血浆人组织激肽释放酶的含量与中国人群心脑血管疾病的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:心脑血管疾病是严重危害人类健康的主要慢性非传染性疾病。其中冠心病和脑卒中是世界上最常见的死亡原因。在我国随着人口的老龄化,以冠心病,脑卒中为代表的心脑血管疾病其发病率,致死率及致残率呈逐年上升的趋势。尽管现在已经发现了许多心脑血管疾病的危险因素,如高血压,糖尿病,血脂代谢的异常,男性,年龄,体重,体重指数等。然而这些危险因素只能解释部分病人,因此寻找新的心脑血管疾病危险因素将具有重要的临床意义。
     基础研究证明,激肽-缓激肽系统(Kallikrein-Kinin/bradykinin system, KKS)与肾素血管紧张素系统(Renin-Aangiotensin System, RAS)相互作用并在心脑血管疾病的发生发展中具有重要的作用。人组织激肽释放酶(TK)是一类丝氨酸蛋白酶,能促进低分子激肽原释放血管活性肽从而发挥一系列的生物活性作用,命名为KLK1。在人和动物的高血压、心血管疾病和肾脏疾病的模型中,均可见到人组织激肽释放酶的含量降低。我们在转基因的动物模型中发现人组织激肽释放酶具有降低血压,改善胰岛素抵抗和改善肾功能的作用。另外,大量研究还证明人组织激肽释放酶具有抑制细胞凋亡,炎症,纤维化和肥大,促进血管生成和神经发生的作用。因此,人组织激肽释放酶的水平在人的心脑血管疾病的发生发展的过程中可能具有重要的临床意义。
     由于人组织激肽释放酶在心血管疾病的保护作用已得到基础研究及动物实验的充分证明,而其在冠心病和脑卒中的临床研究中国际上还未涉及。因此,对人组织激肽释放酶的含量与冠心病和脑卒中的关系的病例-对照研究和队列研究具有较好的应用前景。鉴于人组织激肽释放酶的含量检测的应用前景,国外已有关于人组织激肽释放酶含量检测的ELISA试剂盒,但是其操作过程繁琐并且价格昂贵难于获得,而目前国内尚无此类的高效检测试剂盒。而建立具有高灵敏度、高特异性的人组织激肽释放酶含量测定ELISA试剂盒,需要制备特异性强,效价高并可以大量生产的抗人组织激肽释放酶的抗体及较纯的人组织激肽释放酶的蛋白或融合蛋白。
     本研究首先制备了高纯度并方便大量生产,具有高特异性及高灵敏度的抗人组织激肽释放酶单克隆抗体,同时制备了人组织激肽释放酶融合蛋白并将其纯化。然后建立了针对人组织激肽释放酶的高效ELISA检测试剂盒,同时建立检测血浆中人组织激肽释放酶的ELISA法。我们同时采用病例-对照研究和队列研究在评估人组织激肽释放酶与脑卒中的关系的同时判定其对卒中再发的预测价值。另外,我们采用病例-对照研究的方法评估了血浆中人组织激肽释放酶与冠心病的发病率及严重程度的关系。我们还对血浆中人组织激肽释放酶的含量和血脂的关系进行了评估。最后,我们对冠心病患者中ACEI类药物的使用情况及与血浆人组织激肽释放酶的含量进行了评估。
     方法:(1)利用表位设计软件设计一段位于KLK1尾端的特异性12肽序列并采用单抗制备技术筛选出杂交瘤细胞株HTK并扩大培养杂交瘤细胞将其注入小鼠腹腔内诱生腹水并纯化出高效价、高特异性的抗人组织激肽释放酶的单克隆抗体。(2)利用原核表达的方法表达并纯化人组织激肽释放酶融合蛋白(TK-4T1)。采用双抗体夹心技术和生物素-亲和素放大系统建立高效的针对人组织激肽释放酶的ELISA检测试剂盒。(3)采用病例-对照研究的方法收入1,268例脑卒中患者和1,210例正常对照,检测其血浆中人组织激肽释放酶的含量,并做5年随访研究。评估血浆中人组织激肽释放酶的含量与脑卒中及再发的关系。(4)采用横截面的病例-对照研究收入890例冠心病患者和905例正常对照。检测其血浆内人组织激肽释放酶含量并评估其与冠心病及其严重程度的关系。同时,采用判别分析和ROC曲线判定其对冠心病的临床应用价值。(5)评估了社区人群中血浆人组织激肽释放酶含量与血脂的关系。(6)评估了ACEI类药物与血浆人组织激肽释放酶的含量的关系。
     结果:(1)我们获得了8株可分泌抗HK的杂交瘤细胞株,命名为1A,1B8,1E4,2E4,2F8,3B7,4D5,4E2。纯化后的2F8具有较高的效价(1:25600)。经12% SDS-PAGE和Western blotting证实,该单克隆抗体制备成功并具有较高的纯度。(2)表达的融合蛋白经SDS-PAGE蛋白电泳及考马斯亮蓝染色显示,大约在55KD处有一条浓染的新增蛋白条带。经Western bloting鉴定,能与人组织激肽释放酶单克隆抗体发生强阳性反应,HK-4T1融合蛋白具有较强的免疫原性。生物素-亲和素双抗体夹心ELISA法的结果提示:以0.5ug/ml,0.25 ug/ml,0.125 ug/ml,0.062 ug/ml,0.031 ug/ml, 0.016 ug/ml,0.008 ug/ml为横坐标,其对应的OD值为纵坐标绘制标准曲线,其线性关系良好(r=0.9987)。利用此试剂盒检测了124例正常人的血浆中HK1的含量,每组做三个复孔,间隔6个月后再重复一次。其组内差异为1.7%,组间差异为8%。正常人的HK1的血浆含量为252±93 ng/ml。