese cohorts with CAD under optimal medications.
     Methods:Patients with CAD and moderate to severe OSA were enrolled from the Sleep Center of Fuwai Hospital from May 2009 to September 2010. These CAD patients were optimal treated for CAD and hypertension. The patients who have heart failure, chronic pulmonary diseases, and central sleep apnea were excluded.56 patients were enrolled; however,6 patients were excluded in sham-CPAP phase. Thus 50 patients were randomized into two groups:CPAP group and control group. Patients in CPAP group accept CPAP treatment and standard care; control group only accept standard care. Before randomization, the clinical characteristics were collected and blood biochemical profiles were measured, as well as assessment of Epworth sleepiness score (ESS) and quality of life. The patients of the two patients were followed up at 1 month,3 months and 6 months after randomization. Clinical characteristics, blood biochemical profiles and quality of life were re-assessed and compared with the data of baseline.
     Results:At baseline, all the data were matched between the two groups except HbAlc. After 6 months, compared with control group, CPAP treatment significantly reduced the levels of fasting insulin (P=0.026). At the same time, HOMA2 indexes in CPAP group were also significantly reduced by CPAP treatment (P=0.021). However, the other blood biochemical measurements remained unchanged between the CPAP group and control group. Compared with control group, CPAP treatment markedly reduced the morning diastolic BP (P=0.023) at 1 month,3 months, and 6 months follow-up. In contrast, there were no significant changes in systolic BP and heart rate. After 1 month CPAP treatment, ESS scores were significantly improved in CPAP group compared with control group (Δ-5.2±3.1 vsΔ-0.5±3.2, respectively, P<0.001).And this significant deference remained until the sixth month. The depression score was significantly increased in control group compared with CPAP group after 6 months (P=0.002). On the other hand, the anxiety score had no deference between the two groups. The quality of life also had no significant changes in CPAP group compared with control group.
     Conclusions:In the current study, CPAP treatment for 6 month was associated with significant improvement in insulin resistance, reduction in diastolic BP and improvement in ESS score of patients with both moderate-to-severe OS A and CAD on optimal medication. This study suggested that OSA might cause a series of metabolic disorders, especially insulin resistance, which could further promote the development of CAD. This provides a new target for the second prevention of CAD. So CPAP treatment for OSA has great benefits for CAD patients.
引文
1. Lopez, A.D., C.J.L. Murray. The global burden of disease:a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020.Cambridge, MA:Harvard School of Public Health on behalf of the World Health Organization and World Bank,1996.
    2.赵冬,吴兆苏,王薇.北京地区1984-1997年急性冠心病事件发病率变化趋势(中国MONICA方案的研究).中华心血管病杂志.2000;1:14-17.
    3.胡盛寿,孔灵芝.中国心血管病报告2006.中国大百科全书出版社.2008.
    4. Lee W, Nagubadi S, Kryger MH, et al. Epidemiology of Obstructive Sleep Apnea:a Population-based Perspective. Expert Rev Respir Med.2008; 2(3):349-64.
    5. Huang, S.G. and Q.Y. Li. [Prevalence of obstructive sleep apnea-hypopnea syndrome in Chinese adults aged over 30 yr in Shanghai]. Zhonghua Jie He He Hu Xi Za Zhi.2003; 26(5):268-72.
    6. Ip, M.S., et al. A community study of sleep-disordered breathing in middle-aged Chinese men inHong Kong. Chest.2001;119(1):62-9.
    7. Ip, M.S., et al. A community study of sleep-disordered breathing in middle-aged Chinese womenin Hong Kong:prevalence and gender differences. Chest.2004; 125(1): 127-34.
    8. Young, T., et al. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep.1997;20(9):705-6.
    9. Flemons, W.W., et al. Access to diagnosis and treatment of patients with suspected sleep apnea. Am J Respir Crit Care Med.2004; 169(6):668-72.
    10. Hiestand, D.M., et al. Prevalence of symptoms and risk of sleep apnea in the US population:Results from the national sleep foundation sleep in America 2005 poll. Chest. 2006;130(3):780-6.
    11. Reuveni, H., et al. Awareness level of obstructive sleep apnea syndrome during routine unstructured interviews of a standardized patient by primary care physicians. Sleep.2004;27(8):1518-25.
    12. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease:an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol.2008; 52(8):686-717.
    13. Mooe T, Franklin KA, Holmstrom K, et al. Sleep-disordered Breathing and Coronary Artery Disease Long-term Prognosis, Am J Respir Crit Care Med.2001; 164(10 Pt 1):1910-1913.
