MIR-124-5P对LAMB1转录后调控作用抑制高级别胶质瘤的生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经胶质瘤是临床上最常见恶性原发性脑肿瘤,其发病率约占所有颅内原发性脑肿瘤的35.26~60.96%(平均44.69%)。通常,神经胶质瘤中心是一个出血坏死灶,而周围是与正常脑组织边界不清的高致密肿瘤细胞区。神经胶质瘤细胞具有无限增殖能力和很强的侵袭性,很容易向周围正常脑组织进行侵袭。胶质瘤生长迅速且与周围正常脑组织边界不清,呈浸润性生长,因此,神经胶质瘤很难通过外科手术切除手段达到完全病理学肿瘤切除的目的。另外,由于神经胶质瘤对放疗不敏感和对化疗药物容易产生耐药性,也导致了其复发率高和预后差的结果。因而,尽管给予了多种综合治疗手段,神经胶质瘤治疗效果仍不理想,特别是恶性程度高的胶质母细胞瘤(GBM)患者生存期仅有12-15个月。恶性胶质瘤的难治性很大程度就在于其侵袭性强的生物学特性。因此,关于神经胶质瘤侵袭性方面的研究和寻找更为有效的治疗手段非常有必要。
     通常,肿瘤基本的侵袭过程是瘤细胞从原发瘤灶脱落,侵袭基底膜(BM)和细胞外基质(ECM)相互作用的复杂过程。肿瘤细胞首先黏附于基底膜和血管内皮细胞,然后通过分泌蛋白水解酶和促进血管生成发挥作用。而所有级别的恶性胶质瘤都会发生弥漫性单细胞侵袭。胶质瘤细胞往往沿有髓纤维束和在血管周围间隙沿血管进行迁移。因此,神经胶质瘤这种侵袭特性与基底膜和细胞外基质的组成成分密不可分。多种基底膜和细胞外基质的组成成分已证实了在人胶质瘤中过度表达,如纤维连接蛋白、层粘连蛋白、Ⅲ和Ⅳ型胶原蛋白、玻连蛋白和腱糖蛋白,这些物质都与胶质瘤细胞的迁移和侵袭有着密切的联系。
     层粘连蛋白(laminin,LN)是一组细胞外基底膜异源三聚体的糖蛋白大家族,主要由α、β、γ这三种链不同的组合而构成。层粘连蛋白在许多基本的生物过程中发挥着重要作用,包括细胞粘附和迁移、胚胎发育、肿瘤浸润、血管生成、组织分化和伤口愈合等。层粘连蛋白不仅是血管基底膜的主要功能成分,也是细胞外基质的主要功能成分。而且,层粘连蛋白还是正常脑组织微血管BMs的主要组成成分。胶质瘤细胞自身也能合成和分泌多种LN参与血管基底膜和血管基底膜构成,也表达大量的整合素受体。有研究发现在低级别和高级别的胶质瘤及胶质母细胞瘤(GBM)邻近的正常脑组织中过度表达含α4链的LN。一种含α4链的LN亚型层粘连蛋白-8主要是在多形性胶质母细胞瘤和邻近多形性胶质母细胞瘤的脑组织中的血管基底膜上表达,而另一个含α4链的层粘连蛋白-9则主要在低级别胶质瘤和正常组织血管基底膜表达。
     LN-8是表达于血管内皮细胞的主要亚型。LN-8已被证实与相应的受体整合素结合,对于骨髓功能和血-脑屏障的维持起着十分重要的作用。LN-8还可以通过与整合素α3β1和α6β1的相互作用促进胶质瘤细胞黏附和迁移。过表达LN-8的GBM患者肿瘤复发时间和病人存活期与过表达LN-9的GBM患者相比较都有所缩短。而神经胶质瘤一个显著特征在于血管内皮细胞增殖和显著的肿瘤血管生成,后者是胶质瘤的生长、侵袭和转移过程中的一个重要的基础条件。含α4链层粘连蛋白本身就能促进肿瘤血管生成。以上所诉说明了LN-8在胶质瘤的侵袭和肿瘤血管生成过程中发挥着重要作用,可以促进胶质瘤的复发。随着脑胶质瘤的进展,毛细管基底膜中含有α4链层粘连蛋白的表达会显著上调,并且含有β2链的LN-9(α4β2β1)会被含有β1链的LN-8(α4βγ1)所取代。LN-8和LN-9具有相似的结构,只是其中的β链不同。胶质瘤进展过程中含β2链LN-9转变为含β1链(LAMB1) LN-8潜在的调节因素还尚为人所知。因此,对于LN-8的基因调控机制的研究就显得非常有意义。
     MicroRNAs新近发现的一类广泛存在于真核生物体中内生的短链非编码RNA,长约22nt(nt是核苷酸nucleotide的缩写,lnt代表一个核苷酸单位)。MicroRNAs可以通过作用于相应靶基因调控细胞增殖、凋亡、分化、发育、侵袭和转移,甚至还可以调节干细胞活化及新生血管生成。MicroRNAs基因通常位于在癌基因组的染色体脆性位点,被认为是一类新型的致癌基因和抑癌基因。在大多数实体瘤和血液系统恶性肿瘤中都发现MicroRNAs表达水平的异常。这些异常表达的MicroRNAs还可以抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡、抑制肿瘤细胞的迁移性、下调多种靶基因的表达等等。脑部肿瘤MicroRNAs表达谱的一系列的研究也发现一些MicroRNAs的表达异常。这些表达异常的MicroRNAs基因位点通常位于典型的脑肿瘤的上游或下游信号通路,能调节脑肿瘤细胞的致癌表型。
     MicroRNA-124在各种哺乳动物的胚胎和成年皮质中大量表达,是一类脑组织中表达最为丰富特有的microRNA,约占脑组织microRNAs总量的25%~48%。MicroRNA-124对于维持正常的神经发育和功能有着重要的作用。对神经胶质瘤不同的表达谱的研究却发现miR-124在恶性程度较高的间变性星形细胞瘤(Ⅲ级)和多形性胶质母细胞瘤(Ⅳ级)中的表达量是显著下调的,提示miR-124的下调在神经胶质瘤形成和进展过程中发挥着关键作用。miR-124在神经胶质瘤中表达的恢复抑制了各种靶基因的表达,如lamininγ1和整合素β1,也抑制了肿瘤的转移和侵袭,从而延缓肿瘤的进展。miR-124-3p(miR-124或者miR-124a)和miR-124-5p(miR-124*)都是miR-124的两种成熟的形态(miR-124-5p在LAMB1的3'UTR一个公认的结合位点是由鸟嘌呤取代胞嘧啶而发生突变[星号标记])。miR-124-3p已证实在高级别胶质瘤中的表达是下调的,而且与胶质瘤患者预后相关。但是miR-124-5p在神经胶质瘤中的表达是否和niR-124-3p的结果一致还是未知数。因此,筛选出miR-124在胶质瘤发展调控网络中确切的靶标基因,对于胶质瘤的诊疗非常有意义。
     基于我们先前研究观察到GBM细胞系和组织中lamininβ1蛋白的高表达和miR-124-5p的低表达与胶质瘤进展关系,我们设想这两者之间在胶质瘤进展中是否存在相关关系。因此,本研究就针对miR-124-5p对lamininβ1的潜在调节机制进行探讨。我们首先通过Q-PCR和Western Blot方法检测GBM细胞系(U87和U251)及不同级别临床胶质瘤标本中miR-124-5p与LAMB1之间的表达水平,利用双荧光素酶检测系统验证miR-124-5p对LAMB1(蛋白质)表达的调控作用。通过体内、外研究对胶质瘤细胞系和组织中miR-124-5p的高表达和LAMB1的敲减对于细胞增殖、克隆形成、肿瘤生长和血管生成所产生的影响进行评估,验证miR-124-5p对LAMB1潜在的调节作用。
     第一部分各级别神经胶质瘤层粘连蛋白-8和miR-124-5p的表达关系
     目的:检测层粘连蛋白-8LAMB1mRNA和蛋白,miR-124-5p在各级别神经胶质瘤中的表达水平,并分析它们与神经胶质瘤进展之间是否存在关联。