(3)脑卒中患者血浆中人组织激肽释放酶的含量明显低于对照组(0.163±0.064 mg/l versus 0.252±0.093 mg/l, P<0.001),并且其与脑卒中的发病率及5年无事件生存率呈剂量依赖性的负相关关系。服用阿司匹林的脑卒中患者其血浆中人组织激肽释放酶的含量高于对照组(0.172±0.064 mg/lvs.0.162±0.065 mg/l,P=0.003)。(4)冠心病患者血浆中人组织激肽释放酶的含量明显高于对照组(0.347±.082 versus 0.256±0.087 mg/L, P<0.001)。升高的血浆人组织激肽释放酶的含量与冠心病呈正相关关系,而与其严重程度呈负相关关系。(5)血浆人组织激肽释放酶的含量与高密度脂蛋白(HDL)成正相关关系(r=0.069,P=0.003),与低密度脂蛋白(LDL)成负相关关系(r=-0.051,P=0.030)。(6)ACEI能明显提高冠心病患者血浆人组织激肽释放酶水平(0.388±0.076 mg/l vs. 0.320±0.079 mg/l, P<0.001; OR=3.20,95%CI 2.59-3.95, P<0.001)。
     结论:我们首先成功制备了人组织激肽释放酶的单克隆抗体和ELISA试剂盒。然后,本研究证明了降低的血浆人组织激肽释放酶含量具有较高的脑卒中发生率和再发率。升高的血浆人组织激肽释放酶含量与冠心病发生呈正相关关系而与冠心病的严重程度呈负相关关系。因此,人组织激肽释放酶可能具有重要的心脑血管保护作用,其在血浆中含量的可能预测脑卒中及冠心病的发生及再发。同时,人组织激肽释放酶与心脑血管疾病的传统危险因素之间存在一定的联系,尤其是其与血脂代谢的关系较为密切。
Background:cardiovascular and cerebrovascular diseases were serious and diminished quality of life in the world. Stroke and coronary heart disease(CHD) were leading causes of death in the world and absolute numbers of the events will increase dramatically in China due to a growing and aging population alone. In the last half-century, a number of important risk factors of stroke have been recognized, including hypertension, age, sex, weight, Body Mass Index (BMI), diabetes and smoking, as well as dyslipidemia. However, these risk factors can explain only part of patients, suggesting that one needs to find more risk factors to explain the remaining patients.
     Basic study proved that the interactions among kallikrein-Kinin/bradykinin system (KKS) and renin-Aangiotensin System (RAS) paly important role in the development of cardiovascular and cerebrovascular diseases. Tissue kallikrein (TK), a serine protease, processes low molecular weight kininogen substrates to release vasoactive bradykinin and kinin peptides. Kinins bind to bradykinin receptors present in the endothelium, the smooth muscle cells of vascular walls and elsewhere, and activate signaling pathways such as NO-cAMP and prostacyclin-cAMP, which trigger a broad spectrum of biological effects including vasodilatation, smooth muscle contraction and relaxation, inhibition of apoptosis, inflammation, proliferation, hypertrophy and fibrosis, and promotion of angiogenesis and neurogenesis. These indicate a potential predictive value of TK in cardiovascular and cerebrovascular diseases.