    14. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease:cross sectional results of the sleep heart health study. Am J Respir Crit Care Med.2001; 163(1):19-25.
    15. Marin, J.M., et al., Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet.2005;365(9464):1046-53.
    16. Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnea:A long-term follow-up. Eur Respir J.2006; 28:596-602.
    17. Peker Y, Hedner J, Kraiczi H, et al. Respiratory disturbance index:an independent predictor of mortality in coronary artery disease. Am J Respir Crit Care Med.2000; 162:81-6.
    18. Milleron O, Pilliere R, Foucher A, et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease:a long-term follow-up study. Eur Heart J.2004; 25(9):728-34.
    19. Gami, A.S., et al., Day-night pattern of sudden death in obstructive sleep apnea. N Engl JMed.2005;352(12):1206-14.
    20. Yamauehi M, NakanO H, Maekawa J, et al. Oxidative stress in obstructive sleep apnea. Chest.2005;127:1674-1679.
    21. McNicholas WT, Bonsignore MR. Sleep apnoea as an independent risk factor for cardiovascular disease:current evidence, basic mechanisms and research priorities. Eur Respir J.2007; 29(1):156-178.
    22. Kraiczi H, Caidahl K, Samuelsson A, et al. Impairment of vascular endothelial function and left ventricular filling:association with the severity of apnea-induced hypoxemia during sleep. Chest.2001; 119(4):1085-91.
    23. McArdle N, Hillman D, Beilin L, et al. Metabolic risk factors for vascular disease in obstructive sleep apnea:a matched controlled study. Am J Respir Crit Care Med.2007; 175(2):190-195.
    1. Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea:the importance of visceral obesity and insulin resistance. J Intern Med. 2003; 254:32-44.
    2. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev.2005;9:211-24.
    3. Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med.1998;15:539-53.
    4. Elmasry A, Lindberg E, Berne C, et al. Sleep-disordered breathing and glucose metabolism in hypertensive men:a population-based study. J Intern Med.2001; 249:153-61.
    5. Lakka H, Laaksonen D, Lakka T, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA.2002;288:2709-16.
    6. Punjabi NM, Ahmed MM, Polotsky VY, et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance. Respir Physiol Neurobiol.2003;136:167-78.
    7. Elmasry A, Janson C, Lindberg E, et al. The role of habitual snoring and obesity in the development of diabetes:a 10-year follow-up study in a male population. J Intern Med. 2000;248:13-20.
    8. Al Delaimy WK, Manson JE, Willett WC, et al. Snoring as a risk factor for type Ⅱ diabetes mellitus:a prospective study. Am J Epidemiol.2002;155:387-93.
    9. Davies RJ, Turner R, Crosby J, et al. Plasma insulin and lipid levels in untreated obstructive sleep apnoea and snoring:their comparison with matched controls and response to treatment. J Sleep Res.1994;3:180-5.
    10. Strohl KP, Novak RD, Singer W, et al. Insulin levels, blood pressure and sleep apnea. Sleep.1994;17:614-18.
    11. Stoohs RA, Facchini F, Guilleminault C. Insulin resistance and sleep-disordered breathing in healthy humans. Am J Respir Crit Care Med.1996;154:170-4.
    12. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue:relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab.2000;85:l 151-8.
    13. Elmasry A, Lindberg E, Berne C, et al. Sleep-disordered breathing and glucose metabolism in hypertensive men:a population-based study. J Intern Med.2001; 249:153-61.
    14. Ip MS, Lam B, Ng MM, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med.2002; 165:670-6.
    15. Manzella D, Parillo M, Razzino T, et al. Soluble leptin receptor and insulin resistance as determinant of sleep apnea. Int J Obes Relat Metab Disord.2002;26:370-5.
    16. Punjabi NM, Sorkin JD, Katzel LI, et al. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med.2002; 165:677-82.
    17. Meslier N, Gagnadoux F, Giraud P, et al. Impaired glucoseinsulin metabolism in males with obstructive sleep apnoea syndrome. Eur Respir J.2003;22:156-60.
    18. Young T, Peppard P, Gottlieb D. Epidemiology of obstructive sleep apnea:a population health perspective. Am J Respir Crit Care Med.2002;165:1217-39.
    19. Amin RS, Carroll JL, Jeffries JL, et al. Twenty-four-hour ambulatory blood pressure in children with sleep-disordered breathing. Am J Respir Crit Care Med.2004; 169:950-6.