     方法:人U87和U251胶质瘤细胞系进行培养。于珠江医院神经外科和病理科各级别胶质瘤组织标本进行采集及处理。采用Q-PCR和Western blots检测非肿瘤性脑组织、Ⅰ/Ⅱ级胶质瘤、间变性星形细胞瘤(AAs, WHO Ⅲ级),多形性胶质瘤母细胞瘤(GBMWHOⅣ级)和U87、U251胶质瘤细胞系中的LAMB1mRNA和蛋白、miR-124-5p的表达水平。
     结果:LAMB1mRNA和蛋白在AAs和GBM组织中的表达水平相比较于正常脑组织和Ⅰ/Ⅱ级神经胶质瘤表现出显著上调,胶质母细胞瘤组织中的LAMB1表达量最高。MiR-124-5p在间变性星形细胞瘤(AAs, WHO Ⅲ级)和多形性胶质母细胞瘤(GBM WHO Ⅳ级)的表达量与正常脑组织和Ⅰ/Ⅱ级胶质瘤相比显著下调。对miR-124-5P表达水平与LAMB1mRNA和蛋白表达水平进行秩相关分析:miR-124-5p表达水平与LAMB1mRNA和蛋白表达水平呈负相关关系。
     结论:LAMB1mRNA和蛋白的表达水平随着神经胶质瘤级别和严重程度的增加而提高,而miR-124-5p表达水平随着神经胶质瘤级别和严重程度而下降,因此,miR-124-5p和LN-8可以作为神经胶质瘤的生物标志物。下调的miR-124-5p和上调的LAMB1与胶质瘤进展相关,两者之间呈负相关关系。
     第二部分Has-miR-124-5p调控LAMB1基因的表达
     目的:验证miR-124-5p是否对LAMB1转录后水平具有调控作用。
     方法:采用MicroCosm Targets Version5microRNA靶基因预测软件in silico分析miR-124-5p在LAMB13'UTR端结合位点。MiR-124-5p minic、NC (miRNA minic negative control)、miR-124-5p inhibitor和miRNA NC inhibitor脂质体转染U87和U251胶质瘤细胞,分别利用Q-PCR和Western blots检测U87和U251胶质瘤细胞中LAMB1mRNA和蛋白水平。我们还利用双荧光素酶检测系统鉴定miR-124-5p对LAMB1(蛋白质)表达的调控作用。
     结果:MicroRNA靶基因预测软件in silico分析显示miR-124-5p是LAMB13'UTR端结合位点。72小时后,转染miR-124-5p minic过表达miR-124-5pU87和U251细胞的LAMB1蛋白水平相比于转染NC的U87和U251细胞是下调的。转染miR-124-5p inhibitor的U87和U251细胞的LAMB1蛋白水平相比于转染NC inhibitor的U87和U251细胞是上调的。同时,LAMB1mRNA水平却不受过表达或敲低miR-124-5p的影响。miR-124-5p对LAMB1基因的翻译产生抑制作用。
     结论:miR-124-5p对U87和U251胶质瘤细胞LAMB1mRNA的表达无调节作用,对U87和U251胶质瘤细胞LAMB1(蛋白)的转录后水平表达有直接的负调控作用。LAMB1是:miR-124-5p直接的靶基因。
     第三部分MiR-124-5p表达恢复对异种移植胶质瘤肿瘤生长和微血管密度的抑制作用
     目的:评估miR-124-5p表达的恢复对于胶质瘤细胞增殖、细胞周期和迁移以及肿瘤生长和血管生成产生的影响。
     方法:1.体外实验:miR-124-5p minic和miRNA minic negative control (NC)脂质体转染U87胶质瘤细胞。利用MTT实验和Transwell细胞迁移实验对转染miR-124-5p minic和NC (miRNA minic negative control)的U87胶质瘤细胞的细胞增殖能力、细胞周期和细胞侵袭能力进行分析。2.体内实验:建立免疫缺陷nu/nu裸鼠U87和U251皮下胶质瘤动物模型。当肿瘤体积达到150-200mm3,将小鼠随机分配为2个处理组:miR-124-5p minic组和NC组(每组n=6),分别给予miR-124-5p minic和NC原位注射处理,监测3个星期的肿瘤体积变化情况。利用Q-PCR, Western blots和免疫组化技术检测各组肿瘤组织中LAMB1mRNA和蛋白水平变化;通过对肿瘤标本的肿瘤血管内皮标记物CD31行免疫组化分析肿瘤微血管密度的变化。
     结果:miR-124-5p对U87胶质瘤细胞的细胞增殖能力、细胞周期和细胞侵袭能力无调控作用。miR-124-5p minic组的肿瘤生长与NC组相比是受到抑制的。miR-124-5p minic组的LAMB1蛋白水平与NC组相比较是下调的,而niR-124-5p minic组的LAMB1mRNA水平与NC组相比较无统计学意义。miR-124-5p minic组的肿瘤微血管密度与NC组相比较明显下降。
     结论:miR-124表达的恢复通过抑制LAMB1基因的蛋白表达导致胶质瘤肿瘤血管生成和肿瘤生长受到抑制。
Gliomas is the most common malignant brain tumors, the incidence is about35.26~60.96%(average44.69%) of all intracranial primary brain tumors. Generally, the center of gliomas is a hemorrhagic necrosis, while the surrounding is a high density of tumor cell area. Glioma cells are characterized by unlimited proliferation and strong aggression. Glioma is easy to invade into the surrounding normal brain tissue. Gliomas grow rapidly and with a characteristic of invasive growth, therefore, glioma is difficult to be completely removed by surgery. In addition, glioma is insensitive to radiotherapy and chemotherapy, so glioma has a high recurrence rate and poor prognosis. Despite given a variety of treatments, the effect of treatment is not satisfactory. Survival of glioblastoma patients is only12-15months. Malignant glioma is not easily being cured largely depended by its strong invasion. Therefore, it is necessary to investigate invasiveness of glioma and find more effective treatments.