     As the protective effect of TK on cardiovascular disease has been fully proved in basic research, the role TK on CHD and stroke in clinical research has not yet refer to in the world. Therefore, it is of interest to perform case-control study and cohort study to investigate the associations among TK, CHD and stroke. In view of the clinical utility of TK, the ELISA kit special to TK with cumbersome and expensive had developed abroad. Because of the expensive kits and complex method of the kit it is necessary to prepare monoclonal antibody (mAb) against tissue kallikrein, prepare pure protein or fusion protein with TK and develop an ELISA kit allows for the in vitro quantitative determination of human tissue kallikrein in plasma, serum and urine.
     Monoclonal antibody against TK with high specific and titer first and the fusion protein of TK were prepared. We then employs double antibody sandwich ELISA technique and Biotin-Avidin System to develop the ELISA kit. A case-control study was used to evaluated the association among TK levels and the presence and severity of CHD. Another case-control study and prospective study were used to assess the value of TK on stroke and recurrecce in 5-years fellow-up.
     Methods:(1) BALB/c mice were immunized with the conjugate of hemocyanin (KLH) and polypeptide special for HK, and then mAb was prepared by hybridoma technique. (2) Preparing and purifying the fusion protein (TK-4T1) by prokaryotic expression and then developing ELISA kit. This kit employs double antibody sandwich ELISA technique and Biotin-Avidin System. (3) This is a case-control study with 1,268 stroke patients (941 cerebral infarction,327 intracerebral hemorrhage) and 1,210 controls. Plasma TK levels were measured using enzyme-linked immunosorbent assay and a five-year follow-up was performed. To assess whether TK levels contribute to the risk of stroke and reoccurrence, logistic regression and Cox proportional-hazards models were used. (4) We enrolled 890 CHD patients and 905 controls in this cross-sectional study. Plasma TK levels were measured using enzyme-linked immunosorbent assay and traditional risk factors of CHD were registered in all participants. Associations among plasma TK levels, CHD and the severity of CHD were examed considering traditional risk factors. Discriminat analysis and receiver-operator characteristic (ROC) curves evaluated the clinical utility of plasma TK levels on CHD. (5) double antibody sandwich with biotin-avidin ELISA were used to detected plasma TK levels in 1881 normal person. We described the distribution of plasma TK and perfumed analysis with bivariate correlation and partial correlation. (6) plasma TK levels in 464 CHD patients were detected by double antibody sandwich with biotin-avidin ELISA.162 of them were with history of ACEI taking,302 of them were controls. We described the distribution of plasma TK and analyzed the data by Independent sample T test and unconditional logistic regression analysis.
     Results:(1) 8 hybridoma cell lines secreting mAbs special to HK, labeled 1A,1B8, 1E4,2E4,2F8,3B7,4D5,4E2.2F8 was purified and of high titer (1:25600).12% SDS-PAGE and Western blotting demonstrated successful preparing and purification of mAbs. (2) The fusion proteins identified by SDS-PAGE and Western bloting, results showed that a stain of additional protein bands was at the department of 55KD. The Western bloting proved TK-4T1 was the interst protein. This assay recognizes both recombinant and native HK. The linearity of this ELISA kit is demonstrated (r=0.9987).Among 124 people with three TK measurements during a six-month period, the intra-individual coefficient of variation was 1.7 percent, reflecting the long-term stability of TK levels. The range of detection of the assay is 0.007 to 0.5 mg per liter. The assay remained stable, with no change in the values measured, over five cycles of freezing and thawing of samples. (3) Plasma TK levels were significantly lower in stroke patients (0.163±0.064 mg/1 versus 0.252±0.093 mg/l, P<0.001), especially in ischemic stroke. Higher plasma TK levels were directly associated, in a dose-response manner, with a lower risk of the first-ever stroke after multivariate adjustment of traditional risk factors. As compared with the first quarter, the odd ratios for stroke were as follows: second quarter,0.78 (95% CI,0.56 to 1.07); third quarter,0.23 (95% CI,0.17 to 0.32); fourth quarter,0.04 (95% CI,0.03 to 0.07). Furthermore, stroke patients with higher plasma TK levels, below the cutoff point (0.211 mg/1), had significantly lower risk of stroke reoccurrence and longer event-free survival time during 5-years of follow-up visits. (4) Compared with controls, plasma TK levels were significantly higher in CHD patients (0.347±.082 versus 0.256±0.087 mg/L, P<0.001) and elevated plasma TK levels were positive associated, in a dose-response manner, with the presece of CHD and negtive associated with the severity of CHD with respect to traditional risk factors of cardiovascular diseases. comparing with other biomarkers of CHD, discriminat analysis and ROC curves also indicated that elevated plasma TK level and decreased HDL were with the best diagnosis value on CHD. (5) Plasma TK levels had direct correlation with high density lipoprotein(r=0.069, P=0.003) and inverse correlation with low density lipoprotein(r=-0.053, P=0.025). Considering the influence factor of lipid, plasma TK levels still had direct correlation with high density lipoprotein(r=0.055, P=0.001) and inverse correlation with total cholesterol (r=-0.069,P=0.018) and low density lipoprotein(r=-0.053, P=0.025). (6) plasma TK in CHD patients subjected to positively skewed distribution (Skewness=0.617, SE=0.090, Kurtosis=0.774, SE=0.181). ACEI elevated the plasma TK levels in CHD significantly (0.388±0.076 mg/l vs. 0.320±0.079 mg/l, P<0.001; OR=3.20,95%CI 2.59-3.95, P<0.001)
     Conclusion:We prepared monoclonal antibody and ELISA kit specified to tissue kallikrein successed. Reduced TK is directly and dose-dependent associated with first-ever stroke, especially ischemic stroke, and may be an independent protector against stroke in Chinese. Elevated TK is positve associated with the presence of CHD and negtive associated with the severity of CHD and may be an independent risk factor or a strong biamarker of CHD in Chinese as well. Therefore TK could be a a useful prognostic tool for the evaluation of risk for stroke and its recurrence and a useful diagnostic tool for the evaluation of the presence and severity of CHD.
引文
1. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family:structure, function, and association to disease. Endocr Rev 2001;22:184-204.
    2. Clements JA, Matheson BA, Funder JE. Tissue-specific regulation of the expression of rat kallikrein gene family members by thyroid hormone. Biochem J 1990; 267:745-50.
    3. Regoli D, Rhaleb NE, Drapeau Q Dion S. Kinin receptor subtypes. J Cardiovasc Pharmacol 1990; 15 Suppl 6:S30-8.
    4. Todorov AG, Andrade D, Pesquero JB, et al. Trypanosoma cruzi induces edematogenic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. Faseb J 2003;17:73-5.
    5. Clements JA. Current perspectives on the molecular biology of the renal tissue kallikrein gene and the related tissue kallikrein gene family. Biol Res 1998;31:151-9.
    6. Berry TD, Hasstedt SJ, Hunt SC, et al. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 1989;13:3-8.
    7. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol 2005;90:291-8.
    8. Chao J, Zhang JJ, Lin KF, Chao L. Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum Gene Ther 1998;9:21-31.
    9. Bedi GS, Back N. Monoclonal antibody to rat plasma kallikrein. Hybridoma 1984;3:287-92.
    10. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity.1975. J Immunol 2005;174:2453-5.
    11. Lo MM, Tsong TY, Conrad MK, Strittmatter SM, Hester LD, Snyder SH. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 1984;310:792-4.
    12. Dicker PD, Tsai SY, Weigel NL, Tsai MJ, Schrader WT, O'Malley BW. Monoclonal antibody to the hen oviduct progesterone receptor produced following in vitro immunization. J Steroid Biochem 1984;20:43-50.
    13. Sethi KK, Endo T, Brandis H. Hybridomas secreting monoclonal antibody with specificity for Toxoplasma gondii. J Parasitol 1980;66:192-6.
    14. Chanh TC, Kennedy RC, Alderete BE, Kanda P, Eichberg JW, Dreesman GR. Human immunodeficiency virus gp120 glycoprotein detected by a monoclonal antibody to a synthetic peptide. Eur J Immunol 1986;16:1465-8.
    15. Rosebrough SF, Grossman ZD, McAfee JG Purification of fibrin-specific monoclonal antibody from ascites fluid by preparative isoelectric focusing. Immunol Lett 1986;12:147-51.
    16. Brodeur BR, Tsang PS. High yield monoclonal antibody production in ascites. J Immunol Methods 1986;86:239-41.
    17. Homma R, Uesato N, Miyahara A, et al. [Production of a monoclonal antibody against Cry j 2]. Arerugi 1995;44:461-6.
    1. Yan JT, Wang T, Li J, Xiao X, Wang DW. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure. Acta Pharmacol Sin 2008;29:808-14.