    20. delaEva R, Baur L, Donaghue K, Waters K. Metabolic correlates with obstructive sleep apnea in obese subjects. J Pediatr.2002; 140:641-3.
    21. Tauman R, O'Brien LM, Ivanenko A, Gozal D. Obesity rather than severity of sleep-disordered breathing as the major determinant of insulin resistance and altered lipidemia in snoring children. Pediatrics.2005;116:e66-73.
    22. Tauman R, Serpero LD, Capdevila OS, et al. Adipokines in children with sleep disordered breathing. Sleep.2007;30:443-9.
    23. Wallace TM, Levy JC, Matthews DR:Use and abuse of HOMA modeling. Diabetes Care.2004; 27:1487-95.
    24. Punjabi NM, Ahmed MM, Polotsky VY, Beamer BA, O'Donnell CP. Sleep-disordered breathing, glucose intolerance, and insulin resistance. Respir Physiol Neurobiol.2003; 136(2-3):167-78.
    25. Polotsky VY, Li J, Punjabi NM, et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol.2003;552(Pt 1):253-64.
    26. Iiyori N, Alonso LC, Li J, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med.2007; 175(8):851-7.
    27. Sakuraba H,Mizukami H,Yagihashi N,et al.Reduced β cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type Ⅱ diabetes patients. Diabetologia.2002; 45:85-9
    28. Houstis N, Rosen ED, Lander ES.Reactive oxygen species have a causal role in multiple forms of insulin resistance [J].Nature.2006;440 (7086):944-8.
    1. Duran J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med.2001;163:685-9.
    2. Young T, Evans L, Finn L, Palta M. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep.1997;20:705-6.
    3. Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnea:A long-term follow-up. Eur Respir J.2006;28:596-602.
    4.罗勤,柳志红,赵智慧等.冠心病和睡眠呼吸暂停综合征的关系.中国分子心脏病学杂志.2007;7:351-4.
    5. Peker Y, Hedner J, Kraiczi H, et al. Respiratory disturbance index:an independent predictor of mortality in coronary artery disease. Am J Respir Crit Care Med. 2000;162:81-6.
    6. Ford E, Giles W, Dietz W. Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey. JAMA. 2002;287:356-9.
    7. Pyorala M, Mettinen H, Halonen P, et al. Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men:the 22-year follow-up results of the Helsinki policeman Study. Aeterioscler Thromb Vase Biol.2000;20:538-44.
    8. Despres JP, Larnarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med.1996;334:952-7.
    9. Fontbonne A, Charles MA, Thibult N, et al. Hyperinsulinemia as a predictor of coronary heart disease mortality in a healthy population, the Paris prospective study, 15-year follow-up III. Diabetologia.1991;34:356.
    10. Carlson J, Hedner J, Ejnell H, Peterson L. High prevalence of hypertension in sleep apnea patients independent of obesity. Am J Respir Crit Care Med.1994; 150:72-7.
    11. Ip M, Lam B, Ng M, Lam W, Tsang K, Lam L. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165:670-76.
    12. Punjabi N, Sorkin J, Katzel L, Goldberg A, Schwartz A, Smith P. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med.2002; 165:677-82.
    13. Young T, Peppard P, Gottlieb D. Epidemiology of obstructive sleep apnea:a population health perspective. Am J Respir Crit Care Med.2002; 165:1217-39.
    14. Allan I. Pack, Thorarinn Gislason. Obstructive Sleep Apnea and Cardio-vascular Disease:A Perspective and Future Directions. Progress in Cardiovascular Diseases.2009; 51(5):434-451.
    15. Harsch IA, Schahin SP, Bruckner K, Radespiel-Troger M, Fuchs FS, Hahn EG, Konturek PC, Lohmann T, Ficker JH. The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration.2004;71:252-259.
    16. Lindberg E, Berne C, Elmasry A, Hedner J, Janson C. CPAP treatment of a population-based sample—what are the benefits and the treatment compliance? Sleep Med.2006;7:553-560.
    17. Sharafkhaneh A, Garcia J, Sharafkhaneh H, Hirshkowitz M. Insulin sensitivity in obstructive sleep apnea and effect of CPAP therapy. Proc Am Thorac Soc.2006;3:A733.
    18. Fahed G, Boque M, Torres-Palacios A, Rodriguez-Cintron W. Effect of continuous positive airway pressure (CPAP) on insulin resistance and aspirin responsiveness. Proc Am Thorac Soc.2006;3:A732.