     Commonly, the process of tumor invasion is complex. Tumor cells shed from a primary tumor foci and invade into basement membrane, then have an interaction with extracellular matrix (ECM). Firstly, tumor cells adhere to endothelial cells and basement membrane, and secrete proteolytic enzymes and promote angiogenesis. All malignant glioma cells will invade into the surrounding tissue. Glioma cells often invade into the surrounding tissue along with myelinated fibers and blood vessels. Therefore, invasion of glioma is related to compositions of the basement membrane and extracellular matrix. Compositions of the basement membrane and extracellular matrix have been confirmed overexpressed in human gliomas, such as fibronectin, laminin, III and IV collagen, vitronectin and tenascin. These substances are closely linked to migration and invasion of glioma cell.
     Laminin (laminin, LN) is a large family of extracellular heterologous glycoprotein trimers and mainly constituted by three different α, β, γ chain. Laminin plays an important role in many fundamental biological processes, including cell adhesion and migration, embryonic development, tumor invasion, angiogenesis, tissue differentiation and wound healing. Laminin is a major functional component of the vascular basement membrane extracellular matrix (ECM). Moreover, Laminin is main component of microvascular BMs of normal brain tissue. Glioma cells can synthesize and secrete a variety of LN involved in the vascular basement membrane and vascular basement membrane. A large number of integrin receptors are expressed on the glioma cell surfaces. Studies have found that overexpression of α4chain laminin is observed in the low-level or high-level glioma and normal brain tissue adjacent to GBM. The majority of GBMs had increased expression of laminin-8(α4β1γ1) chains in blood vessel walls, whereas low-grade tumors overexpressed laminin-9(α4β2γ1) chains.
     Laminin-8(a4b1g1) is the predominant isoform expressed in vascular endothelial cell BMs. Along with its receptor integrin a6β1, laminin-8has been shown to be important for BM function and the maintenance of the blood-brain barrier. Laminin-8also promote adhesion and migration of glioma cell through interactions with α3β1and α6β1integrin. GBMs that predominantly expressed laminin-8had a shorter time to recurrence than did GBMs that predominantly expressed laminin-9.GBM is characterized by endothelial cell proliferation and prominent vascularization arising from a combination of blood vessel co-option and tumor angiogenesis, the latter being a fundamental aspect of tumor growth, invasion, and metastasis. a4chain laminin itself can promote tumor angiogenesis. Above illustrate that laminin-8plays an important role in the invasion and angiogenesis of gliomas to promote tumor recurrence. During progression of human gliomas, the expression of capillary basement membrane(BM) laminins containing a4chain switched from the predominant laminin-9(α4β2γ1) to laminin-8(α4β1γ1). Laminin-8is distinguished to laminin-9by having αβ1subunit. The factors regulating the switch to laminin β1expression in gliomas are still unknown. Therefore, it is very meaningful to study the mechanisms of gene regulation about laminin-8.
     MicroRNAs are an abundant class of endogenous small RNA molecules,20-25nucleotides in length. The role of miRNAs as key regulatory molecules that control a wide variety of fundamental cellular processes, such as proliferation, death, differentiation, motility, invasiveness, etc. Because miRNA genes are frequently located at the chromosomal fragile sites of cancer genomes, miRNAs have been considered as novel classes of oncogenes and tumor suppressors.Abnormal expression levels of microRNAs were found in most solid tumors and hematologic malignancies. These abnormal expression of microRNAs can also inhibit tumor cell proliferation and induce tumor cell apoptosis and inhibit tumor cell migration, reduced expression of multiple target genes, and so on.A series of microRNAs expression profiling about brain tumors also found a number of abnormal microRNAs expression. The genes of these abnormal expression microRNAs usually located upstream or downstream signaling pathways of brain tumors to regulate oncogenic phenotype of brain tumor cells.
     The microRNA (miRNA) miR-124is abundantly expressed in the embryonic and adult cortex in various mammalian species, suggesting an essential role in normal functioning of the brain. Indeed, expression profiling of various human brain tumors has shown that miR-124is among the most dramatically downregulated miRNAs in anaplastic astrocytoma (Ⅲ grade) and glioblastoma (IV grade), suggesting reduction of miR-124plays a key role in formation and progression of glioma. Restoring miR-124expression in gliomas may slow tumor progression by repressing various miR-124targets such as laminingl and integrin β1. MiR-124-3p (known as miR-124or miR-124a) and miR-124-5p (known as miR-124*) are both mature forms of miR-124(A putative miR-124-5p binding site in the3'UTR of LAMB1was mutated by replacing the cytosine with guanine [marked by an asterisk]. MiR-124-3p is significantly downregulated in AA and GBM tumors, which is correlated with poor prognosis in glioma patients However, whether the expression of miR-124-5p has a similar result as miR-124-3p in human gliomas is still unknown.Therefore, it is very meaningful to screen out exact target genes of miR-124in the development of regulatory networks in glioma.
     Based on the reduced miR-124-5p expression and high levels of laminin β1protein that were observed in GBM cell lines and tissues, the present work investigated the potential regulation of laminin β1by miR-124-5p.Therefore, the potential regulatory mechanisms of miR-124-5p this were discussed. The expression levels of LAMB1and miR-124-5p were examined in glioma cell lines (U87and U251) and GBM tissue samples by quantitative PCR and Western blotting. Regulation of miR-124-5p on LAMB1(protein) expression is defined by dual luciferase assay system. The potential regulation of LAMB1by miR-124-5p was investigated by assessing the effects of restored miR-124-5p expression on cell proliferation, colony formation, and tumor growth and angiogenesis.
     Chapter I Relationships between laminin8and miR-124-5p expression in gliomas
     Objective:Detection of laminin-8mRNA and protein, miR-124-5p expression levels in all grade gliomas, and to analyze whether there is an association between laminin-8and miR-124-5p in glioma progression.