    2. Yuan G, Deng J, Wang T, et al. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways. Endocrinology 2007; 148:2016-26.
    3. Chiang WC, Lin SL, Chen YM, Wu KD, Tsai TJ. Urinary kallikrein excretion is related to renal function change and inflammatory status in chronic kidney disease patients receiving angiotensin Ⅱ receptor blocker treatment. Nephrology (Carlton) 2008;13:198-203.
    4. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol 2005;90:291-8.
    5. Chao J, Zhang JJ, Lin KF, Chao L. Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum Gene Ther 1998;9:21-31.
    6. Ogawa K, Ito T, Ban M, Motizuki M, Satake T. Effects of kallidinogenase on urinary kallikrein excretion and plasma prostanoid concentrations in patients with essential hypertension. Experientia 1986;42:1014-5.
    7. Chinami M, Shingu M. Construction of an expression vector for human papillomavirus type 16 E7-glutathione S transferase fusion protein. Kurume Med J 1992;39:9-12.
    8. Liang Y, Sun Q, Jiang S, et al. [Construction and expression of a vector containing protein transduction domain and bcr/abl fusion gene]. Zhonghua Xue Ye Xue Za Zhi 2002;23:5-8.
    9. Buonocore V, Poerio E, Gramenzi F, Silano V. Affinity column purification of amylases on protein inhibitors from wheat kernel. J Chromatogr 1975;114:109-14.
    10. Yin SM, Zheng Y, Tien P. On-column purification and refolding of recombinant bovine prion protein:using its octarepeat sequences as a natural affinity tag. Protein Expr Purif 2003;32:104-9.
    11. Batas B, Schiraldi C, Chaudhuri JB. Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography. J Biotechnol 1999;68:149-58.
    12. Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 2005;99:303-10.
    13. Jovel SR, Kumagai T, Danshiitsoodol N, Matoba Y, Nishimura M, Sugiyama M. Purification and characterization of the second Streptomyces phospholipase A2 refolded from an inclusion body. Protein Expr Purif 2006;50:82-8.
    14. Burgess RR. Refolding solubilized inclusion body proteins. Methods Enzymol 2009;463:259-82.
    15. Gallacher G, Jackson CS, Searcey M, et al. A polyclonal antibody preparation with Michaelian catalytic properties. Biochem J 1991;279 (Pt 3):871-81.
    16. Grodzki AC, Berenstein E. Antibody purification:ammonium sulfate fractionation or gel filtration. Methods Mol Biol;588:15-26.
    17. Landt Y, Vaidya HC, Porter SE, Dietzler DN, Ladenson JH. Immunoaffinity purification of creatine kinase-MB from human, dog, and rabbit heart with use of a monoclonal antibody specific for CK-MB. Clin Chem 1989;35:985-9.
    18. Komada Y, Peiper SC, Melvin SL, Tarnowski B, Green AA. A monoclonal antibody (SJ-9A4) to P24 present on common alls, neuroblastomas and platelets-Ⅱ. Characterization of P24 and shedding in vitro and in vivo. Leuk Res 1983;7:499-507.
    19. Barat B, Wu AM. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol Eng 2007;24:283-91.
    20. Yamada H, Sano Y. The biotinylation of the rabbit serotonin antibody and its application to immunohistochemical studies using the two-step ABC method. Histochemistry 1985;83:285-9.
    21. Chao J, Jin L, Chen LM, Chen VC, Chao L. Systemic and portal vein delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hum Gene Ther 1996;7:901-11.
    22. Canellas PF, Karu AE. Statistical package for analysis of competition ELISA results. J Immunol Methods 1981;47:375-85.
    23. Mutoh S, Kobayashi M, Hirata J, et al. Urinary coagulation-fibrinolysis, kallirein-kinin systems and kininase in cases of preclampsia. Agents Actions Suppl 1992;38(Pt 2):330-41.
    24. Ginel PJ, Margarito JM, Molleda JM, Lopez R, Novales M, Bernadina WE. Biotin-avidin amplified enzyme-linked immunosorbent assay (ELISA) for the measurement of canine serum IgA, IgG and IgM. Res Vet Sci 1996;60:107-10.