    19. Smith SC Jr, Allen J, Blair SN, et al; AHA/ACC; National Heart, Lung, and Blood Institute. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease:2006 update:endorsed by the National Heart, Lung, and Blood Institute. Circulation.2006;113:2363-72.
    20. Wallace TM, Levy JC, Matthews DR:Use and abuse of HOMA modeling. Diabetes Care.2004.27:1487-1495.
    21. Allauzen S, Joly S, Granier C, et al. Immunoanalysis of 3 human insulin reveals antigenicity of some evolutionarily conserved reaidues. Molecular Immunology.1995, 32:2.
    22. Johns MW. A new method for measuring daytime sleepiness:the Epworth Sleepiness Scale. Sleep.1991; 14:540-5.
    23. arlov AR, Ware JE, Greenfield S, Nelson EC, Perrin E, Zubkoff M. The medical outcomes study:an application of methods for monitoring the results of medical care. JAMA.1989;.262:925-30.
    24. Alonso J, Regidor E, Barrio G, Prielto L, Rodri'guez C, de la Fuente L. Valores poblacionales de referencia de la versio'n esparfola del Cuestionario de Salud SF-36 [Population reference values of the Spanish version of the Health Questionnaire SF-36]. MedClin (Bare).1998; 111:410-6.
    25. Tiihonen M, Partinen M, Narvanen S. The severity of obstructive sleep apnoea is associated with insulin resistance. J Sleep Res.1993;2:56—61.
    26. Stoohs RA, Facchini F, Guilleminault C. Insulin resistance and sleep-disordered breathing in healthy humans. Am J Respir Crit Care Med.1996;154:170-4.
    27. Ip MS, Lam B, Ng MM, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med.2002; 165:670-6.
    28. Punjabi NM, Sorkin JD, Katzel LI, et al. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165:677-82.
    29. Meslier N, Gagnadoux F, Giraud P, et al. Impaired glucoseinsulin metabolism in males with obstructive sleep apnoea syndrome. Eur Respir J.2003;22:156-60.
    30. Comondore VR, Cheema R, Fox J et al. The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea:a pilot feasibility randomized crossover trial. Lung.2008; 186:209-217.
    31. Punjabi NM, Shahar E, Redline S, et al. Sleep Heart Health Study Investigators. Sleep-disordered breathing, glucose intolerance, and insulin resistance:the Sleep Heart Health Study. Am J Epidemiol.2004; 160(6):521-30.
    32. Larsen JJ, Hansen JM, Olsen NV, et al. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol (Lond).1997; 504:241-9.
    33. Braun B, Rock PB, Zamudio S, et al. Women at altitude:shortterm exposure to hypoxia and/or alpha(l)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol. 2001;91:623-31.
    34. Cheng N, Cai W, Jiang M, et al. Effect of hypoxia on blood glucose, hormones, and insulin receptor functions in newborn calves. Pediatr Res.1997;41:852-6.
    35. Raff H, Bruder ED, Jankowski BM. The effect of hypoxia on plasma leptin and insulin in newborn and juvenile rats. Endocrine.1999;11:37-9.
    36. Polotsky VY, Li J, Punjabi NM, et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol.2003;552:253-64.
    37. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue:relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab.2000;85:1151-8.
    38. Liu H, Liu J, Xiong S, et al. The change of interleukin-6 and tumor necrosis factor in patients with obstructive sleep apnea syndrome. J Tongji Med Univ 2000;20:200-2.
    39. Fernandez-Real JM, Vayreda M, Richart C, et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab.2001;86:1154-9.
    40. Hak AE, Pols HA, Stehouwer CD, et al. Markers of inflammation and cellular adhesion molecules in relation to insulin resistance in nondiabetic elderly:The Rotterdam Study. J Clin Endocrinol Metab.2001;86:4398-405.
    41. Pradhan AD, Manson IE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA.2001;286:327-34.
    42. Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology.1992; 130:43-52.
    43. Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology.1994; 134:264-70.
    44. Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature.1997;389:610-14.
    45. Ventre J, Doebber T, Wu M, et al. Targeted disruption of the tumor necrosis factor-alpha gene:metabolic consequences in obese and nonobese mice. Diabetes. 1997;46:1526-31.
    46. Carlson JT, Hedner J, Elam M, et al. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest.1993; 103:1763-8.
    47. Somers VK, Dyken ME, Clary MP, et al. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest.1995;96:1897-904.
    48. Peled N, Greenberg A, Pillar G, et al. Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome. Am J Hypertens.1998;11:1284-9.