     Methods:U87and U251human glioma cell lines were cultured. Glioma tissue samples were obtained and proscessed through the Department of Neurosurgery1andDepartment of Pathologyof Zhujiang Hospita. The expression levels of LAMB1and miR-124-5p were examined in glioma cell lines (U87and U251) and GBM tissue samples by quantitative PCR and Western blotting.
     Results:AA and GBM tissues showed significantly higher levels of LAMB1mRNA and protein relative to normal brain tissue, and grade I/II gliomas, and GBM tissues had the highest level of LAMB1gene expression. A significant decrease in miR-124-5p expression was observed in AAs and GBMs compared with normal brains and grade Ⅰ/Ⅱ gliomas. Rank correlations calculated between miR-124-5P expression level and LAMB1mRNA or protein levels indicated that elevated LAMB1mRNA or protein expression occurred concomitantly with reduced miR-124-5p expression.
     Conclusions:Progressive increases in the levels of LAMB1mRNA and protein were observed with increasing glioma severity. miR-124-5p expression was significantly downregulated during glioma progression. miR-124-5p and laminin-8can act as biomarkers of glioma. Reduction of miR-124-5p and overexpression of LAMB1is associated with progression of gliomas. There is a negative correlation between miR-124-5p and LAMB1.
     Chapter Ⅱ MiR-124-5p Regulates LAMB1Expression at the Posttranscriptional Level
     Objective:To verify regulation of LAMB1expression at the posttranscriptional level by miR-124-5p.
     Methods:An in silico analysis using MicroCosm Targets Version5test a potential miR-124-5p binding site in the3'UTR of LAMB1. Lipofectamine2000transfecte U87and U251glioma cells by miR-124-5p minic, NC, miR-124-5p inhibitor and miRNA NC inhibitor. The expression levels of LAMB1were examined in glioma cell lines (U87and U251) by quantitative PCR and Western blotting. Regulation of miR-124-5p on LAMB1(protein) expression is defined by dual luciferase assay system.
     Results:An in silico analysis using MicroCosm Targets Version5revealed a potential miR-124-5p binding site in the3'UTR of LAMB1. After72hours, LAMB1protein expression was reduced in cells overexpressing miR-124-5p compared with NC-transfected cells. Furthermore, suppression of miR-124-5p resulted in higher levels of LAMB1protein compared with cells transfected with NC inhibitor. Significantly, the levels of LAMB1mRNA were unaffected by miR-124-5p overexpression or inhibition. LAMB1(protein) expression is directly and negatively regulated by miR-124-5p.
     Conclusions:MiR-124-5p has no effect on expression LAMB1mRNA in U87and U251cells, but a direct negative regulation of LAMB1(protein) at the posttranscriptional level. LAMB1is a direct target gene of MiR-124-5p.
     Chapter Ⅲ Restoration of miR-124-5p expression inhibits tumor growth and microvessel density in glioma xenografts
     Objective:To assess the effects of restored miR-124-5p expression on cell proliferation, cell cycle, cell migration as well as tumor growth and angiogenesis.
     Methods:1.In vitro:miR-124-5p minic and miRNA minic negative control (NC) transfect U87glioma cells by Lipofectamine2000.Cell proliferation, cell cycle and cell invasion of U87glioma cell transfected miR-124-5p minic and miRNA minic negative control were analyzed by MTT assay and Trans well cell migration assay.2. In vivo:Glioblastoma xenografts immunocompromised nu/nu mice models of U87and U251were established. When tumor volume reached150-200mm3, the mice were randomly assigned to two treatment groups:miR-124-5p minic and NC groups (n=6), the mice were respectively given miR-124-5p minic and NC. We monitored tumor volume changes for three weeks. The expression levels of LAMB1in glioma tissues were examined by Q-PCR, Western blotting and immunohistochemistry. Tumor microvessel density changes of tumor specimens is determined by immunohistochemical analysis of endothelial marker CD31.
     Results:miR-124-5p did not significantly inhibit U87cell proliferation, cell cycle and cell invasion. A significant growth inhibition of U87and U251xenograft tumors injected with miR-124-5p minic was observed, compared with tumors injected with the NC.LAMB1protein levels of MiR-124-5p minic group were reduced, compared with the NC group. LAMB1mRNA levels of MiR-124-5p minic group were not statistically significant to NC group. Injection of the miR-124-5p minic to restore miR-124-5p expression led to a dramatic reduction in microvessel density in U87and U251xenografts.
     Conclusions:Restoration of miR-124-5p expression can inhibits tumor growth and microvessel density in glioma xenografts.
引文
[1]O hgaki H, Kleihues P. Epidemiology and etiology of gliomas [J]. Acta Neuropathol.2005,109(1):93-108.
    [2]Furnari F B, Fenton T, Bachoo R M, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment [J]. Genes Dev.2007,21(21): 2683-2710.
    [3]Qin H, Sun Y, Benveniste EN. The transcription factors Spl, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells.J Biol Chem.1999; 274:29130-29137.30.
    [4]Huncharek M, Kupelnick B. Epidermal growth factor receptor gene amplification as a prognostic marker in glioblastoma multiforme:results of a meta-analysis. Oncol Res.2000; 12:107-112.
    [5]Ueki K, Nishikawa R, Nakazato Y, et al. Correlation of histology and molecular genetic analysis of 1p,19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors.Clin Cancer Res.2002; 8:196-201.
    [6]Muracciole X, Romain S, Dufour H, et al. PAI-1 and EGFR expression in adult glioma tumors:toward a molecular prognostic classification.Int J Radiat Oncol Biol Phys.2002; 52:592-598.
    [7]Chakravarti A, Noll E, Black PM, et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol.2002; 20:1063-1068.
    [8]Forget MA, Desrosiers RR, Del M, et al. The expression of rho proteins decreases with human brain tumor progression:potential tumor markers.Clin Exp Metastasis.2002; 19:9-15.
    [9]Kulla A, Liigant A, Piirsoo A, Rippin G, Asser T. Tenascin expression patterns and cells of monocyte lineage:relationship in human gliomas.Mod Pathol.2000;13:56-67.
    [10]Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression.Int J Cancer.2002; 98:362-369.
    [11]A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell Biol.36(2004) 1046-1069.
    [12]A. Farin, S.O. Suzuki, M. Weiker, J.E. Goldman, J.N. Bruce,P. Canoll, Transplanted glioma cells migrate and proliferate on host brain vasculature:a dynamic analysis, Glia 53 (2006)799-808.
    [13]E.K. LeMosy, V.A. Lightner, H.P. Erickson, Structural analysis of a human glial variant laminin, Exp. Cell Res.227 (1996) 80-88.
    [14]H. Fujiwara, Y. Kikkawa, N. Sanzen, K. Sekiguchi, Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3betal and alpha6betal integrins, J. Biol. Chem.276 (2001)17550-17558.
