养血解毒法治疗斑块型银屑病血燥证疗效观察及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     银屑病是以表皮细胞过度增殖、角化不全等表皮动力学紊乱为特征的慢性炎症性皮肤病,属于皮外科的疑难病证之一。斑块型银屑病是银屑病中的难治型,临床实践证明,具有整体调整功能的中药复方能够取得良好疗效。养血化斑汤是李元文教授在深入总结前人经验及长期临床验证、反复筛试的基础上拟定的具有养血解毒功能的治疗斑块型银屑病的中药复方。前期课题组已经对该复方治疗银屑病进行了初步临床研究,发现其安全性好、疗效可靠,但缺少循证医学的客观评价,且其作用机制尚不明确。
     根据系统生物学的观点,疾病的发生、发展与一系列相互作用的基因或蛋白相关,呈现出复杂的网络关系特征;药物是通过作用于疾病网络中的多个靶点,对各靶点的作用产生协同效应,从而对其发生、发展进行干预而达到治疗效果。中药复方具有多组分、多途径、多靶点协同作用特点,基于分子网络层面探索其效应机制,有助于更全面、更准确地把握其效应整体性,而且能为中药药理作用机制研究提供新思路。因此,本研究基于分子网络分析方法探索养血化斑汤治疗银屑病的机制。
     目的
     (1)科学地评价养血化斑汤治疗斑块型银屑病血燥证的疗效与安全性;
     (2)探讨养血解毒药对组合干预银屑病的作用靶点及分子网络机制。
     方法
     (1)临床安全性及疗效评价
     采用前瞻性、随机、对照的试验设计,观察养血化斑汤治疗斑块型银屑病血燥证的临床疗效及安全性。以2:1比例随机区组纳入120例斑块型银屑病血燥证患者:养血化斑汤治疗组80例,消银胶囊对照组40例,两组均配合白凡士林外涂,疗程8周。治疗后,通过比较银屑病皮损面积和严重程度指数(PASI)评分以及中医临床症状评估指标评定其疗效,记录不良反应发生情况,对安全性进行评价。
     (2)疗效靶点及分子网络机制研究
     参考《中药大辞典(第二版)》找到当归、鸡血藤、槐花、土茯芩的化学成分,应用PubChem数据库检索这些成分对应的靶蛋白;以"Psoriasis"为关键词,在PubMed gene数据库中检索银屑病的相关基因;然后将上述数据集导入IPA软件,分别构建中药靶蛋白和银屑病相关基因的分子网络及生物学通路;再通过网络映射、比较,可视化呈现养血药对、解毒药对及它们的组合干预银屑病的作用靶点和分子网络机制。
     结果
     (1)疗效及安全性观察结果
     养血化斑汤治疗斑块型银屑病血燥证临床痊愈9.0%,显效38.4%,有效30.8%,无效21.8%;消银胶囊对照组临床痊愈5.4%,显效16.2%,有效40.5%,无效37.8%。
     经统计分析发现:试验组在银屑病临床疗效、银屑病临床总有效率与对照组相当,其差异无统计学意义。而在银屑病临床愈显率方面试验组(47.4%)优于对照组(21.6%)。提示养血化斑汤虽然在治疗血燥型银屑病总疗效上与消银胶囊相当,但在痊愈及显效患者比例上多于对照组,其改善皮疹程度上优于对照组。
     试验组在中医证候疗效、中医证候愈显率疗效、中医证候总有效率方面均优于对照组(P<0.05)。由于血燥证银屑病中医证候评价主要由鳞屑、瘙痒、口干症状改善几方面构成,提示养血化斑汤对综合改善血燥型银屑病患者鳞屑、瘙痒程度、口干症状方面优于对照组(P<0.05)。
     对试验组患者疗前、疗后进行安全性实验室检查,经观察服用养血化斑汤治疗组患者全部实验室指标未出现异常。试验组在治疗过程中,未出现不良反应。对照组有1例出现皮疹一过性加重,未采取其他治疗方法,1周后症状逐渐缓解。
     (2)生物信息学分析结果
     通过检索靶蛋白和基因数据库查找到:当归靶蛋白44个、鸡血藤靶蛋白41个、槐花靶蛋白34个、土茯苓靶蛋白35个,银屑病相关基因165个。对上述各个中药的靶蛋白及银屑病基因分别进行生物功能分析、生物学通路分析及分子网络分析发现:①当归、鸡血藤、槐花和土茯苓各自相关的疾病不同;相关度最强的疾病分别为:Nutritional Disease,Neurological Disease,Cancer和Psychological Disorders; Dermatological diseases and conditions是它们共同对应的疾病;提示这4味中药治疗疾病的范围广泛而不同,但都可治疗皮肤相关疾病;银屑病对应的生物功能主要涉及Inflammatory Response,Immunological regulation和Cell-To-Cell Signaling and Interaction。②当归、鸡血藤、槐花和土茯苓各自相关的生物学通路不同;相关度最强的生物学通路分别为:Aryl Hydrocarbon Receptor Signaling, Aryl Hydrocarbon ReceptorSignaling, ATM Signaling和Gai Signaling;与银屑病最相关的生物学通路是Dendritic Cell Maturation。③当归、鸡血藤、槐花和土茯芩4个中药及银屑病各自的分子网络分别有5、4、4、2、16个亚网络;各个网络表现的功能不同:当归网络的主要功能涉及Lipid Metabolism、Molecular Transport、Small Molecule Biochemistry等,鸡血藤网络的主要功能涉及Neurological Disease、Psychological Disorders、Metabolic Disease等,槐花网络的主要功能涉及Cell Cycle、Organismal Development、DNA Replication、 Recombination and Repair等,土茯苓网络的主要功能涉及Metabolic Disease、 Neurological Disease、Organismal Injury and Abnormalities等,银屑病网络的主要功能涉及Cell-To-Cell Signaling and Interaction、Hematological System Development and Function、Cellular Movement等。
     把与中药相关的生物学通路和分子网络与银屑病相关的生物学通路和分子网络进行比较整合分析发现:①当归干预银屑病相关的特有生物学通路主要包括Renin-Angiotensin Signaling, IL-6Signaling和Inhibition of Matrix Metalloproteases等;鸡血藤干预银屑病相关的特有的生物学通路包括Cdc42Signaling和Superpathway of Citrulline Metabolism:槐花干预银屑病相关的特有生物学通路是FXR/RXR Activation:土茯苓干预银屑病相关的特有生物学通路包括Serotonin Receptor Signaling和Aldosterone Signaling in Epithelial Cells。②当归-鸡血藤养血药对干预银屑病相关的特有生物学通路主要包括Endothelin-1Signaling、RAR Activation、LPS/IL-1Mediated Inhibition of RXR Function等;槐花-土茯苓解毒药对干预银屑病相关的特有生物学通路是G-Protein Coupled Receptor Signaling。③当归-鸡血藤-槐花-土茯苓药对组合干预银屑病相关的特有生物学通路包括Aryl Hydrocarbon Receptor Signaling、Androgen Signaling、eNOS Signaling和PI3K/AKT Signaling。④当归干预银屑病特有的关键网络靶标分子主要包括Hsp27、PARP、PEPCK等;鸡血藤干预银屑病特有的关键网络靶标分子主要包括Gsk3、Interferon alpha、NOS2等;槐花干预银屑病特有的关键网络靶标分子主要包括NOTCH1、Alpha tubulin、CD3等;土茯苓干预银屑病特有的关键网络靶标分子包括Beta Arrestin、Gpcr和TNF;⑤当归-鸡血藤养血药对干预银屑病特有的关键网络靶标分子主要包括IL1、Pro-inflammatory Cytokine、P38MAPK等;槐花-土茯苓解毒药对干预银屑病特有的关键网络靶标分子主要包括LDL、IFN Beta、glutathione peroxidase等。⑥当归-鸡血藤-槐花一土茯苓药对组合干预银屑病特有的关键网络靶标分子包括26s Proteasome、ERK1/2、NFkB (complex)、UBC和Ubiquitin。
     结论
     (1)养血化斑汤治疗斑块型银屑病血燥证安全有效,值得临床推广应用。
     (2)当归-鸡血藤-槐花-土茯苓养血解毒药对组合通过调控Aryl Hydrocarbon Receptor Signaling、Androgen Signaling、eNOS Signaling和PI3K/AKT Signaling生物学通路及针对Ubiquitin、Proteasome。ERK1/2和NF-κB分子靶点对银屑病发挥疗效。以上经典通路及靶点的扰动也反映了斑块型银屑病血燥证的生物学基础。
     (3)分子网络分析技术是探索中药治疗疾病靶点及机制的有效方法。
Background
     Psoriasis is a common, chronic, inflammatory disease of the skin, whose typical clinical manifestions are increased cellular activity of the epidermis and dilated capillaries of the dermis. Psoriasis is one of the difficult miscellaneous diseases in dermasurgery. Plaque type psoriasis is a refractory type of psoriasis. Clinical practice has proved that Chinese herbal compound (CHM) treatment can achieve good curative effect on psoriasis relying on its overall adjustment function. Based on the in-depth summary of predecessors'experience, long-term clinical validation and repeated screening test, Li Yuanwen professor invented Yangxue Huaban decoction (YXHB) with functions of nourishing blood and detoxification (Yangxue and Jiedu). Preliminary clinical observation of YXHB treatment psoriasis showed that YXHB has a good safety and reliable curative effect. However there is lack of the objective evaluation on the basis of the evidence-based medicine and the mechanism of YXHB treatment psoriasis is unclear.