    49. Narkiewicz K, van de Borne PJ, Pesek CA, et al. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation.1999;99:1183-9.
    50. Leproult R, Copinschi G, Buxton O, et al. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997;20:865-70.
    51. Buechner NJ, Zidek W, Esser M, Haske M, Sanner BM. Obstructive sleep apnea syndrome. Effects of therapy on dyslipidemia. Somnologie.2001; 5:97-102.
    52. Mazzone T, Foster D, Chait A. In vivo stimulation of lowdensity lipoprotein degradation by insulin. Diabetes 1984.33:333-338.
    53. MacMahon S, Peto R, Cutler I, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, Stamler J. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure:prospective observational studies corrected for the regression dilution bias. Lancet.1990;335:765-74.
    54. Haentjens P, Van Meerhaeghe A, Moscariello A, De Weerdt S, Poppe K, Dupont A, Velkeniers B. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome:evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern.Med.2007; 167:757-64.
    55. Bazzano L, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension.2007; 50: 1-7.
    56. Alajmi M, Mulgrew AT, Fox J, Davidson W, Schulzer M, Mak E, Ryan CF, Fleetham J, Choi P, Ayas NT. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea:a meta-analysis of randomized controlled trials. Lung.2007; 185:62-72.
    57. Mo L, He QY. Effect of long-term continuous positive airway pressure ventilation on blood pressure in patients with obstructive sleep apnea hypopnea syndrome:a meta-analysis of clinical trials. Zhonghua Yi Xue Za Zhi.2007; 87:1177-80.
    58. Martinez-Garcia MA, Soler-Cataluna JJ, Roman-Sanchez P, Gonzalez V, Amoros C, Montserrat JM. Obstructive sleep apnea has little impact on quality of life in the elderly. Sleep Med.2009; 10(1):104-11.
    59. Engleman HM, Kingshott RN, Wraith PK, Mackay TW, Deary IJ, Douglas NJ. Randomized placebo-controlled crossover trial of continuous positive airway pressure for mild sleep Apnea/Hypopnea syndrome. Am J Respir Crit Care Med,1999;159(2):461-7.
    60. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, Mullins R, Jenkinson C, Stradling JR, Davies RJ. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea:a randomised parallel trial. Lancet.2002;359(9302):204-10.
    61. Siccoli MM, Pepperell JC, Kohler M, Craig SE, Davies RJ, Stradling JR. Effects of continuous positive airway pressure on quality of life in patients with moderate to severe obstructive sleep apnea:data from a randomized controlled trial. Sleep.2008;31(11): 1551-8.
    62. Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am J Respir Crit Care Med.2004; 169(3):361-6.
    63. Hrobjartsson A, Getzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med.2001;344(21):1594-602.
    1. Caples SM, Garcia-Touchard A, Somers VK. Sleep-disordered breathing and cardiovascular risk. Sleep.2007;30:291-303.
    2. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease:cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med.2001; 163:19-25
    3. Ohayon MM, Guilleminault C, Priest RG, et al. Is sleep Disordered breathing an indepent risk factor for hypertension in the general population(13,057 subjects)? J Psychosom Res.2000;48:593-601
    4. Haas DC, Foster GL, Nieto FJ, Redline S, Resnick HE, Robbins JA, Young T, Pickering TG. Age-dependent associations between sleepdisordered breathing and hypertension:importance of discriminating between systolic/diastolic hypertension and isolated systolic hypertension in the Sleep Heart Health Study. Circulation.2005;111: 614-621.
    5. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, Leung RS, Bradley TD. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens.2001; 19:2271-2277.
    6. Stegman SS, Burroughs JM, Henthorn RW:Asymptomatic bradyarrhythmias as a marker for sleep apnea:appropriate recognition and treatment may reduce the need for pacemaker therapy. Pacing Clin Electrophysiol.1996; 19:899-904.
    7. Garni AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, Malouf JF, Ammash NM, Friedman PA, Somers VK:Association of atrial fibrillation and obstructive sleep apnea. Circulation.2004;l 10:364-367.
    8. Garni AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, Somers VK: Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol.2007;49:565-571.
    9. ClinicalTrials.gov identifier NCT00263757.
    10. Shepard JW Jr, Garrison MW, Grither DA, Dolan GF:Relationship of ventricular ectopy to oxyhemoglobin desaturation in patients with obstructive sleep apnea. Chest. 1985;88:335-340.