    [15]Zagzag D, Capo V. Angiogenesis in the central nervous system:a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic "angiogenic diseases." HistolHistopathol.2002; 17:301-321.
    [16]Ryan MC, Christiano AM, Engvall E, et al. The functions of laminins:lessons from in vivo studies.Matrix Biol.1996; 15(6):369-381.
    [17]C. Lugassy, R.I. Haroun, H. Brem, B.M. Tyler, R.V. Jones, P.M. Fernandez, S.R. Patierno, H.K. Kleinman, R.L. Barnhill,Pericytic-like angiotropism of glioma and melanoma cells, Am. J. Dermatopathol.24 (2002) 473-478.
    [18]T. Visted, P.O. Enger, M. Lund-Johansen, R. Bjerkvig, Mechanisms of tumor cell invasion and angiogenesis in thecentral nervous system, Front. Biosci.8 (2003)289-304.
    [19]E.K. LeMosy, V.A. Lightner, H.P. Erickson, Structural analysis of a human glial variant laminin, Exp. Cell Res.227 (1996) 80-88.
    [20]H. Fujiwara, Y. Kikkawa, N. Sanzen, K. Sekiguchi, Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through aipha3betal and alpha6betal integrins, J. Biol. Chem.276 (2001)17550-17558.
    [21]D.R. Friedlander, D. Zagzag, B. Shiff, H. Cohen, J.C. Allen,P.J. Kelly, M. Grumet, Migration of brain tumor cells on extracellular matrix proteinsin vitro correlates with tumor type and grade and involves alphaV and betal integrins, Cancer Res.56 (1996) 1939-1947.
    [22]B.B. Tysnes, L.F. Larsen, G.O. Ness, R. Mahesparan, K. Edvardsen, I. Garcia-Cabrera, R. Bjerkvig, Stimulation of glioma-cell migration by laminin and inhibition by anti-alpha3 and anti-betal integrin antibodies, Int. J. Cancer 67 (1996) 777-784.
    [23]Zagzag D, Capo V. Angiogenesis in the central nervous system:a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic "angiogenic diseases." Histol Histopathol.2002; 17:301-321.
    [24]Ljubimova J Y, Lakhter AJ, Loksh A, et al. Overexpression of alpha4 chain-containing laminins in human glialtumors identified by gene microarrayanalysis [J]. Cancer Res,2001,61 (14):5601-5610.
    [25]Ljubimova J Y, Fugita M, Khazenzon N M, et al. Association between laminin-8 and glial tumor grade, recurrence, and patient survival [J]. Cancer, 2004,101 (3):604-612.
    [26]Fujiwara H, Gu J, Sekiguchi K. Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8.Exp Cell Res.2004; 292(1).-67-77.
    [27]Thyboll J, Kortesmaa J, Cao R, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation.Mol Cell Biol.2002;22(4):1194-1202.
    [28]Sixt, M., Engelhardt, B., Pausch, F., Hallmann, R., Wendler, O., and Sorokin, L. M. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol.,153:933-946.
    [29]Khazenzon N M, Ljubimov A V, Lakhter A J, et al. Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro [J]. Mol Cancer Ther.2003,2(10):985-994.
    [30]Fujita M, Khazenzon N M, Ljubimov A V, et al. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis[J]. Angiogenesis.2006,9(4):183-191.
    [31]Zeng Y. Principles of micro-RNA production and maturation [J]. Oncogene. 2006,25(46):6156-6162.
    [32]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell.2005,120(1):15-20.
    [33]Reinhart B J, Slack F J, Basson, M, et al. The 21-nucleotide let-7RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    [34]Lee R C, Feinbaum R L, Ambros, V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75: 843-854.
    [35]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of humangenes are microRNAtargets [J]. Cell,2005,120(1):15-20.
    [36]V. Ambros, The functions of animal microRNAs, Nature 16 (2004) 350-355.
    [37]Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acid Res,2005,33:1290-1297
    [38]Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004,303:83-85.
    [39]Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C. M. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci. U.S.A.101,2999-3004.
    [40]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L,Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. ProcNatl Acad Sci USA 99:15524-15529.
    [41]Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocyticleukemia. Blood,2007,109(11): 4944.4951.
    [42]Blenkiron C, Goldstein L D, Thorne N P, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype,2007,8(10): R214.
    [43]Ciafre S A, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res,2005,334(4): 1351-1358.
    [44]Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer,2006,13(2):497-508.
    [45]Yu S L, Chen H Y, Chang G C, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell,2008,13:48-57.
    [46]Jiang J, Gusev Y, Aderca I, et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res,2008,14(2):419-427.
    [47]Kida Y, Han Y P. MicroRNA expression in colon adenocarcinoma. JAMA,2008, 299(4):425-436.
    [48]Silber J, LimDA, PetritschC, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induced ifferentiation of brain tumor stem cells [J]. BMC Med,2008,24,6:14.
    [49]Makeyev E V, Zhang J, Carrasco M A, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing [J]. Mol Cell.2007,27(3):435-448.
    [50]Conaco C, Otto S, Han J J, et al. Reciprocal actions of REST and a microRNA promote neuronal identity [J]. Proc Natl Acad Sci U S A.2006,103(7): 2422-2427.
    [51]Chen C Z. MicroRNAs as oncogenes and tumor suppressors [J]. N Engl J Med. 2005,353(17):1768-1771.
    [1]Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N Engl J Med.2005;352(10):987-996.
    [2]C. Lugassy, R.I. Haroun, H. Brem, B.M. Tyler, R.V. Jones, P.M. Fernandez, S.R. Patierno, H.K. Kleinman, R.L. Barnhill,Pericytic-like angiotropism of glioma and melanoma cells,Am. J. Dermatopathol.24 (2002) 473-478.
    [3]T. Visted, P.O. Enger, M. Lund-Johansen, R. Bjerkvig, Mechanisms of tumor cell invasion and angiogenesis in thecentral nervous system, Front. Biosci.8 (2003) 289-304.
    [4]A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell Biol.36(2004) 1046-1069.
    [5]A. Farin, S.O. Suzuki, M. Weiker, J.E. Goldman, J.N. Bruce,P. Canoll, Transplanted glioma cells migrate and proliferate on host brain vasculature:a dynamic analysis, Glia 53 (2006)799-808.
    [6]A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell Biol.36(2004) 1046-1069.
    [7]A. Farin, S.O. Suzuki, M. Weiker, J.E. Goldman, J.N. Bruce,P. Canoll, Transplanted glioma cells migrate and proliferate on host brain vasculature:a dynamic analysis, Glia 53 (2006)799-808.
    [8]E.K. LeMosy, V.A. Lightner, H.P. Erickson, Structural analysis of a human glial variant laminin, Exp. Cell Res.227 (1996) 80-88.