     According to systems biology viewpoint, the occurrence and development of diseases are associated with a series of interacting genes or proteins that show the characteristics of complex network. Drug produces the synergistic effect through its effects on the multiple targets in the disease network and thus intervenes to the occurrence and development of the disease. CHM is characterized by multi-component, multi-pathways and multi-targets synergy. Exploring CHM effect mechanism at the molecular network level not only is conducive to more comprehensive and more accurate decryption of CHM integrity effect but also provides new ideas for mechanism study pharmacology of Chinese medicine. Therefore using the molecular network analysis method is expected to explore YXHB mechanism for the treatment of psoriasis.
     Objective
     (1) To evaluate the efficacy and safety of YXHB on treatment of plaque type psoriasis.
     (2) To explore the possible acting targets and molecular network mechanism of Yangxue and Jiedu herbal pairs complex prescription (YJPC) on psoriasis. And thus to promote the clinical application and development of traditional Chinese medicine.
     Methods
     (1) Efficacy and safety of YXHB
     In this prospective, randomized and control clinical trial of120patients with plaque type psoriasis,80were treated with YXHB and40were treated with Xiaoyin capsule (XYC) for8weeks. The therapeutic outcomes were evaluated by PASI score and clinical symptoms evaluation indicators in traditional Chinese medicine. And the adverse effects were analyzed.
     (2) Acting targets and molecular network mechanism of YJPC
     The effective components of Angelica sinensis (DG), Caulis Spatholobi (JXT), Flos Sophorae (HH) and Rhizoma smilacis glabrae (TFL) were retrievalled from the Grand Dictionary of Chinese Medicine (Second Edition), the human target proteins of those effective components were retrievalled from Pubchem database, and genes related psoriasis were retrievalled from Pubmed gene database. Then the target proteins and genes were respectively uploaded Ingenuity Pathways Analysis (IPA) data analysis platform, constructing the molecular networks and biological pathways of each herb and psoriasis. Finally through the network comparison, acting targets and molecular network mechanism of YJPC were presented visually.
     Results
     (1) Efficacy and safety of YXHB
     Effective rates of YXHB group and XYC group respectively were78.2%and62.2%after treatment and there were no significant differences between the two groups. PASI score and clinical symptoms of YXHB group were significantly alleviated than those of XYC group (P<0.05). In the process of treatment, there were no significant adverse reactions and toxicity in YXHB group and one patient had a transient rash in XYC group.
     (2) Bioinformatics analysis results
     Target proteins and genes were searched from corresponding database. The number of target proteins of DG, JXT, HH and TFL respectively is44,41,34and35. Psoriasis related genes are165. The results of biological function, biological pathways and molecular network analysis showed as follows:①each herb corresponds to different diseases; the most relevant disease corresponding to DG, JXT, HH and TFL respectively is nutritional disease, neurological disease, cancer and psychological disorders; Dermatological diseases and conditions are common diseases corresponding to each herb; psoriasis involved biological functions mainly includes inflammatory response, immunological regulation and cell-to-cell signaling and interaction.②ach herb corresponds to different biological pathways; the most relevant biological pathway corresponding to DG, JXT, HH, TFL and psoriasis respectively is aryl hydrocarbon receptor signaling, aryl hydrocarbon receptor signaling, ATM signaling and Gai signaling and dendritic cell maturation.③Molecular networks corresponding to DG, JXT, HH, TFL and psoriasis respectively have5,4,4,2,16sub-network; each network related biological functions are different; DG network functions mainly involve lipid metabolism, molecular transport, small molecule biochemistry, etc.; JXT network functions mainly involve neurological disease, psychological disorders, metabolic disease, etc.; HH network functions mainly involve cell cycle, organismal development, DNA replication, recombination and repair, etc.; TFL network functions mainly involve metabolic disease, neurological disease, organismal injury and abnormalities, etc.; psoriasis network functions mainly involve cell-to-cell signaling and interaction, hematological system development and function, cellular movement etc.
     Compared biological pathways and molecular networks of each herb with those of psoriasis, the results showed as follows:①the special pathways of DG to psoriasis mainly include renin-angiotensin signaling, IL-6signaling, inhibition of matrix metalloproteases, etc.; the special pathways of JXT to psoriasis include Cdc42signaling and superpathway of citrulline metabolism; the special pathway of HH to psoriasis is FXR/RXR activation; the special pathways of TFL to psoriasis include serotonin receptor signaling and aldosterone signaling in epithelial cells,②the special pathways of DG-JXT herbal pair to psoriasis mainly include endothelin-1signaling, RAR activation, LPS/IL-1mediated inhibition of RXR Function, etc.; the special pathway of HH-TFL herbal pair to psoriasis is G-protein coupled receptor signaling.③the special pathways of DG-JXT and HH-TFL herbal pairs (YJPC) to psoriasis include aryl hydrocarbon receptor signaling, androgen signaling, eNOS signaling and PI3K/AKT signaling.④the special key network target molecules of DG to psoriasis mainly include Hsp27, PARP, PEPCK, etc.; the special key network target molecules of JXT to psoriasis mainly include Gsk3, interferon alpha, NOS2, etc.; the special key network target molecules of HH to psoriasis mainly include NOTCH1, Alpha tubulin, CD3, etc.; the special key network target molecules of TFL to psoriasis include beta arrestin, Gpcr and TNF.⑤the special key network target molecules of DG-JXT herbal pair to psoriasis mainly include IL1, pro-inflammatory cytokine, p38MAPK, etc.; the special key network target molecules of HH-TFL herbal pair to psoriasis mainly include LDL, IFN Beta, glutathione peroxidase, etc. ⑥he special key network target molecules of DG-JXT and HH-TFL herbal pairs (YJPC) to psoriasis include26s proteasome, ERK1/2, NFkB (complex), UBC and Ubiquitin.
     Conclusion
     (1) YXHB is effective and safe on treatment of plaque type psoriasis and is worth clinical application.
     (2) YJPC treats psoriasis by regulating four biological pathways (aryl hydrocarbon receptor signaling, androgen signaling, eNOS signaling and PI3K/AKT signaling) and four network target molecules (Ubiquitin, Proteasome, ERK1/2and NF-κB). Perturbation of the biological pathways and molecules also explain the modern biological mechanisms of plaque type psoriasis Xuezao syndrome.
     (3) Molecular network analysis technique is an effective method to explore and predict targets and mechanisms of traditional Chinese medicine treating diseases.
引文
1. 王莒生.20世纪北京中医名家银屑病辨证思路演变文献初探.北京中医,2006,25(10):590-591.
    2. 邓丙戌.银屑病中医辨证的规律探讨.中国医学文摘(皮肤科学),2007,(6):344-345.
    3. 北京中医医院.赵炳南临床经验集.人民卫生出版社,1975:22.
    4. 赵炳南.简明中医皮肤病学,中国展望出版社,1983:36.
    5. 张志礼.200例银屑病中医辨证论治的体会.中华医学杂志,1974,(4):205-207.
    6. 中医研究院广安门医院.朱仁康临床经验集.人民卫生出版社,1979:133.
    7. 朱仁康.“克银方”治疗银屑病的临床研究进展-附236例疗效观察.中医杂志,1983,24(9):31-33.
    8. 金起凤.消银汤治疗银屑病58例疗效观察.辽宁中医杂志,1983,7(6):29-30.
    9. 金起凤.中华皮肤病学.中国医药科技出版社,2001:78.
    10. 欧阳恒.新编中医皮肤病学.人民军医出版社,2000:106.
    11. 马绍尧.辨证治疗寻常型银屑病312例.湖南中医药导报,1999,5(7):21.
    12. 顾伯华.外科经验集.上海人民出版社,1977:28-29.
    13. 周鸣岐.辨证分型治疗银屑病302例.中医杂志,1989,30(5):42-43.
    14. 徐宜厚.皮肤病中医诊疗简编.湖北人民出版社,1980:48.
    15. 宋安吉.消银汤治疗银屑病96例.中医药学刊,2005,23(6):1155.
    16. 石丽莉.凉血解毒汤治疗寻常型银屑病临床疗效及sVCAM-1水平检测.新中医,2008,40(7):14-15.
    17. 王雅娟.活血通络汤治疗寻常型银屑病80例.陕西中医,2002,23(9):796-797.
    18. 毕艳武.自拟凉血解毒消斑汤治疗寻常型银屑病60例.实用中医内科杂志,2007,21(10):37.
    19. 白兰地.中医辨证治疗银屑病66例分析.内蒙古中医药,1996,(2):9.
    20. 周冬梅.王莒生学术思想与临床经验总结及辨血为主论治寻常型银屑病的临床研究.北京中医药大学,2011:66-67.
    21. 王亚斐.凉血活血汤加减治疗进行期寻常型银屑病疗效观察.湖南中医药大学学报,2007,27(5):73-75.
    22. 马民凯.凉血解毒汤治疗急性期银屑病41例临床观察.中国中医急症,2012,(6):968.
    23. 周梅娟.凉血活血复方治疗进展期银屑病疗效及安全性评价.中国中西医结合皮肤性病学杂志,2012,11(3):152-154.
    24. 何玲.牛黄冲剂治疗寻常型银屑病59例临床观察.中医杂志,2002,43(2):123-124.
    25. 贾敏.消疕汤治疗寻常型银屑病的疗效观察.贵阳中医学院学报,2012,34(1):33-35.
    26. 王立新.清营汤加减治疗银屑病48例临床观察.中医杂志,2010,51(增刊2):201-202.
    27. 张春红.土苓饮治疗进行期寻常型银屑病的临床研究及对TNF-α、IL-8水平的影响.山东中医药大学,2003:98.
    28. 王万春.中药清银解毒汤治疗寻常型银屑病及血清TNF-αIL-8水平检测.辽宁中医杂志,2009,36(2):242-243.
    29. 黎娟.竹黄颗粒剂治疗寻常型银屑病血热证的临床观察及其疗效评价的研究.湖南中医药大学,2003:58.
    30. 赵延明.自拟消银汤治疗银屑病的临床研究.黑龙江中医药大学,2002:96.
    31. 胡爱玲.凉血汤治疗寻常型银屑病血热证30例临床观察.中医药导报,2009,15(2):41-43.
    32. 李福伦.芩珠凉血合剂治疗血热证银屑病的随机对照临床研究.中西医结合学报,2008,6(6):586-590.
    33. 邱实.活血散瘀消银汤治疗寻常型银屑病血瘀证的临床研究.中药材,2005,(5):22-24.
    34. Ho, S.G., C.K. Yeung, and H.H. Chan, Methotrexate versus traditional Chinese medicine in psoriasis:a randomized, placebo-controlled trial to determine efficacy, safety and quality of life. Clin Exp Dermatol,2010.35(7):p.717-22.
    35. 林瑞奋.三藤汤治疗寻常型银屑病临床及免疫学研究.福建中医学院学报,2000,(3):8-10.
    36. 张增建.四黄祛银汤治疗寻常型银屑病的临床研究.辽宁中医杂志,2008,35(7):1048-1049.
    37. 路涛.银屑灵胶囊治疗寻常型银屑病临床观察.河北中医,2005,27(9):655-656.
    38. 郭菲.健脾解毒汤治疗脾虚湿盛证银屑病的临床研究.新疆医科大学学报,2012,35(4):411-415.
    39. 谢韶琼.抗银1号方治疗寻常型银屑病41例疗效观察.河北中医,2009,31(2):173-175.
    40. 王蕾.银屑灵片治疗寻常型银屑病的临床观察.广州中医药大学学报,2009,26(6):520-522.
    41. 张敏.阿维A治疗斑块状银屑病临床疗效观察.临床皮肤科杂志,2007,36(9):592-593.
    42. 樊敏.蓝川清热合剂治疗银屑病的临床观察.中国中西医结合杂志,2005,(4):375-376.
    43. 莫启忠.银迪片治疗寻常型银屑病的临床观察.岭南皮肤性病科杂志,1999,6(1):28-29.
    44. 陈菊华.复方氨肽素对进展期寻常型银屑病的疗效观察.现代医药卫生,2006,22(4):496-497.
    45. 陈红.复方青黛胶囊治疗寻常型银屑病的疗效观察及其对血清IL-2、IL-8的影响.中药材,2004,(11):885-886.
    46. 闰跃东.消银胶囊治疗寻常型银屑病疗效观察.光明中医,2008,23(6):808-809.
    47. 顾敏婕.消银胶囊治疗寻常型银屑病120例.浙江中西医结合杂志,2009,19(9):571-572.
    48. 陈军秀.阿维A胶囊治疗寻常型斑块状银屑病疗效观察.中国热带医学,2007,7(10):1834.
    49. 陈玉红.阿维A胶囊治疗寻常性银屑病疗效观察.实用临床医学,2009,(6):34-36.
    50. 钱友书.迪银片治疗银屑病的疗效对比观察.淮海医药,1998,16(2):33.
    51. Lin, Y.K., et al., Clinical assessment of patients with recalcitrant psoriasis in a randomized, observer-blind, vehicle-controlled trial using indigo naturalis. Arch Dermatol,2008.144(11):p.1457-64.
    52. 徐佳.芩柏软膏治疗进行期银屑病血热证的临床观察和实验研究.中国中西医结合杂志,2009,(7):23-24.
    53. Zhou, N., et al., Effect of new Pulian Ointment () in treating psoriasis of blood-heat syndrome:A randomized controlled trial. Chin J Integr Med,2009,15(6):p.409-14.
    54. 高源.双黄解毒乳膏治疗血热内蕴型寻常型银屑病的临床疗效观察.新疆医科大学学报,2012,(4):124-126.
    55. 刘岩.海艾汤外洗治疗头部银屑病35例..现代中医药,2011,31(6):24-25.
    56. 王建湘.中医药浴疗法治疗寻常型银屑病临床疗效观察.中国医师杂志,2002,4(1):96-97.
    57. 刘建.涤银洗剂外敷治疗寻常型银屑病60例.河北中医,2010,32(10):1471-1472.
    58. 苏艳.复方治银霜治疗银屑病的临床研究.上海中医药大学,2001:49.
    59. 林胤谷.复方青黛油膏治疗银屑病的临床疗效评估.成都中医药大学学报,2006,(2):13-16.
    60. 高淑华.中药消银擦剂外用治疗寻常型银屑病62例疗效观察.长治医学院学报,2004,(2):138-139.
    61. 范平.克银Ⅰ号治疗银屑病临床应用.广后医学,1996,10(2):190-191.
    62. 祝林.中药“消癣灵”治疗寻常型银屑病85例疗效观察.右江医学,2008,(2):230-231.
    63. 孙步云.中医药治疗银屑病226例临床观察.中医杂志,1995,36(2):99-100.
    1. 刘瓦利.银屑病的病因与发病机制.中国临床医生,2009(8):11-13.
    2. 田中华.肥大细胞参与免疫反应及其在银屑病发病机制中的作用.中国麻风皮肤病杂志,2003(1):87-88.
    3. 杨洪浦.156例银屑病患者外周血T淋巴细胞亚群的表现.皮肤病与性病,2002.14(3):114-116.
    4. 中华医学会皮肤性病学分会银屑病学组.银屑病治疗指南.人民卫生出版社,2008:58-59.
    5. 北京中医医院.赵炳南临床经验集.人民卫生出版社,1975:26.
    6. 赵炳南.简明中医皮肤病学.中国展望出版社,1983:48.
    7. 刘辅仁.实用皮肤科学(第三版).人民卫生出版社,1999:128.
    8. 张志礼.中西医结合皮肤性病学.人民卫生出版社,2000:68.
    9. 张志礼.中西医结合临床诊疗丛书—皮肤科手册.中医古籍出版社,2004:168.
    10. 张志礼.张志礼皮肤病临床经验辑要.中国医药科技出版社,2001:119.
    11. 安家丰.张志礼皮肤病医案选萃.人民卫生出版社,1994:32.
    12. 陈凯.皮肤病中医特色治疗.辽宁科学技术出版社,2001:109.
    13. 邓丙戌.皮肤病中医外治学.科学技术文献出版社,2005:218.
    14. 邓丙戌.疑难病中西医结合诊治丛书—银屑病.科学技术文献出版社,2003:114.
    15. 赵辨.临床皮肤病学.江苏科学技术出版社,2001:44.
    16. 朱学骏.现代皮肤病性病诊疗手册(第二版).北京大学医学出版社,2001:88.
    17. 王侠生.皮肤病学.上海科学技术文献出版社,2005:126.
    18. 吴志华.现代皮肤性病学.广东人民出版社,2000:38.
    19. 刘承煌.银屑病的临床和研究.上海科学技术文献出版社,1994:26.
    20. 邵长庚.银屑病的流行病学.国外医学皮肤性病学分册,1997,23(1):1.
    21. 范雪莉.银屑病的流行病学和遗传学.国外医学皮肤性病学分册,1995,21(5):293.
    22. 周小勇.对银屑病病情与治疗结果临床判断方法及其质量的评价.国外医学皮肤性病学分册,2001,27(2):106.
    23. 关志华.现代皮肤病学.广东人民出版社,2000:125.
    24. 北京协和医院.皮肤病诊疗常规.人民卫生出版社,2004:38.
    25. 杨道秋.T细胞在银屑病发病中的作用的研究进展.实用医药杂志,2005,22(10):944.
    26. 姜海燕.白介素在银屑病发病机制中的研究新进展.国外医学皮肤性病学分册,2003,29(5):288.
    27. 王震英.表皮生长因子受体及相关皮肤病.国外医学皮肤性病学分册,2003,29(2):94.
    28. 何玉清.细胞因子与银屑病.中国麻风皮肤病杂志,2003,19(3):248.
    29. 王岩.银屑病的HLA等位基因及非HLA基因相关性研究进展.中国麻风皮肤病杂志,2005,21(6):460.
    30. 魏娟.银屑病的发病机制与临床诊断进展.黑龙江医学,2005,29(5):344.
    31. 陈学荣.银屑病的病因及预防措施.中国全科医学,2005,8(12):958.
    32. 马爱红.银屑病与细胞因子和性激素相关性研究进展.甘肃中医学院学报,2004,21(1):60.
    33. 杨森.寻常型银屑病诱因流行病学研究.中华麻风皮肤病杂志,2000,16(3):159-162.
    34. Telfer, N.R., et al., The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol,1992.128(1):p.39-42.
    35. 江沁.银屑病患者血清中链球菌抗体的研究.中华皮肤科杂志,1997,30(2):88.
    36. Gupta, A.K., et al., A higher prevalence of onychomycosis in psoriatics compared with non-psoriatics:a multicentre study. Br J Dermatol,1997.136(5):p.786-9.
    37. Seetharam, K.A., K. Sridevi, and P. Vidyasagar, Cutaneous manifestations of chikungunya fever. Indian Pediatr,2012.49(1):p.51-3.
    38. Kokolakis, G.P., et al., Guttate psoriasis occurring on varicella lesions. J Dermatol, 2010.37(9):p.857-9.
    39. 赵辨.中国临床皮肤病学.江苏科学技术出版社,2010:77.
    40. 王光超.皮肤病与性病学.科学出版社,2002:234.
    41. 周炳华.银屑病遗传与基因研究进展.医学综述,2003,9(12):714.
    42. 石继海.银屑病发病机理的某些研究进展.国外医学皮肤性病学分册,2002,28(3):148.
    43. 李宏斌.银屑病与真菌感染.中国全科医学,2006,9(19):1 637.
    44. 周乃慧.细胞因子在银屑病治疗中的研究进展.国外医学皮肤性病学分册,2004,30(3): 149.
    45. 楚瑞琦.银屑病的免疫生物学治疗进展.中华皮肤科杂志,2003,31(3):174.
    46. 吴志华.现代皮肤性病学.广东人民出版社,2000:39.
    47. Cunliffe, W.J., et al., Comparative study of calcipotriol (MC 903) ointment and betamethasone 17-valerate ointment in patients with psoriasis vulgaris. J Am Acad Dermatol,1992.26(5 Pt 1):p.736-43.
    48. Cockayne, S.E., M.J. Cork, and D.J. Gawkrodger, Treatment of psoriasis:day care vs. inpatient therapy. Br J Dermatol,1999.140(2):p.375-6.
    49. Markham, T., A. Watson, and S. Rogers, Adverse effects with long-term cyclosporin for severe psoriasis. Clin Exp Dermatol,2002.27(2):p.111-4.
    50. Reichert-Penetrat, S., et al., Bilateral femoral avascular necrosis in a man with psoriasis:responsibility of topical corticosteroids and role of cyclosporine. Dermatology,2001.203(4):p.356-7.
    51. Asadullah, K., et al., Experimental therapies for psoriasis. Arch Immunol Ther Exp (Warsz),2002.50(6):p.411-20.
    52. Reich, K., et al., Infliximab induction and maintenance therapy for moderate-to-severe psoriasis:a phase III, multicentre, double-blind trial. Lancet,2005.366(9494):p. 1367-74.
    53. Antoniou, C., et al., Infliximab for the treatment of psoriasis in Greece:4 years of clinical experience at a single centre. Br J Dermatol,2010.162(5):p.1117-23.
    54. Kristensen, L.E., et al., Long-term work disability in patients with psoriatic arthritis treated with anti-tumour necrosis factor:a population-based regional Swedish cohort study. Ann Rheum Dis,2013.72(10):p.1675-9.
    55. Krueger, G.G., et al., A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol,2002.47(6):p.821-33.
    56. Craig L, L., Efalizumab in the treatment of psoriasis. Dermatologic Therapy,2004. 17(1):p.393-400.
    57. Leonardi, C.L., et al., Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis:76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet,2008.371(9625):p. 1665-74.
    1. Hood, L., A personal view of molecular technology and how it has changed biology. J Proteome Res,2002.1(5):p.399-409.
    2. 周文霞.网络药理学:认识药物及发现药物的新理念.中国药理学与毒理学杂志,2012,26(1):4-9.
    3. Hood, L., Systems biology:integrating technology, biology, and computation. Mech Ageing Dev,2003.124(1):p.9-16.
    4. Ideker, T., T. Galitski, and L. Hood, A new approach to decoding life:systems biology. Annu Rev Genomics Hum Genet,2001.2:p.343-72.
    5. 商洪才.丹参、三七不同配比的多目标模糊优化研究.北京中医药大学学报,2003,26(4):28-31.
    6. Schrattenholz, A., K. Groebe, and V. Soskic, Systems biology approaches and tools for analysis of interactomes and multi-target drugs. Methods Mol Biol,2010.662:p. 29-58.
    7. Frantz, S., Drug discovery:playing dirty. Nature,2005.437(7061):p.942-3.
    8. 向铮.基于网络生物学方法的中药药理作用机制研究思考与探索.中国中药杂志,2012,37(2):146-151.
    9. Kaminski, N., Bioinformatics. A user's perspective. Am J Respir Cell Mol Biol,2000. 23(6):p.705-11.
    10. 崔蒙.试论中医药信息学及其相关信息学科.中国中医药信息杂志,2002,9(8):89-91.
    11. 吴永英.生物信息学及其在新药发现中的应用.生物信息学,2005,3(2):81-92.
    12. 吴元胜.生物信息学与中医药现代化研究.现代中西医结合杂志,2004,13(11):1399-1401.
    13. 李梢.医学研究中系统论与还原论的关联关系.北京中医药大学学报,2005,28(5):1-5.
    14. Barabasi, A.L., N. Gulbahce, and J. Loscalzo, Network medicine:a network-based approach to human disease. Nat Rev Genet,2011.12(1):p.56-68.
    15. Alon, U., Biological networks:the tinkerer as an engineer. Science,2003.301(5641): p.1866-7.
    16. Barabasi, A.L. and Z.N. Oltvai, Network biology:understanding the cell's functional organization. Nat Rev Genet,2004.5(2):p.101-13.
    17. Bader, S., S. Kuhner, and A.C. Gavin, Interaction networks for systems biology. FEBS Lett,2008.582(8):p.1220-4.
    18. Arrell, D.K. and A. Terzic, Network systems biology for drug discovery. Clin Pharmacol Ther,2010.88(1):p.120-5.
    19. Stelzl, U., et al., A human protein-protein interaction network:a resource for annotating the proteome. Cell,2005.122(6):p.957-68.
    20. Lee, S., K. Park, and D. Kim, Building a drug-target network and its applications. Expert Opin Drug Discov,2009.4(11):p.1177-89.
    21. Yildirim, M.A., et al., Drug-target network. Nat Biotechnol,2007.25(10):p.1119-26.
    22. Goh, K.I., et al., The human disease network. Proc Natl Acad Sci U S A,2007. 104(21):p.8685-90.
    23. Lee, D.S., et al., The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A,2008.105(29):p.9880-5.
    24. Jeong, H., et al., The large-scale organization of metabolic networks. Nature,2000. 407(6804):p.651-4.
    25. Ma, H. and I. Goryanin, Human metabolic network reconstruction and its impact on drug discovery and development. Drug Discov Today,2008.13(9-10):p.402-8.
    26. 徐炎.多靶点药物治疗及药物发现.药学学报,2009,44(3):226-228.
    27. 陈寅萤.网络分析方法在疾病和药物研究中的应用.中国中药杂志,2013,38(5):773-776.