    11. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing:The Sleep Heart Health Study. Am J Respir Crit Care Med. 2006; 173:910-6.
    12. Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep apnea. N Engl J Med.2005;352:1206-1214.
    13. Mooe T, Franklin KA, Holmstrom K, Rabben T, Wiklund U. Sleepdisordered breathing and coronary artery disease:long-term prognosis. Am J Respir Crit Care Med. 2001;164:1910-1913.
    14. Chaouat A, Weitzenblum E, Krieger J, Oswald M, Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome:results in 220 consecutive patients. Chest.1996;109:380-386.
    15. Sajkov D, Wang T, Saunders NA, Bune AJ, McEvoy RD. Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med.2002; 165:152-158.
    16. Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A. Clinical classification of pulmonary hypertension. J Am Coll Cardiol.2004;43:5S-12S
    17. Sin DD, Fitzgerald F, Parker JD, Newton G, Floras JS, Bradley TD. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med.1999; 160:1101-1106.
    18. Wang H, Parker JD, Newton GE, Floras JS, Mak S, Chiu KL, Ruttanaumpawan P, Tomlinson G, Bradley TD. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol.2007;49:1625-1631.
    19. Spaak J, Egri ZJ, Kubo T, Yu E, Ando S, Kaneko Y, Usui K, Bradley TD, Floras JS. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension.2005; 46:1327-1332.
    20. Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, Giannuzzi P. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation.1999;99:1435-1440.
    21. Javaheri S, Shukla R, Zeigler H, Wexler L. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol.2007;49:2028-2034.
    22. Tkacova R, Wang H, Bradley TD. Night-to-night alterations in sleep apnea type in patients with heart failure. J Sleep Res.2006; 15:321-328.
    23. Sin D, Logan A, Fitzgerald F, Liu PP, Bradley TD. Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne-Stokes respiration. Circulation.2000; 102:61-66.
    24. Buchner NJ, Sanner BM, Borgel J, Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk; Am J Respir Crit Care Med.2007; 176(12):1274-80.
    1. Peppard PE et al (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342(19):1378-1384.
    2. Brooks D et al (1997) Effect of obstructive sleep apnea versus sleep fragmentation on responses to airway occlusion. Am J Respir Crit Care Med 155(5):1609-1617
    3. Smith ML, Pacchia CF (2007) Sleep apnoea and hypertension:role of chemoreflexes in humans. Exp Physiol 92(l):45-50.
    4. Somers VK et al (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96(4):1897-1904.
    5. Dematteis M et al (2008) Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med 177(2):227-235.
    6. Chatzizisis YS et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling:molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379-2393.
    7. Kato M et al (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102(21):2607-2610.
    8. Kraiczi H et al (2001) Impairment of vascular endothelial function and left ventricular filling:association with the severity of apnea-induced hypoxemia during sleep. Chest 119(4):1085-1091.
    9. Imadojemu VA et al (2002) Impaired vasodilator responses in obstructive sleep apnea are improved with continuous positive airway pressure therapy. Am J Respir Crit Care Med 165 (7):950-953
    10. Tahawi Z et al (2001) Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol 90(5):2007-2013
    11. Phillips SA et al (2004) Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 286(1):H388-H393.
    12. Lefebvre B et al (2006) Functional assessment of vascular reactivity after chronic intermittent hypoxia in the rat. Respir Physiol Neurobiol 150(2-3):278-286.
    13. Duchna HW et al (2005) Long-term effects of nasal continuous positive airway pressure on vasodilatory endothelial function in obstructive sleep apnea syndrome. Sleep Breath 9(3):97-103.
    14. Lattimore JL et al (2006) Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation. Thorax 61(6):491^95.
    15. Noda A et al (2007) Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens Res 30(8):669-676.
    16. Ozkan Y et al (2008) Circulating nitric oxide (NO), asymmetric dimethylarginine (ADMA), homocysteine, and oxidative status in obstructive sleep apnea-hypopnea syndrome (OSAHS). Sleep Breath 12(2):149-154.
    17. Mason RP (2006) Nitric oxide mechanisms in the pathogenesis of global risk. J Clin Hypertens (Greenwich) 8(8 Suppl 2):31-38.
    18. Mulvany MJ et al (1996) Vascular remodeling. Hypertension 28 (3):505-50616. Baguet JP et al (2005) The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence. Chest 128(5):3407-3412.