    [9]H. Fujiwara, Y. Kikkawa, N. Sanzen, K. Sekiguchi, Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3betal and alpha6 betal integrins, J. Biol. Chem.276 (2001)17550-17558.
    [10]. Zagzag D, Capo V. Angiogenesis in the central nervous system:a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic "angiogenic diseases." Histol Histopathol.2002; 17:301-321.
    [11]Ziu M,Schmidt NO,Cargioli TG, et al. Glioma produced extracel lular matrix influence sbrain tumor tropism of human neural stem cells[J]. J Neu r oonc ol, 2006,79(2):1252133.
    [12]Ryan MC, Christiano AM, Engvall E, et al. The functions of laminins:lessons from in vivo studies.Matrix Biol.1996; 15(6):369-381.
    [13]Ljubimova JY, Lakhter A, Loksh A, et al. Overexpression of a 4 chain-containing laminins in human glial tumors identified by gene microarray analysis.Cancer Res.2001;61:5601-5610.
    [14]Cao X, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21:531-536.
    [15]C. Lugassy, R.I. Haroun, H. Brem, B.M. Tyler, R.V. Jones, P.M. Fernandez, S.R. Patierno, H.K. Kleinman, R.L. Barnhill,Pericytic-like angiotropism of glioma and melanoma cells, Am. J. Dermatopathol.24 (2002) 473-478.
    [16]T. Visted, P.O. Enger, M. Lund-Johansen, R. Bjerkvig, Mechanisms of tumor cell invasion and angiogenesis in the central nervous system, Front. Biosci.8 (2003) 289-304.
    [17]Colognato, H., and Yurchenco, P. D. Form and function:the laminin family of heterotrimers. Dev. Dyn,218:213-234,2000.
    [18]Mahes paran R, Tysnes BB, Read T A, et al. Extracellular matrix induced cell migration from gliobla stoma biopsyspecimens in vitro [J]. Acta Neuropathol, 1999,97 (3):2312239
    [19]D.R. Friedlander, D. Zagzag, B. Shiff, H. Cohen, J.C. Allen,P.J. Kelly, M. Grumet, Migration of brain tumor cells on extracellular matrix proteinsin vitro correlates with tumor type and grade and involves alphaV and betal integrins, Cancer Res.56 (1996) 1939-1947.
    [20]Mahe sparan R, Read T A, Lund-Johansen M, et al. Expression of extracellular matrix components in a highly infiltrative in vivo glioma model [J]. Acta Neuropathol,2003,105 (1):49-57.
    [21]J.C. Knott, R. Mahesparan, I. Garcia-Cabrera, B. Bolge Tysnes, K. Edvardsen, G.O. Ness, S. Mork, M. Lund-Johansen,R. Bjerkvig, Stimulation of extracellular matrix componentsin the normal brain by invading glioma cells, Int. J. Cancer 75(1998)864-872.
    [22]R. Mahesparan, T.A. Read, M. Lund-Johansen,K.O. Skaftnesmo, R. Bjerkvig, O. Engebraaten, Expression of extracellular matrix components in a highly infiltrative in vivo glioma model, Acta Neuropathol. (Berl) 105 (2003) 49-57.
    [23]Ljubimova J Y, Fugita M, Khazenzon N M, et al. Association between laminin-8 and glial tumor grade, recurrence, and patient survival[J]. Cancer, 2004,101 (3):604-612.
    [24]Fujita M,Khazenzon N M,Ljubimov AV,et al.Inhibition of laminin-8 in vivo using a novel poly(malicacid)-based carrier reduces glioma angiogenesis [J]. Angiogenesis,2006,9(4):183-191.
    [25]Bartel, D. P.(2009)MicroRNAs:target recognition and regulatory functions. Cell136,215-233.
    [26]Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C. M.(2004) Human microRNA genes are frequently located at fragile sites andgenomic regions involved in cancers. Proc. Natl. Acad. Sci. U.S.A.101,2999-3004.
    [27]Wong, J.W. (2010)MicroRNA-induced silencing of glioma progression. J. Neurosci.30,3868-3869.
    [28]Lawler, S., and Chiocca, E. A. (2009) Emerging functions of microRNAs in glioblastoma.J. Neurooncol.92,297-306.
    [29]Novakova, J., Slaby, O., Vyzula, R., and Michalek, J. (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem. Biophys. Res. Commun. 386,1-5.
    [30]Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med,2008,24; 6:14.
    [31]Cheng, L. C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche.Nat. Neurosci.12,399-408.
    [32]Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., LeeMesser, C., Dolmetsch, R. E., Tsien, R. W., and Crabtree, G. R. (2011)MicroRNA-mediated conversion of human fibroblasts to neurons.Nature 476,228-231.
    [33]Fowler A, Thomson D, Giles K, et al. miR-124a is frequently downregulated in glioblastoma and is involved in migration and invasion.Eur J Cancer. 2011;47(6):953-963.
    [1]Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acid Res,2005,33:1290-1297.
    [2]Xu P, Guo M, Hay B A. MicroRNAs and the regulation of cell death. Trends Genet,2004,20:617-624.
    [3]Karp X, Ambros V. Developmental biology, encountering microRNAs in cell fate signaling. Science,2005,310:1330-1333.
    [4]Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004,303:83-85.
    [5]Ambros V. The functions of animal microRNAs. Nature,2004,431:350-355.
    [6]Poy M N, Eliasson L, Krutzfeldt J, et al. A pancreatic-isletspecific miRNA regulates insulin secretion. Nature,2004,432:226-230.
    [7]Cheng, L. C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci.12,399-408.
    [8]Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., LeeMesser, C., Dolmetsch, R. E., Tsien, R. W., and Crabtree, G. R. (2011).MicroRNA-mediated conversion of human fibroblasts to neurons.Nature 476,228-231.
    [9]Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.BMC Med.2008;6:14.
    [10]B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell 120 (2005) 15-20.
    [11]G.A. Calin, C. Sevignani, C.D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, C.M. Croce, Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers, Proc. Natl. Acad. Sci. USA 101 (2004) 2999-3004.
    [12]A. Rodriguez, S. Griffiths-Jones, J.L. Ashurst, A. Bradley, Identification of mammalian microRNA host genes and transcription units, Genome Res.14 (2004)1902-1910.
    [13]W.C. Cho, OncomiRs:the discovery and progress of microRNAs in cancers, Mol. Cancer 6 (2007) 60.
    [14]Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocyticleukemia. Blood,2007,109(11): 4944.4951.
    [15]Blenkiron C, Goldstein L D, Thorne N P, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype,2007,8(10): R214.
    [16]Ciafre S A, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res,2005,334(4): 1351-1358.
    [17]Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer,2006,13(2):497-508.
    [18]Yu S L, Chen H Y, Chang G C, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell,2008,13:48-57.
    [19]Jiang J, Gusev Y, Aderca I, et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res,2008,14(2):419-427.
    [20]Kida Y, Han Y P. MicroRNA expression in colon adenocarcinoma. JAMA, 2008,299(4):425-436.
    [21]Mark B, Wendy L F, Fabio P, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA,2007,297:1901-1908.
    [22]Ciafre, S.A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C.G., Sabatino, G.,Negrini, M., Maira, G., Croce, C.M., Farace, M.G.,2005. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem.Biophys. Res. Commun.334,1351-1358.
    [23]T URNER D1 The role of microRNA miR-124a in neuronal differentiation [G]. Soc Neurosci,2004, P36:P111.
    [24]Gaur A, Jewell DA, Liang Y, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007;67(6):2456-68.
    [25]Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing.Cell2007;129(7):1401-14.
    [26]Nelson PT, Baldwin DA, Kloosterman WP, et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain.RNA 2006;12(2):187-191.
    [27]Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. MiR-124 and miR-203 are epigenetically silenced tumorsuppressive microRNAs in hepatocellular carcinoma. Carcinogenesis2010;31(5):766-76.
    [28]Fowler A, Thomson D, Giles K, et al. miR-124a is frequently downregulated in glioblastoma and is involved in migration and invasion.Eur J Cancer. 2011;47(6):953-963.
    [1]Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas.Cancer Sci.2009; 100(12):2235-2241.
    [2]Bartel DP:MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116:281-297,2004.
    [3]Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al: Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456-2468,2007.
    [4]Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R:Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631-640, 2005
    [5]Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351-1358,2005.
    [6]Croce CM, Calin GA:miRNAs, cancer, and stem cell division. Cell 122:6-7, 200522.
    [7]Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, et al: MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568-577, 2009.
    [8]Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.BMC Med.2008;6:14.
    [9]Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, et al: miR-21 and 221 upregulation and miR-181b downregulation in human grade Ⅱ-Ⅳ astrocytic tumors. J Neurooncol 93:325-332,2009.
    [10]Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE, Reifenberger GIdentification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol.2010; 20(3):539-50.
    [11]Cao X, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21:531-536.
    [12]Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.2006; 20(16):2202-7.
    [13]Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res.2004; 14(10A):1902-10.
    [14]Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A.2004; 101(9):2999-3004.
    [15]Makeyev E V, Zhang J, Carrasco M A, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing[J]. Mol Cell.2007,27(3):435-448.
    [16]Conaco C, Otto S, Han J J, et al. Reciprocal actions of REST and a microRNA promote neuronal identity [J]. Proc Natl Acad Sci U S A.2006,103(7): 2422-2427.
    [17]Pierson J, Hostager B, Fan R, et al. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol.2008; 90:1-7.
    [18]Li KK, Pang JC, Ching AK, et al. MiR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol.2009a; 40:1234-43.
    [19]Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. MiR-124 and miR-203 are epigenetically silenced tumorsuppressive microRNAs in hepatocellular carcinoma. Carcinogenesis2010;31(5):766-76.
    [20]MicroRNAs as oncogenes and tumor suppressors [J]. N Engl J Med.2005, 353(17):1768-1771.
    [1]Maher E A, Furnari F B, Bachoo R M, et al. Malignantglioma:genetics and biology of a grave matter. Genes Dev,2001,15(11):1311-1333.
    [2]Furnari F B, Fenton T, Bachoo R M, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev,2007,21(21):2683-2710.
    [3]Reinhart B J, Slack F J, Basson,M, et al. The 21-nucleotidelet-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    [4]Lee R C, Feinbaum R L, Ambros, V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75: 843-854.
    [5]V. Ambros, The functions of animal microRNAs, Nature 16 (2004) 350-355.
    [6]Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101,2999-3004(2004).
    [7]G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti,T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. USA 99 (2002) 15524-15529.
    [8]G.A. Calin, C. Sevignani, C.D. Dumitru, T. Hyslop, E. Noch, S.Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, C.M.Croce, Human microRNA genes are frequently located at fragilesites and genomic regions involved in cancers, Proc. Natl. Acad.Sci. USA 101 (2004) 2999-3004.
    [9]M.Z. Michael, S.M. O Connor, N.G. van Holst Pellekaan,G.P. Young, R.J. James, Reduced accumulation of specific microRNAs in colorectal neoplasia, Mol. Cancer Res.12 (2003) 882-891.
    [10]J. Takamizawa, H. Konishi, K. Yanagisawa, S. Tomida,H. Osada, H. Endoh, T. Harano, Y. Yatabe, M. Nagino,Y. Nimura, T. Mitsudomi, T. Takahashi, Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival, Cancer Res.64 (2004) 3753-3756.
    [11]J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers, Nature 435 (2005) 834-838.
    [12]Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi:10.1186/1741-7015-6-14.
    [13]Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in p rimary glioblastoma [J]. Biochem Biophys Res Commun, 2005,334(4):1351-1358.
    [14]Chan JA, Krichevsky AM, Kosik KS, et al. MicroRNA221 is an antiapop totic factor in human glioblastoma cells[J]. Cancer Res,2005,65, (14):6029-6033.
    [15]Jennifer A C, Anna M K, Kenneth S K. MicroRNA-21 Is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-6033.
    [16]Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994-9000.
    [17]Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369-5380.
    [18]Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164-8172.
    [19]Shi L,Zhang J,et al.The mechanism of apoptosis in human U87 glioma cells induced by miR-21 antisense oligonucleotide[J].Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2008,25:497-501.
    [20]Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol, 2008,28(17):5369-5380.
    [21]Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germano A, Vita G, Tomasello F (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol[Epub ahead of print]
    [22]Lukiw WJ, Cui JG, Li YY, Culicchia F (2009) Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol 91:27-32.
    [23]Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773-2780.
    [24]Le Sage C, Nagel R, Egan DA,et al.Regulation of p27(kipl) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation[J].EMBO J,2007,26:3699-3708.
    [25]Gillies JK, Lorimer IA.Regulation of p27Kipl by miRNA221/222 in glioblastoma [J].Cell Cycle,2007,6:2005-2009.
    [26]Silingerland J, Pagano M.regulation of the cdk inhibitor p27 and its deregulation in cancer[J],J Cell Physiol,2000,183:10-17.
    [27]Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43-51.
    [28]Iaquinta PJ, Lees JA (2007) Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19:649-657.
    [29]Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566-3572.
    [30]Papagiannakopoulos T, Kosik KS:MicroRNAs:regulators of oncogenesis and stemness. BMC Med 6:15,2008.