    28. Hopkins, A.L., Network pharmacology:the next paradigm in drug discovery. Nat Chem Biol,2008.4(11):p.682-90.
    29. Hopkins, A.L., Network pharmacology. Nat Biotechnol,2007.25(10):p.1110-1.
    30. Kola, I. and J. Landis, Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov,2004.3(8):p.711-5.
    31. Kitano, H., Towards a theory of biological robustness. Mol Syst Biol,2007.3:p.137.
    32. Chen, Y., et al., Variations in DNA elucidate molecular networks that cause disease. Nature,2008.452(7186):p.429-35.
    33. Hwang, S., et al., A protein interaction network associated with asthma. J Theor Biol, 2008.252(4):p.722-31.
    34. Chu, L.H. and B.S. Chen, Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol,2008.2:p. 56.
    35. Sengupta, U., et al., Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PLoS One, 2009.4(12):p. e8100.
    36. Schoeberl, B., et al., Therapeutically targeting ErbB3:a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal,2009.2(77):p. ra31.
    37. Zhao, S. and S. Li, Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One,2010.5(7):p. e11764.
    38. Zhou, W. and Y. Wang, A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective:potential for therapeutics and drug discovery. J Ethnopharmacol,2014.151(1):p.66-77.
    39. Yang, M., et al., Navigating traditional chinese medicine network pharmacology and computational tools. Evid Based Complement Alternat Med,2013.2013:p.731969.
    40. Morphy, R. and Z. Rankovic, Fragments, network biology and designing multiple ligands. Drug Discov Today,2007.12(3-4):p.156-60.
    41. 罗国安.中医药系统生物学发展及展望.中国天然药物,2009,7(4):242-245.
    42. Li, B., et al., A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease. Int J Mol Sci,2012.13(10):p. 13501-20.
    43. Xue, R., et al., TCMID:Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res,2013.41(Database issue):p. D1089-95.
    44. Li, S. and B. Zhang, Traditional Chinese medicine network pharmacology:theory, methodology and application. Chin J Nat Med,2013.11(2):p.110-20.
    45. 姜春燕.利用文本挖掘技术分析银屑病中医用药规律.中国中医药信息杂志,2011,18(11):28-30.
    46. Tan, Y., et al., Deciphering the differential toxic responses of Radix aconiti lateralis praeparata in healthy and hydrocortisone-pretreated rats based on serum metabolic profiles. J Proteome Res,2013.12(1):p.513-24.
    47. Tan, Y., et al., Metabolic profiling reveals therapeutic biomarkers of processed Aconitum Carmichaeli Debx in treating hydrocortisone induced Kidney-Yang deficiency syndrome rats. J Ethnopharmacol,2014.
    48. Li, J., et al., Traditional chinese medicine-based network pharmacology could lead to new multicompound drug discovery. Evid Based Complement Alternat Med,2012. 2012:p.149762.
    49. Liang, F., et al., Molecular network and chemical fragment-based characteristics of medicinal herbs with cold and hot properties from Chinese medicine. J Ethnopharmacol,2013.148(3):p.770-9.
    50. 姜春燕.基于网络药理学预测生地黄治疗银屑病的分子机制.中国中医基础医学杂志,2013,19(4):404-407.
    51. Jiang, C. and Y. Tan, Using bioinformatic technique to discovery Huangqin and Lianqiao combination as a potential new drus for treatment acne BIBM,2013. 10.1109(6732644):p.83-89.
    1. 邓红娟.生当归、酒当归和油当归体外清除自由基活性研究.中草药,2009,40(5):784-787.
    2. Lu, G.H., et al., Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J Chromatogr A,2005.1068(2):p.209-19.
    3. 郭振军.大黄、当归多糖对巨噬细胞甘露受体作用的研究.细胞与分子免疫学杂志,2008,24(5):514-516.
    4. 杨铁虹.当归多糖对细胞免疫功能的增进作用.细胞与分子免疫学杂志,2005,21(6):782-783.
    5. Sun, Y., et al., Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. Int J Biol Macromol,2005.36(5):p. 283-9.
    6. Li, Y.D., et al., Protection of ultra-filtration extract from Danggui Buxue Decoction on oxidative damage in cardiomyocytes of neonatal rats and its mechanism. Chin J Integr Med,2011.17(11):p.854-9.
    7. 胡利平.鸡血藤对小鼠LAK, NK细胞的影响.浙江中医学院学报,1997,21(6):29.
    8. 余梦瑶.鸡血藤煎剂对小鼠细胞分泌细胞因子的影响.中国药学杂志,2005,40(1):27-30.
    9. Lam, T.L., et al., A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci,2000.67(23):p.2889-96.
    10. Li, R.W., et al., Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol,2003.85(1):p.61-7.
    11. Liao, H., L.K. Banbury, and D.N. Leach, Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics. Evid Based Complement Alternat Med,2008.5(4):p.429-34.
    12. 陈屹.槐花精油的提取及其抗菌作用研究.安徽农业科学,2008,36(11):4379-4381.
    13. 李惠.槐花饮片及其提取物止血作用的实验研究.中国中西医结合杂志,2004,24(11):1007-1009.
    14. 潘英明.槐花米中清除自由基活性成分的提取及其性能研究.现代化工,2006,26(7):188-190.
    15. 马利华.槐花提取物抗氧化性能研究.食品科学,2007,28(9):75-77.
    16. 徐强.土茯苓对细胞免疫和体液免疫的影响.中国免疫学杂志,1993,9(1):39-42.
    17. 苗明三.怀地黄多糖对衰老模型小鼠免疫器官的影响.河南中医,1999,19(3):30.
    18. 刘福君.地黄低聚糖增强小鼠免疫功能的作用.中国药理学学报,1998,14(1):90-92.
    19. Chen, L.Z., X.W. Feng, and J.H. Zhou, Effects of Rehmannia glutinosa polysaccharide b on T-lymphocytes in mice bearing sarcoma 180. Zhongguo Yao Li Xue Bao,1995.16(4):p.337-40.
    20. 韩凤梅.麦冬多糖对免疫低下小鼠的保护作用.中国医药学报,2004,19(6):347.
    21. 舒琦瑾.新加沙参麦冬汤抗肿瘤的实验研究.中国中医基础医学杂志,2002,8(4):34.
    22. 刘蕾.复方威灵仙合剂抗炎、镇痛作用观察.黑龙江医药科学,2004,27(1):22-23.
    23. 周效思.威灵仙镇痛抗炎药效研究.中华临床医药,2003,4(5):12-13.
    1. 王凯.基于因特网的常用化合物活性数据库简介.计算机与应用化学,2010,27(12):1629-1632.
    2. Chen, B., D. Wild, and R. Guha, PubChem as a source of polypharmacology. J Chem Inf Model,2009.49(9):p.2044-55.
    3. 董乃维.10种天然黄酮化合物对大鼠心肌细胞抗凋亡作用的定量构效关系研究.中国药物化学杂志,2008,18(1):23-27.
    4. 刘立明.基因组规模代谢网络模型构建及其应用.生物工程学报,2010,26(9):1176-1186.
    5. 李健.治疗类风湿关节炎中药方剂作用原理的网络药理学研究策略.中国实验方剂学杂志,2012,18(6):267-270.
    6. 牛旭艳.类风湿性关节炎热证“药-证对应”机制的网络药理学研究.中国实验方剂学杂志,2012,18(8):299-303.
    7. Henderson-Maclennan, N.K., et al., Pathway analysis software:annotation errors and solutions. Mol Genet Metab,2010.101(2-3):p.134-40.
    8. Lee, H.M., et al., Abnormal networks of immune response-related molecules in bone marrow cells from patients with rheumatoid arthritis as revealed by DNA microarray analysis. Arthritis Res Ther,2011.13(3):p. R89.
    9. Li, C.J., et al., Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-alpha) Induced Inflammatory Response in Bovine Cells. Gene Regul Syst Bio,2012.6:p.1-14.
    10. Dail, M.B., et al., Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci, 2008.106(2):p.556-69.
    11. Tan, Y., et al., Deciphering the differential toxic responses of Radix aconiti lateralis praeparata in healthy and hydrocortisone-pretreated rats based on serum metabolic profiles. J Proteome Res,2013.12(1):p.513-24.
    12. Li, J., et al., Traditional chinese medicine-based network pharmacology could lead to new multicompound drug discovery. Evid Based Complement Alternat Med,2012. 2012:p.149762.
    13. Yanagisawa, M., et al., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature,1988.332(6163):p.411-5.
    14. Komuro, I., et al., Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett,1988.238(2):p.249-52.
    15. Sriwiriyanont, P., et al., Interaction between stem cell factor and endothelin-1:effects on melanogenesis in human skin xenografts. Lab Invest,2006.86(11):p.1115-25.
    16. 管晓春.白癜风患者血浆和皮肤组织液内皮素1的测定.中国中西医结合皮肤性病学杂志,2003,2(1):27-28.
    17. Shi-wen, X., et al., Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum,2007. 56(12):p.4189-94.
    18. Soldano, S., et al., Endothelin and sex hormones modulate the fibronectin synthesis by cultured human skin scleroderma fibroblasts. Ann Rheum Dis,2009.68(4):p.599-602.
    19. Okazaki, M., et al., Correlation between age and the secretions of melanocyte-stimulating cytokines in cultured keratinocytes and fibroblasts. Br J Dermatol,2005. 153 Suppl 2:p.23-9.
    20. Cecchi, R., et al., Increased levels of plasma endothelin-1 in patients with psoriasis. Clin Chim Acta,1994.226(1):p.113-5.
    21. Trevisan, G., et al., Psoriasis and endothelins. Acta Derm Venereol Suppl (Stockh), 1994.186:p.139-40.
    22. Barton, S.P., M.S. Abdullah, and R. Marks, Quantification of microvascular changes in the skin in patients with psoriasis. Br J Dermatol,1992.126(6):p.569-74.
    23. Cygankiewicz, A.I., A. Maslowska, and W.M. Krajewska, Molecular basis of taste sense:involvement of GPCR receptors. Crit Rev Food Sci Nutr,2014.54(6):p.771-80.
    24. Wu, H., et al., Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator. Science,2014.
    25. Migeotte, I., et al., Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med,2005.201(1):p.83-93.
    26. Bjarnadottir, T.K., R. Fredriksson, and H.B. Schioth, The adhesion GPCRs:a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci,2007.64(16):p.2104-19.
    27. Khoufache, K., et al., Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-gamma-dependent pathway. J Immunol,2009. 182(12):p.7795-802.
    28. Barrera, G.J., et al., Immunoglobulin A with protease activity secreted in human milk activates PAR-2 receptors, of intestinal epithelial cells HT-29, and promotes beta-defensin-2 expression. Immunol Lett,2009.123(1):p.52-9.
    29. Shao, W.H., et al., Targeted disruption of leukotriene B4 receptors BLT1 and BLT2:a critical role for BLT1 in collagen-induced arthritis in mice. J Immunol,2006.176(10): p.6254-61.
    30. Henklova, P., et al., Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling. Chem Biol Interact,2008.172(2):p.93-104.
    31. Pavek, P. and Z. Dvorak, Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab,2008.9(2):p.129-43.
    32. Pollenz, R.S., Specific blockage of ligand-induced degradation of the Ah receptor by proteasome but not calpain inhibitors in cell culture lines from different species. Biochem Pharmacol,2007.74(1):p.131-43.
    33. Pollenz, R.S. and C. Buggy, Ligand-dependent and-independent degradation of the human aryl hydrocarbon receptor (hAHR) in cell culture models. Chem Biol Interact, 2006.164(1-2):p.49-59.
    34. Afaq, F., et al., Aryl hydrocarbon receptor is an ozone sensor in human skin. J Invest Dermatol,2009.129(10):p.2396-403.
    35. Puga, A., C. Ma, and J.L. Marlowe, The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol,2009.77(4):p.713-22.
    36. Pendergast, J.S. and S. Yamazaki, The mammalian circadian system is resistant to dioxin. J Biol Rhythms,2012.27(2):p.156-63.
    37. Ray, S. and H.I. Swanson, Activation of the aryl hydrocarbon receptor by TCDD inhibits senescence:a tumor promoting event? Biochem Pharmacol,2009.77(4):p. 681-8.
    38. Gouedard, C., R. Barouki, and Y. Morel, Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol Cell Biol,2004.24(12):p.5209-22.
    39. Esser, C., A. Rannug, and B. Stockinger, The aryl hydrocarbon receptor in immunity. Trends Immunol,2009.30(9):p.447-54.
    40. Mottet, C. and D. Golshayan, CD4+CD25+Foxp3+ regulatory T cells:from basic research to potential therapeutic use. Swiss Med Wkly,2007.137(45-46):p.625-34.
    41. Hauben, E., et al., Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood,2008.112(4):p.1214-22.
    42. Qiu, J., et al., The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity,2012.36(1):p.92-104.
    43. Li, Y., et al., Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell,2011.147(3):p.629-40.
    44. Fritsch, M., C.E. Orfanos, and C.C. Zouboulis, Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol,2001.116(5):p.793-800.
    45. Zouboulis, C.C., Human skin:an independent peripheral endocrine organ. Horm Res, 2000.54(5-6):p.230-42.
    46. Deplewski, D. and R.L. Rosenfield, Role of hormones in pilosebaceous unit development. Endocr Rev,2000.21(4):p.363-92.
    47. Wang, H.Y., et al., The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats. Brain Res,2009.1297:p.177-84.
    48. Kolb, H. and V. Kolb-Bachofen, Nitric oxide in autoimmune disease:cytotoxic or regulatory mediator? Immunol Today,1998.19(12):p.556-61.
    49. Schwentker, A., et al., Nitric oxide and wound repair:role of cytokines? Nitric Oxide, 2002.7(1):p.1-10.
    50. Gross, F., J. Durner, and F. Gaupels, Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci,2013.4:p.419.
    51. Hooper, W.C., The relationship between inflammation and the anticoagulant pathway: the emerging role of endothelial nitric oxide synthase (eNOS). Curr Pharm Des,2004. 10(8):p.923-7.
    52. Efron, D.T., et al., Expression and function of inducible nitric oxide synthase during rat colon anastomotic healing. J Gastrointest Surg,1999.3(6):p.592-601.
    53. 唐坤裕. PI3K/Akt-eNOS-NO 信号通路与脑缺血后适用的研究进展.国际神 经病学神经外科学杂志,2013,40(1):67-70.
    54. Tschopp, O., et al., Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development,2005. 132(13):p.2943-54.
    55. Yang, L., et al., Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res,2004.64(13):p.4394-9.
    56. Peng, B., et al., Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res,2012.1445:p.92-102.
    57. Yoshitomi, H., et al., Phosphorylated endothelial NOS Ser1177 via the PI3K/Akt pathway is depressed in the brain of stroke-prone spontaneously hypertensive rat. J Stroke Cerebrovasc Dis,2011.20(5):p.406-12.
    58. Eefting, F., et al., Role of apoptosis in reperfusion injury. Cardiovasc Res,2004.61(3): p.414-26.
    59. Wang, M., et al., Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol,2009.296(4):p. R972-8.
    60. Burgering, B.M. and R.H. Medema, Decisions on life and death:FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol,2003. 73(6):p.689-701.
    61. Kaneda, K., et al., Sevoflurane enhances ethanol-induced cardiac preconditioning through modulation of protein kinase C, mitochondrial KATP channels, and nitric oxide synthase, in guinea pig hearts. Anesth Analg,2008.106(1):p.9-16, table of contents.
    62. Petroski, M.D., The ubiquitin system, disease, and drug discovery. BMC Biochem, 2008.9 Suppl 1:p. S7.
    63. Schmidt, M., et al., Proteasome-associated proteins:regulation of a proteolytic machine. Biol Chem,2005.386(8):p.725-37.
    64. Peters, J.M., W.W. Franke, and J.A. Kleinschmidt, Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem,1994.269(10):p.7709-18.
    65. Adams, J., The proteasome:a suitable antineoplastic target. Nat Rev Cancer,2004. 4(5):p.349-60.
    66. Pickart, C.M. and M.J. Eddins, Ubiquitin:structures, functions, mechanisms. Biochim Biophys Acta,2004.1695(1-3):p.55-72.
    67. Corn, P.G., Role of the ubiquitin proteasome system in renal cell carcinoma. BMC Biochem,2007.8 Suppl 1:p. S4.
    68. Zavrski, I., et al., Proteasome:an emerging target for cancer therapy. Anticancer Drugs,2005.16(5):p.475-81.
    69. Hong, L., H.C. Huang, and Z.F. Jiang, Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res,2014.36(3):p.276-82.
    70. Wilck, N. and A. Ludwig, Targeting the Ubiquitin-Proteasome System in Atherosclerosis:Status Quo, Challenges, and Perspectives. Antioxid Redox Signal, 2014.
    71. Lenz, H.J., Clinical update:proteasome inhibitors in solid tumors. Cancer Treat Rev, 2003.29 Suppl 1:p.41-8.
    72. Ko, B.S., et al., Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci,2010.86(5-6):p.199-206.
    73. Ko, J.K., et al., The proteasome inhibitor MG-132 induces AIF nuclear translocation through down-regulation of ERK and Akt/mTOR pathway. Neurochem Res,2011. 36(5):p.722-31.
    74. 张年萍.具有蛋白酶体抑制作用的植物提取物防治肿瘤研究进展.中药药理与临床,2012,28(6):17,162-164.
    75. Sen, R. and D. Baltimore, Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell,1986.47(6):p.921-8.
    76. Williams, R.O., E. Paleolog, and M. Feldmann, Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol,2007.7(4):p.412-7.
    77. Monaco, C., et al., Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc Natl Acad Sci U S A,2004.101(15):p.5634-9.
    78. Sun, X.F. and H. Zhang, NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol Histopathol,2007.22(12):p.1387-98.
    79. Shifera, A.S., The zinc finger domain of IKKgamma (NEMO) protein in health and disease. J Cell Mol Med,2010.14(10):p.2404-14.
    80. Lawrence, T. and C. Fong, The resolution of inflammation:anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol,2010.42(4):p.519-23.
    81. Xiao, G., et al., Alternative pathways of NF-kappaB activation:a double-edged sword in health and disease. Cytokine Growth Factor Rev,2006.17(4):p.281-93.
    82. Huang, X., et al., Identification of novel pretranslational regulatory mechanisms for NF-kappaB activation. J Biol Chem,2013.288(22):p.15628-40.
    83. Simmonds, R.E. and B.M. Foxwell, Signalling, inflammation and arthritis:NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford),2008. 47(5):p.584-90.
    84. Gasparini, C. and M. Feldmann, NF-kappaB as a target for modulating inflammatory responses. Curr Pharm Des,2012.18(35):p.5735-45.
    85. Gupta, S.C., et al., Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta,2010.1799(10-12):p.775-87.
    86. Choi, K.C., et al., Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol Cancer Res,2009.7(12):p.2011-21.
    87. Sung, B., et al., Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood,2008.111(10):p.4880-91.
    88. Yang, X.D., E. Tajkhorshid, and L.F. Chen, Functional interplay between acetylation and methylation of the RelA subunit of NF-kappaB. Mol Cell Biol,2010.30(9):p. 2170-80.
    89. Kauppinen, A., et al., Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal,2013.25(10):p. 1939-48.
    90. Kang, O.H., et al., Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules,2010.15(1):p.385-98.
    91. Oh, S.W., et al., Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-kappaB inhibition. J Ethnopharmacol,2011. 136(3):p.414-21.
    92. Yao, Z. and R. Seger, The ERK signaling cascade--views from different subcellular compartments. Biofactors,2009.35(5):p.407-16.
    93. 赵海生.MAPK信号转导通路与银屑病.中国皮肤性病学杂志,2007,21(3):184-186.
    94. Karin, M., The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem,1995.270(28):p.16483-6.
    95. Shaul, Y.D. and R. Seger, The MEK/ERK cascade:from signaling specificity to diverse functions. Biochim Biophys Acta,2007.1773(8):p.1213-26.
    96. Kim, Y.K., et al., Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells. J Appl Toxicol,2005.25(5):p.374-82.
    97. Lee do, Y., et al., ERK1/2 activation attenuates TRAIL-induced apoptosis through the regulation of mitochondria-dependent pathway. Toxicol In Vitro,2006.20(6):p.816-23.
    98. Jo, S.K., et al., MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int,2005.67(2):p.458-66.
    99. Cagnol, S. and J.C. Chambard, ERK and cell death:mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J,2010.277(1):p.2-21.
    100. 王巧云.人参皂苷Rgl对局灶性脑缺血再灌注损伤大鼠海马p-ERK1/2与p-JNK表达的影响.中国中西医结合杂志,2013,33(2):229-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700