    1. Bazzano LA, Gu D, Reynolds K, Wu X, Chen CS, Duan X, et al. Alcohol consumption and risk for stroke among Chinese men. Ann Neurol.2007;62:569-78.
    2. Reed DM. The paradox of high risk of stroke in populations with low risk of coronary heart disease. Am J Epidemiol.1990;131:579-88.
    3. Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, et al. Retinal microvascular abnormalities and incident stroke:the Atherosclerosis Risk in Communities Study. Lancet.2001;358:1134-40.
    4. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA):a multicentre randomised controlled trial..Lancet.2003;361:1149-58.
    5. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke.1997;28:1283-1288.
    6. Hecquet C, Tan F, Marcic BM, Erdos EG. Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Mol Pharmacol.2000;58:828-836.
    7.Regoli D, Rhaleb NE, Drapeau G, Dion S. Kinin receptor subtypes. J Cardiovasc Pharmasc.. 1990;15 6:S30-38.
    8. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol. 2005;90:291-298.
    9. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol. 2005;90:291-298.
    10. Zhao C, Wang P, Xiao X, Chao J, Chao L, Wang DW, Zeldin DC. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension.2003;42:1026-1033.
    11. Ling L, Hou Q, Xing S, Yu J, Pei Z, Zeng J. Exogenous kallikrein enhances neurogenesis and angiogenesis in the subventricular zone and the peri-infarction region and improves neurological function after focal cortical infarction in hypertensive rats. Brain Res. 2008; 1206:89-97.
    12. Yuan G, Deng J, Wang T, Zhao C, Xu X, Wang P, Voltz JW, Edin ML, Xiao X, Chao L, Chao J, Zhang XA, Zeldin DC, Wang DW. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways. Endocrinology.2007; 148:2016-2026.
    13. Zhang JJ, Chao L, Chao J. Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke..;30:1925-31.
    14. Xia CF, Yin H, Borlongan CV, Chao L, Chao J. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004;43:452-9.
    15. Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther.2006;17:206-19.
    16. Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood:an eight-year follow-up. Circulation. 1978;58:908-15.
    17. Slee VN. The International Classification of Diseases:ninth revision (ICD-9). Ann Intern Med.1978;88:424-6.
    18. Kannel WB. Current status of the epidemiology of brain infarction associated with occlusive arterial disease. Stroke.1971;2:295-318.
    19. Wolf PA, Kannel WB, Dawber TR. Prospective investigations:the Framingham study and the epidemiology of stroke. Neurol Clin.1978; 19:107-20.
    20. Capon A, Gregoire F. [Risk factors in cerebrovascular accidents]. Bull Mem Acad R Med Belg.1987; 142:384-397.
    21. Wolf PA, Kannel WB, Verter J. Current status of risk factors for stroke. Neurol Clin. 1983;1:317-43.
    22. Abbott RD, Yin Y, Reed DM, Yano K. Risk of stroke in male cigarette smokers. N Engl J Med.1986 Sep 18;315(12):717-20.
    23. Abbott RD, Donahue RP, MacMahon SW, Reed DM, Yano K. Diabetes and the risk of stroke. Jama.1987;257:949-52.
    24. Gill JS, Zezulka AV, Shipley MJ, Gill SK, Beevers DG. Stroke and alcohol consumption. N Engl J Med.1986 23;315:1041-6.
    25. Welin L, Svardsudd K, Wilhelmsen L, Larsson B, Tibblin G Analysis of risk factors for stroke in a cohort of men born in 1913. NEngl J Med.1987 27;317:521-6.
    26. Davis PH, Dambrosia JM, Schoenberg BS, Schoenberg DG, Pritchard DA, Lilienfeld AM, et al. Risk factors for ischemic stroke:a prospective study in Rochester, Minnesota. Ann Neuro.1987;22:319-27.
    27. Rhoads GG, Kagan A. The relation of coronary disease, stroke, and mortality to weight in youth and in middle age. Lancet.1983; 1:492-5.
    28. Berry TD, Hasstedt SJ, Hunt SC, Wu LL, Smith JB, Ash KO, et al. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension.1989; 13:3-8.
    29. Koch M, Spillmann F, Dendorfer A, Westermann D, Altmann C, Sahabi M, et al. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction. Eur J Pharmacol.2006 21;550:143-8.
    30. Pons S, Griol-Charhbili V, Heymes C, Fornes P, Heudes D, Hagege A, et al. Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. Eur J Heart Fail.2008; 10:343-51.
    31.Chao J, