不同硒源对肉鸡生长及生物学利用率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用亚硒酸钠和酵母硒两种硒源,在肉鸡日粮中分别添加0.1mg/kg、0.3mg/kg、0.5mg/kg水平的硒,研究不同水平下两种硒源对肉鸡生长发育、血液谷胱甘肽过氧化物酶的活性、脂质过氧化物的量、组织硒含量及硒的表观存留率的影响。试验结果如下:
     饲养试验:试验各组间日增重差异不显著(P>0.05),随着硒水平的增加,未出现相应的增加趋势,料重比除0.5mg/kg亚硒酸钠组较高外,其余各组间差异不显著(P>0.05)。对照组基础日粮中含有0.061mg/kg的硒,试验中对照组日增重和料重比均正常,但对照组死亡只数高于其它各组。试验中加硒各组的鸡胸肉的滴水损失极显著低于对照组(P<0.01),但加硒的各组间差异不显著(P>0.05)。血清谷胱甘肽过氧化物酶的活性,0.3mg/kg亚硒酸组显著高于0.1mg/kg酵母硒组,对照组显著低于0.5mg/kg酵母硒组(P<0.05),极显著低于0.3mg/kg亚硒酸钠组(P<0.01),其余各组间差异不显著。全血谷胱甘肽过氧化物酶的活性随硒水平的增加而相应增加,同一硒水平下,各组间差异不显著(P>0.05),对照组极显著低于0.3mg/kg、0.5mg/kg的亚硒酸钠组和酵母硒组(P<0.01),显著低于0.1mg/kg 亚硒酸钠组(P<0.05)。血清加硒组脂质过氧化物极显著低于对照组,0.1mg/kg、0.5mg/kg水平下差异不显著,0.3mg/kg酵母硒组显著低于0.3mg/kg亚硒酸钠组。各个部位的组织硒浓度中对照组均极显著低于试验组(P<0.01),肝硒和肾硒有明显的随着硒水平的添加而相应增加的趋势,肝硒在0.1mg/kg、0.3mg/kg添加水平下两种硒源差异不显著,0.5mg/kg水平酵母硒组显著高于亚硒酸钠组(P<0.05),0.3mg/kg、0.5mg/kg亚硒酸钠组与0.3mg/kg酵母硒组差异不显著(P>0.05);肾硒在0.1mg/kg添加水平下两种硒源差异不显著(P>0.05),0.3mg/kg、0.5mg/kg酵母硒组均显著高于亚硒酸钠组
    
    敷入,I硕三去学应.了皆戈
    不同硒源对肉鸡生长及生物学利用率的研究
    (l;一0.05):胰川硒在。.lln岁kg亚硒酸钠与0.1 mg众g酵母硒组间差异不
    显著,o.3m姚g亚硒酸钠组、o.smg瓜g亚硒酸钠组、0.3m眺g酵母硒组、
    o.sm妙g酵母硒组四红1问差异不显著(尸)。.05);肌肉硒在0.lmg/kg亚
    硒酸钠组与0.lm眺g酵母硒组间差异不显著,o.3m叭g、0.5m叭g业硒
    酸钠组,0.3m叭g、0.5m眯g酵母硒四组之间差异不显著;羽毛硒在
    o.lm姚g亚硒酸钠组与0.5m叭g、0.3m叭g酵母硒组间差异显著
     (P、.0.05),其余加硒组间差异不显著(尸>0.05)。
     代谢试验:随着硒水平的添加,硒表观存留率逐渐下降,亚硒酸钠
    组与酵母硒组在0.卜二岁kg、o.3m叭g下表观存留率差异显著(p、一0.05),
    o.sm叭g水平下表观存留率差异不显著。亚硒酸钠组内o.lmg瓜g与
    o.3m叭g、0.smg/kg差异极显著(p<丁0.01),o.3m叭g、0.smg/kg之间差
    异不显著(p少0.05)。酵母硒组内三种水平之间差异显著,其中0.lmg瓜g
    水平极显著高于0.3m叭g、0.5m叭g(尸<0.01),0.3mg吸g与0.5m叭g
    间差异显著(尸、0.05)。不同水平、不同硒源对肉鸡代谢能、蛋白质代谢
    率影响差异不显著(PO.05)。
     饲养试验和代谢试验结果表明,在肉鸡日粮(基础日粮己含有
    0.06ltn叭g的硒)中添加0.lm叭g亚硒酸钠和0.lm叭g酵母硒均已能
    满足动物需要,厂万臼}之少较汀的了仁产性能。随着}」粮f一卜硒水·日内洛、,;。;:,
     肉又鸟细织中的硒浓度也阳加纳加,词喂有机硒的肉玛肝、‘}子、)],1j浙_、)i,J[
     肉及羽毛中{西浓度牧似:,尤以肝、’肾明显。有机栖的表观存留牛似l犷相
     同水一平的无机硒。有机硒与无机硒对肉鸡生长性能、肉品滴水锁失、!(lL
    液谷肤甘肤过氧化物酶活性、脂质过氧化物影响比较,差异不显著
    (j,二心.05)O
This study was conducted with broilers to evaluated sodium selenite and se-enriched yeast source at various dietary se levels on broiler performance , blood glutathione peroxidase activity , tissue se concentrations and Se apparent retention et al. In this experiment, se was added to dietary by 0.1, 0.3, 0.5mg/kg respectively. The results were as follows:
    Experiment I. Growth trial results showed that neither se source nor dietary se level had any effect (F>0.05) on daily gain and the ratio of feed to gain, compared with the no-se-fortifled basal diet which contained 0.061mg/kg se. Drip loss of meat was decreased compared with basal diet(P<0.01). But sodium selenite groups weren't different with se-enriched yeast (P>0.05). About serum GSH-PX, 0.3mg/kg Na2SeO3 groups were higher significantly than 0.1 mg/kg se-enriched yeast group, control group was lower significantly than 0.5mg/kg se-enriched yeast and 0.3mg/kg Na2SeO3 group. There were not apparent different among other groups. Whole blood GSH-PX activity increased when dietary se level increased. At the same se level, two groups had no difference (P>0.05). The control group was lower significantly than 0.3, 0.5mg/kg Na2SeO3 and se-enriched yeast groups. Serum LPO has no difference at 0.1 and 0.5mg/kg level, se-enriched yeast groups were lower
    
    
    significantly than Na2SeO3 groups at 0.3mg/kg. Tissue se contents were influenced by both se source and dietary se level. Tissue se contents in adding se groups were higher extremely significantly than control group (P<0.01). Liver se contents weren't significant between two source at 0.1, 0.3mg/kg se level. At 0.5mg/kg se, se-enriched yeast groups were higher significantly than Na2SeO3 groups. Kidney se contents of se-enriched yeast groups were higher significantly than those of Na2SeO3 groups at 0.3 , 0.5mg/kg se. Pancreas se contents had no difTerence between O.lmg/kg sodium selenite and O.lmg/kg se-enriched yeast. There were no difference among 0.3 , 0.5mg/kg sodium selenite and 0.3s 0.5mg/kg se-enriched yeast (P>0.05). Muscle se contents were almost same with the pancreas se contents. Feather se contents of O.lmg/kg sodium selenite were different significantly than those of 0.5mg/kg sodium selenite and 0.3mg/kg se-enriched yeast (/><0.05). There were no differences among other adding se groups.
    Experiment 2. Digestive trial results showed that apparent retentions were different significantly between two sources at O.lmg/kg and 0.3mg/kg se level (P 0.05). There was no difference at 0.5mg/kg se level. When the sodium selenite source was fed, the apparent retention of O.lmg/kg se level was different extremely with 0.3mg/kg and 0.5mg/kg se level ; there was no significant difTerence between 0.3mg/kg and 0.5mg/kg se level. When the se-enrich yeast was fed, the difference of the apparent retention among the three se level groups was significant (/)<0.05), and the apparent retention of O.lmg/kg se level was higher extremely significantly than that of 0.3mg/kg se level (/J<0.01). Neither se source nor se level had any effect on AME and protein metabolism rate. (/)>0.05).
    The results suggested when the basal diet wasn't deficient se, O.lmg/kg sodium selenite or se-enriched yeast adding to broiler ration had satisfied with
    
    
    
    broiler growth and got good performance. Tissue se contents increased with se level increasing in broiler ration. Tissue se contents and apparent retention were higher when organic se adding to diet. The influence of two se sources on broiler performance, drip loss, LPO, blood GSH-PX activity weren't significant.
引文
1.于树玉,李文广等.启东县原发性肝癌地区地理分布特点与硒水平的关系.中华肿瘤杂志,1986,8(4):262-264
    2.王夔主编.生命科学中的微量元素.中国计量出版社.1989,219-223
    3.冯立红,冯生智.肉用种鸡维生素硒缺乏症综合诊治的报道.中国兽医杂志,1989,6:16-17
    4.康世良.硒对雏鸡胰腺的生物学效应.东北农学院学报,1984,2:8-14
    5.呙于明等.不同硒营养状态下,大鼠体内甲状腺激素代谢水平变化.中国动物营养学报,1992,4:1-6
    6.梁纪成,李庆怀,金久善等.硒对肉鸡免疫功能的增强作用.北京农业大学学报,1993,19(3):99-103
    7.黄克和,陈振旅.王小龙.硒对雏鸡生长体液免疫功能和抗自然感染能力的影响.南京农业大学学报,1990,13(4):98-102
    8.孙先忠,杨本善等.低硒日粮对雏鸡细胞免疫功能的影响.中国兽医科技,1991,21(2):28
    9.杨凤,动物营养学.农业出版社,1991,71-72
    10.徐辉碧,黄开勋.硒的化学、生物化学及其在生命科学中的应用.华中理工大学出版社,1994:254-266
    11.苏琪.我国天然低硒饲料对畜禽生产、健康与疾病的影响.中国农业科学 1991,24(2),69-76
    12. M. kcrchgessner, et al,家畜微量元素与营养的评定畜牧评从,1981:81-87
    13.苏琪,刘金旭,陆肇海.家畜家禽的硒营养缺乏的调查研究.中国农业科学.985.4:76-78
    14.周毓平.Gerald F. Combs, Jr.鸡对硒的生物学利用.北京农业大学学
    
    报,1983,9(2):75-79
    15.杨文正主编.动物矿物质营养.中国农业出版社,1994,145-159
    16.黄如彬主编.生物化学实验教程.世界图书出版社,1998,33-34
    17.夏奕明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法.卫生研究,1987,16(4):29-33
    18.谭龙飞,郭保江,王曼.合成有机硒的研究进展.食品工艺,1998,4:19
    19.王光亚,周瑞华,孙淑庄等.生物样品、水及土壤中痕量硒的荧光测定法.营养学报,1985,(1):39-45
    20.谭芳,王占凤,刘兆兴等.日粮中添加含硒生长素对肉仔鸡成活率及增重的影响.1993.13(4):376-377
    21.栾新红.硒的生物学功能及在家禽中的应用研究现状.中国家禽.1997,10:33-34
    22.呙于明.袁建敏.产蛋鸡日粮中不同水平V_E与有机和无机硒的效果研究.中国畜牧杂志,1998,34(5):10-12
    23.纪家玉,李海燕,王承莉等.有机补硒剂对生长猪的影响.中国饲料,1997,20:23-24
    24.刘海,端木逆,杨凤等.饲料硒利用率测定研究—雏鸡血浆谷胱甘肽过氧化物酶活性评定法.四川农业大学学报,1986,4(2):265-274
    25.刘永钢,张光柱,王康宁等.四川冕宁县缺硒饲粮对雏鸡的影响及不同品种雏鸡适宜补硒是量的研究.四川农业大学学报,1986.4(1):77-87
    26.易治雄,彭忠利.饲粮补硒、补蛋氨酸对雏鸡的影响.四川农业大学学报,1987.5(2):105-110
    27.阎素梅,赵志恭,王守清等.微量元素硒缺乏或过量对雏鸡生长发育影响的研究.内蒙古农牧学院学报.1992,13(4):40-49
    28.夏弈明,赵新娥等.硒的化学形式对人血中含硒组分的影响.营养学报,1993,15(2):157-161
    29.周剑涛.自由基生物化学概念.生物学通报,1989,11:15-16
    