    19. Drager LF et al (2007) Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 176(7):706-712.
    20. Lefebvre B et al (2008) Leukotriene B4:early mediator of atherosclerosis in obstructive sleep apnoea? Eur Respir J 32 (1):113-120.
    21. Chapman MJ, Sposito AC (2008) Hypertension and dyslipidaemia in obesity and insulin resistance:pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol Ther 117(3):354-373.
    22. Newman AB et al (2005) Progression and regression of sleepdisordered breathing with changes in weight:the sleep heart health study. Arch Intern Med 165(20):2408-2413.
    23. Peled N et al (2007) The association of OSA with insulin resistance, inflammation and metabolic syndrome. Respir Med 101(8):1696-1701.
    24. Kono M et al (2007) Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. Chest 131(5):1387-1392.
    25. Meslier N et al (2003) Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome. Eur Respir J 22 (1):156-160.
    26. Vgontzas AN et al (2000) Sleep apnea and daytime sleepiness and fatigue:relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85(3):1151-1158.
    27. Ip MS et al (2002) Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 165(5):670-676
    28. McArdle N et al (2007) Metabolic risk factors for vascular disease in obstructive sleep apnea:a matched controlled study. Am J Respir Crit Care Med 175(2):190-195.
    29. Punjabi NM et al (2002) Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 165(5):677-682
    30. Stoohs RA, Facchini F, Guilleminault C (1996) Insulin resistance and sleep-disordered breathing in healthy humans. Am J Respir Crit Care Med 154(1):170-174
    31. Sharma SK et al (2007) Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleepdisordered breathing. Sleep Med 8(1):12-17.
    32. Barcelo A et al (2008) Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax 63(11):946-950.
    33. Polotsky VY et al (2009) Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity. Am J Respir Crit Care Med 179(3):228-234.
    34. Muniyappa R et al (2007) Cardiovascular actions of insulin. Endocr Rev 28(5):463-491.
    35. Nigro J et al (2006) Insulin resistance and atherosclerosis. Endocr Rev 27(3):242-259.
    36. Polotsky VY et al (2003) Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol 552(Pt 1):253-264.
    37. Martin SS, Qasim A, Reilly MP (2008) Leptin resistance:a possible interface of inflammation and metabolism in obesityrelated cardiovascular disease. J Am Coll Cardiol 52(15):1201-1210.
    38. Dubey L, Hesong Z (2006) Role of leptin in atherogenesis. Exp Clin Cardiol 11(4):269-275
    39. Beltowski J (2006) Leptin and atherosclerosis. Atherosclerosis 189(1):47-60.
    40. Sierra-Johnson J et al (2008) Effect of altitude on leptin levels, does it go up or down? J Appl Physiol 105(5):1684-1685.
    41. Grosfeld A et al (2002) Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J Biol Chem 277(45):42953-42957.
    42. Barcelo A et al (2005) Neuropeptide Y and leptin in patients with obstructive sleep apnea syndrome:role of obesity. Am J Respir Crit Care Med 171(2):183-187.
    43. Borgel J et al (2006) Obstructive sleep apnoea and its therapy influence high-density lipoprotein cholesterol serum levels. Eur Respir J 27(1):121127.
    44. Ip MS et al (2000) Serum leptin and vascular risk factors in obstructive sleep apnea. Chest 118(3):580-586.
    45. Shimizu K et al (2002) Plasma leptin levels and cardiac sympathetic function in patients with obstructive sleep apnoea-hypopnoea syndrome. Thorax 57(5):429^434.
    46. Okamoto Y et al (2006) Adiponectin:a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 110(3):267-278.
    47. Gualillo O, Gonzalez-Juanatey JR, Lago F (2007) The emerging role of adipokines as mediators of cardiovascular function:physiologic and clinical perspectives. Trends Cardiovasc Med 17(8):275-283.
    48. Lago F et al (2007) Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 3 (12):716-724.
    49. Makino S et al (2006) Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance. Clin Endocrinol (Oxf) 64(1):12-19.
    50. Tokuda F et al (2008) Serum levels of adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea syndrome. Intern Med 47(21):1843-1849.
    51. Wolk R et al (2005) Plasma levels of adiponectin, a novel adipocyte-derived hormone, in sleep apnea. Obes Res 13 (1):186-190.
    52. Zhang XL et al (2007) Effect of continuous positive airway pressure treatment on serum adiponectin level and mean arterial pressure in male patients with obstructive sleep apnea syndrome. Chin Med J (Engl) 120(17):1477-1481
    53. Nakagawa Y et al (2008) Nocturnal reduction in circulating adiponectin concentrations related to hypoxic stress in severe obstructive sleep apnea-hypopnea syndrome. Am J Physiol Endocrinol Metab 294(4):E778-E784.
    54. Kanbay A et al (2008) Comparison of serum adiponectin and tumor necrosis factor-alpha levels between patients with and without obstructive sleep apnea syndrome. Respiration 76 (3):324-330.
    55. Lam JC et al (2008) Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea. Sleep 31(12):1721-1727
    56. Chen B et al (2006) Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 341(2):549-556.
    57. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479-492.
    58. Ye J et al (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293 (4):E1118-E1128.
    59. Magalang UJ et al (2008) Intermittent hypoxia suppresses adiponectin secretion by adipocytes. Exp Clin Endocrinol Diabetes 117:129-134
    60. Yamamoto Y et al (2008) Resistin is closely related to systemic inflammation in obstructive sleep apnea. Respiration 76(4):377-385.
    61. Wu H et al (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115(8):1029-1038.
    62. Henrichot E et al (2005) Production of chemokines by perivascular adipose tissue:a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vase Biol 25(12):2594-2599.
    63. Fantuzzi G, Mazzone T (2007) Adipose tissue and atherosclerosis:exploring the connection. Arterioscler Thromb Vase Biol 27 (5):996-1003.
    64. Ohman MK et al (2008) Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(6):798-805.
    65. Newman AB et al (2001) Relation of sleep-disordered breathing to cardiovascular disease risk factors:the Sleep Heart Health Study. Am J Epidemiol 154(l):50-59.
    66. Robinson GV et al (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea:data from randomised controlled trials. Thorax 59(9):777-782.
    67. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7(1):35-51.
    68. Tan KC et al (2005) HDL dysfunction in obstructive sleep apnea. Atherosclerosis 184:377-382
    69. Lavie L, Vishnevsky A, Lavie P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27(1):123-128
    70. Li J et al (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97(7):698-706.
    71. Li J et al (2007) Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol 102(2):557-563.
    72. Lattimore JD et al (2005) Repetitive hypoxia increases lipid loading in human macrophages梐 potentially atherogenic effect. Atherosclerosis 179(2):255-259.
    73. Savransky V et al (2007) Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 175(12):1290-1297.
    74. Savransky V et al (2008) Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase. CircRes 103 (10):l 173-1180.
    75. McNicholas WT, Bonsignore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease:current evidence, basic mechanisms and research priorities. Eur Respir J 29(1):156-178.
    76. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860-867.
    77. Shamsuzzaman AS et al (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462-2464.
    78. Yokoe T et al (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129-1134.
    79. Yao M et al (2006) The relationship between sleep-disordered breathing and high-sensitivity C-reactive protein in Japanese men. Sleep 29(5):661-665
    80. Taheri S et al (2007) Correlates of serum C-reactive protein (CRP)—no association with sleep duration or sleep disordered breathing. Sleep 30(8):991-996
    81. Guilleminault C, Kirisoglu C, Ohayon MM (2004) C-reactive protein and sleep-disordered breathing. Sleep 27(8):1507-1511
    82. Kohler M et al (2009) Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea:a randomised controlled trial. Thorax 64(l):67-73.
    83. Carpagnano GE et al (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122(4):1162-1167.
    84. Ohga E et al (1999) Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J Appl Physiol 87(1):10-14
    85. Ohga E et al (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94 (1):179-184
    86. Schulz R et al (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162(2 Pt 1):566-570
    87. Dyugovskaya L et al (2008) Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med 177 (5):544-554.
    88. Dyugovskaya L et al (2005) Activated CD8+ T-lymphocytes in obstructive sleep apnoea. Eur Respir J 25(5):820-828.
    89. Dyugovskaya L, Lavie P, Lavie L (2005) Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea. Ann N Y Acad Sci 1051:340-350.
    90. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vase Biol 24(5):824-833.
    91. Tzima E et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437 (7057):426-431.
    92. Greenberg H et al (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343(2):591-596.
    93. Minoguchi K et al (2004) Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome. Chest 126(5):1473-1479.
    94. Paigen B et al (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57(1):65-73.
    95. Stewart-Phillips JL, Lough J (1991) Pathology of atherosclerosis in cholesterol-fed, susceptible mice. Atherosclerosis 90(2-3):211-218.
    96. Hofker MH, van Vlijmen BJ, Havekes LM (1998) Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis. Atherosclerosis 137(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700