    [31]Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al:hsa-mir-181a and hsa-mir-181b function as tumor suppressors in humanglioma cells. Brain Res 1236:185-193,2008
    [32]Godlewski J, Nowicki MO, Bronisz A, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell.2010;37:620-32.
    [1]H. Ohgaki, P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas, J. Neuropathol. Exp. Neural.64 (2005) 479-489.
    [2]Furnari F B, Fenton T, Bachoo R M, et al. Malignant astrocytic glioma:genetics, biology, and paths to treatment. Genes Dev,2007.
    [3]T. Visted, P.O. Enger, M. Lund-Johansen, R. Bjerkvig, Mechanisms of tumor cell invasion and angiogenesis in the central nervous system, Front. Biosci.8 (2003) 289-304.
    [4]A.C. Bellail, S.B. Hunter, D.J. Brat, C. Tan, E.G. Van Meir, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int. J. Biochem. Cell Biol.36 (2004) 1046-1069.
    [5]Hynes RO. Integrins:versatility, modulation, and signaling in cell adhesion. Cell,1992.69:11-25.
    [6]H. Fujiwara, Y. Kikkawa, N. Sanzen, K. Sekiguchi, Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3betal and alpha6betal integrins, J. Biol. Chem.276 (2001)17550-17558.
    [7]B.B. Tysnes, L.F. Larsen, G.O. Ness, R. Mahesparan, K. Edvardsen, I. Garcia-Cabrera, R. Bjerkvig, Stimulation of glioma-cell migration by laminin and inhibition by anti-alpha3 and anti-betal integrin antibodies, Int. J. Cancer 67 (1996) 777-784.
    [8]J.C. Knott, R. Mahesparan, I. Garcia-Cabrera, B. Bolge Tysnes, K. Edvardsen, G.O. Ness, S. Mork, M. Lund-Johansen,R. Bjerkvig, Stimulation of extracellular matrix componentsin the normal brain by invading glioma cells, Int. J. Cancer 75(1998) 864-872.
    [9]P. Enblad, G. Hesselager, E. Bongcam-Rudloff, I. Hallin, B.Westermark, M. Nister, Modulation of phenotype and induction of irregular vessels accompany high tumorigenic potential of clonal human glioma cells xenografted to nude-rat brain, Int. J. Cancer 85 (2000) 819-828.
    [10]R. Mahesparan, T.A. Read, M. Lund-Johansen,K.O. Skaftnesmo, R. Bjerkvig, O. Engebraaten, Expression of extracellular matrix components in a highly infiltrative in vivo glioma model, Acta Neuropathol. (Berl) 105 (2003) 49-57.
    [11]W. Paulus, I. Baur, D. Schuppan, W. Roggendorf Characterization of integrin receptors in normal and neoplastic human brain, Am. J. Pathol.143 (1993) 154-163.
    [12]Mahesparan R, Read TA, Lund2Johansen M, et al. Exp ression of extracellularmatrix components in a highly infiltrative in vivo glioma model[J]. Acta Neuropathol,2003,105 (1):49-57.
    [13]M. Aumailley, L. Bruckner-Tuderman,W.G. Carter, R. Deutzmann, D. Edgar, P. Ekblom, J. Engel, E. Engvall, E. Hohenester, J.C. Jones, H.K. Kleinman, M.P. Marinkovich, G.R.Martin,U.Mayer, G. Meneguzzi, J.H. Miner,K.Miyazaki, M. Patarroyo, M. Paulsson, V. Quaranta, J.R. Sanes, T. Sasaki, K. Sekiguchi, L.M. Sorokin, J.F. Talts, K. Tryggvason, J. Uitto, I. Virtanen, K. von der Mark, U.M.Wewer, Y. Yamada, P.D.Yurchenco, A simplified laminin nomenclature, Matrix Biol.24 (2005) 326-332.
    [14]Belkin, A. M. and Stepp, M. A. Integrins as receptors for laminins. Microsc. Res. Tech.,51:280-301,2000.
    [15]Ekblom P, Timpl R (1996) The Laminins. Harwood Academic Publishers, Amsterdam 4. Aumailley M, Smyth N (1998) The role of laminins in basement membrane function. J Anat 193:1-21
    [16]Colognato H, Yurchenco PD (2000) Form and function:the laminin family of heterotrimers. Dev Dyn 218:213-234.
    [17]Lohi J, Oivula J, Kivilaakso E, Kiviluoto T, Frojdman K, Yamada Y, Burgeson RE, Leivo I, Virtanen I (2000) Basement membrane laminin-5 is deposited in colorectal adenomas and carcinomas and serves as a ligand for a 301 integrin. APMIS 108:161-172.
    [18]Tani T, Lumme A, Linnala A, Kivilaakso E, Kiviluoto T, Burgeson RE, Kangas L, Leivo I, Virtanen I (1997) Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am J Pathol 151:1289-1302.
    [19]Castronovo V (1993) Laminin receptors and laminin-binding proteins during tumor invasion and metastasis. Invasion Metastasis 13:1-30.
    [20]Reich R, Blumenthal M, Liscovitch M. Role of phopholipase D in laminin induced production of gelatinase A (MMP-2) in metastatic cells. Clin Exp Metastasis 1995;13:134-40.
    [21]Zetter BR (1998) Angiogenesis and tumor metastasis. Annu RevMed 49:407-424.
    [22]Maatta M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) Comparative analysis of the distribution of laminin chains in the basement membranes in some malignant epithelial tumors:the a 1 chain of laminin shows a selected expression pattern in human carcinomas. J Histochem Cytochem 49:711-725.
    [23]Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardner LMG, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJC (2001) Cooperative interaction of laminin 5 Y 2 chain matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for minicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61:6322-6327.
    [24]Tysnes BB, Mahesparan R, Thorsen F, et al. Laminin expression by glial fibrillary acidic protein positive cells in human gliomas. Int J Dev Neurosci. 1999;17:531-539.
    [25]Kachra Z, Beaulieu E, Delbecchi L, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis.1999;17:555-566.
    [26]Patarroyo, M., Tryggvason, K., and Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol.,12:197-207,2002.
    [27]Sixt, M., Engelhardt, B., Pausch, F., Halhnann, R., Wendler, O., and Sorokin, L. M. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J. Cell Biol.,153:933-946,2001.
    [28]Fujiwara, H., Kikkawa, Y., Sanzen, N., and Sekiguchi K. Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through a3hl and a6hl integrins. J. Biol. Chem.,276:17550-17558, 2001.
    [29]Gonzalez, A. M., Gonzales, M., Herron, G. S., Nagavarapu, U., Hopkinson, S. B., Tsuruta, D., and Jones, J. C. Complex interactions between the laminin a4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc. Natl. Acad. Sci. USA,99:16075-16080,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700