    
    30.潘碧霞.氧自由基与疾病的基础知识.实用儿科杂志,1993,8(2):67-69
    31.李培峰.自由基与抗衰老研究.方允中,郑荣粱主编.自由基生命科学进展,第二集,北京原子能出版社,1994.7-11
    32.唐兆新,王玄英.山碱对山羊内毒素休克时肝脏自由集损害的保护机理.中国兽医学报,1998,5(18):490-493
    33.康建,陈晓琳.肿瘤病患者全血化学发光和抗氧化酶活性的研究.方允中,郑荣粱主编,自由基生命科学进展.第一集,北京原子能出版社,1993.134-137
    34.张罗平,徐辉碧,刘兆先.用ESR研究硒对过氧自由基的清除作用.华中工学院学报,1985,13(3):99-104
    35.汪德清.自由基对生物大分子损伤及保护德研究进展.方允中,郑荣粱主编,自由基生命科学进展,第二集,北京原子能出版社,1994,134-137
    36.张世珍,王兴亚,齐志明等.硒和维生素E在硒缺乏动物自由基代谢中作用机制的研究.畜牧兽医学报,1997,28(4):311-317
    37.王福伟,蔡梅雪.祝寿蒿.硒、维生素E对血脂质过氧化作用的影响.营养学报,1997,19(1):16-21
    38.徐瑷民,李桂芝.微量元素硒和维生素E对大鼠血清脂质过氧化物和SGPP的影响.营养学报,1991,13(1):16-19
    39.孙忠军,康世良.低硒雏鸡口服亚硒酸钠机体抗氧化系统动态变化的研究.饲料博览,1999,11(6):4-5
    40.阎素梅,赵志恭,王文元等.微量元素硒缺乏或过量对雏鸡组织硒含量影响的研究.内蒙古.农牧业学报,1994,15(4):75-79
    41.杨春珂,龚丽,龙健等.饲粮补硒提高肉品含硒量研究.云南畜牧兽医,1995,1:9-11
    42.沈霞主编.现代生物化学检验与临床实践.上海科技文献出版社,1999:283-285
    43.杨诗兴编译.国外家畜饲养与营养资料选编.农业出版社,1987
    44.马敏,郭支恒.饲料中添加有机硒已成为现实.中国饲料,1996,14:41
    45.王子健,周杰,彭安等.不同硒化合物在WISTAR大鼠主要组织器官中的分布.环
    
    境科学学报,1992,12(3):268-273
    46.汪梦萍主编.饲料营养成分分析.华中农业大学教材,1990:45-47
    47.韩永达,康世良,王书林等.雏鸡实验性缺硒病某些生化指标的研究.东北农学院学报.1984,2:28-32
    48.黄克和,孙农等.乳牛的血清水平及其谷胱甘肽过氧化物酶的关系.南京农业大学学报.1989,12(1):95-100
    49.张在香.大鼠脱碘酶、硒蛋白P和硒蛋白W正常表达所需的最低硒水平.营养学报,2000,22(2):97-101
    50.张在香.大鼠谷胱甘肽过氧化物酶发挥活性所需最低硒水平.营养学报,2000,22(1):47-51
    51. Schwartz, K and C. M. Foltz. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Am chem. Soc. 1957, 79: 3292-3293
    52. Muth, O.H., J. E. Oldfield, L.f. Remmert. and J.R. Schubert.. Effects of selenium and vitamin E on white muscle decease. Science, 1958, 128: 1090
    53. Oldfield, J. E, J. R. Schubert, and O. H. Muth. Selenium and vitamin E as related to growth and white muscle disease in lambs. Proc. Soc. Exp. Biol. AndMed, 1960, 103: 799-800
    54. Rotruck, J. T, A.L, pope. H. E. Ganther, A. B, swansown, D. G. Hafe man. selenium biochemical role as a component of glutathione peroxides. Science, 1973, 179: 588-590
    55. Behne, D and Wocters, ow. Distribution of Selenium and glutathione peroxidase in the rat. J. Nutri. 113: 456-461
    56. Schrauzer G N, et al. Cancer mortality correlation study: statistical Associations with Dietary selenite intakes. Bionorganicc Chemistry, 1997, 7: 2333-24
    57. P. D. Wnanger and J. A. Bdtier. Effects of various Dietary levels of Selenium as s elenite or selenomethionine on tissue selenium levels and glutathione Peroxidase activity in rats. J. Nutri, 118(7): 846-852
    
    
    58. Tapple A. Labstracts of third intertional symposium on selenium in biology and medicine, Beijing, 1984: 11
    59. B. G. Pchron. Countering Selenium deficiency: organic versus inorganic sources. Feed international, 1997, 27: 9
    60. J. D. Latrshaw, M. D. Bigget, Incorporation of Selenium into egg proteins after feed seleaomethine or sodium selenite. Poultry sci, 1981, 60: 1209-1313
    61. Beckett, cJ et al. Inhibition of type Ⅰ and type iodothyronine deiodinase is caused by selenium deficiency in rats. Biochem. J, 1989, 259: 889-892
    62. Kelly, M. P. And R. E Power, Fraction and identification of the mayor Selenium compound is selenized yeast, J. Dairy. Sci, 1995, 8(supple. 1): 273 (abstract)
    63. Sherri L., Weiss and. Roger A. Sunder Selenium regulation of classical glutathione peroxidase expression requires tree 3' untranslated region in Chinese hamster ovary cell. J. Nutr, 1997, 127: 1304-1310
    64. Kelly, M.P. and R.E Power Fraetionation and identification of the major selenium compounds in solemnized yeast. J. Poultry sci, 78 (Supple.1), 1995: 237
    65. Mahan, D. C., and Y. Y ktm. Effect of inorganic or organic selenium at two dietary levels on reproductive performance and tissue selenium concentrations in first parity gilts and their progeny. J. Anim. Sci. 1996, 74: 2711-2718
    66. Mahan, D. C. and N. A. parrelt. Evaluating the efficacy of se-enriched, Yeast and inorganic splenetic on tissue se retention and serum glutathione peroxides activity in grower and finisher swine. J. Anim. sci, 1996, 74: 2967-2974
    67. Wolter, -β and mcreith, -F. r et at. Influence of dietary selenium and source on growth performance and carcass and meat quality characteristics in figs, Can-j-anim-sci, 1999, 79(1): 119-121
    68. D.C. Mahan and Lyons-Tp. Organic selenium sources for swine now do they compare with thorganic selenium sources Biotechnology in the feed industry: proceedings of Autech's Tenth Annual symposium 1994: 323-333
    
    
    69. Hemken R.W, R. J. Harmon and S. Trammell. selenium for dairy cattle: a case for organic sselenium. in proceedings of the 14th annual symposium on biotechnology in the feed industry. Nottingham university press, Nottingham, U. K.: 497.
    70. S.D. Lathshaw, M.D. Bigger. Incorporation of selenium into egg proins after feed selen nomethine or sodium selenite. Poultry science, 1981; 60: 1209-1313
    71. Awaden, F. T, R.L. KINcaid and K.A Johnson. Effect of level and source of dietary selenium on concentattions of tryroid hormones and immunolobulies in beef cows and calves. J. Anim. Sci, 1998, 76: 1204
    72. SherriL, weiss and ro koger A. selenium regulation of classical glutatnitone peroxides expression requires the 3'untranslated prgion in Chinese hamster ovary cells. J. Nutri 1997; 127: 1304-1310
    73. Cantor A H, Langerin M L. Efficacy of selenium in selenium compounds and feedstuffs for prevention of pancreatic fibrosis in chicks. J. Nutri, 1975, 105: 106-111
    74. Edens, F. w. 1996. Organic selenium: from feathers to muscle integrity to drip loss. Five years onward: no more selenifel in: Biotechnology in the feed industry. Proc. Of the 12th Annual symposium. Nottingham University press, Nottingham, Vk. Pp. 165-185
    75. Crabrieisen, B. O. and Opstved. J. Availability of selenium in fish meal in comparison with soybean meal, corn gluten meal and selenomethionine relative to selenium in sodium selenite for restoring glutathione peroxidase activity in se chicked. J. Nutri, 110: 76-78
    76. Hassan. S. Selenium concentration in egg and body tissue as affected by the level and source of selenium in the nendiet. Acta Agriculture Scandinaviaca, 1990, 40(3): 279-287
    77. R.H. Daris Incorporation of selenium into egg proteins from dietary selenite. British poultry science, 1996, 37: 197-211
    78. P. Aspila, L, Sytiyiy-qvist Transfer of selenium from dietary sources into plasma and
    
    milk of dairy cow. Trace element in man and Animals 6, Plenum press, New York, 1998: 343-344
    79. Edens-Fw, potential for organic selenium to replace selenite in poultry diets, zootechica-international. 1997, 20(1): 28-31
    80. Surai-PF, Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Brifish-Poultry-Saenec, 2000, 41(2): 235-243
    81. Nitller, D. et al. Comparative selenium retention by chicks fed sodium selenile, selenomethionine, and fishmeal and fish solubles. Poultry Sci, 1972, 51: 1669-1673
    82. Combs At et al. Mechanism of action of selenium and vitamin E m protection of biological membranes. Fed Proc 1975, 30: 2090
    83. Forstrom J W et al. Identification of the catalytic site of rat liver glutathion peroxides as selenocysteine. Biochemistry 1978, 17: 2639
    84. Arthur IR, Nicol F, Becrett a J. Hepatic iodothyronine 5'-deiodmase the role of selenium. Biochem J., 1990, 272(2): 537
    85. E.N.Nwokole, D.B.Bragc. A method for estimating the mineral availability in feedstuffs. Poult. Sci, 1976, 55: 2217-2221
    86. Thompson, J. N. and scott, M.L. Impaired lipid and vitamin E absorption related to atrophy of the pancreas in selenium-deficient chicks. J. Nutri, 100: 797-809
    87. Lovell-Rt and wang-Chin Lu. Organic selenium sources, selenometnionine and selnoyeast have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish. Aquaculture. 1997, 152: 1-4, 223-234 (abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700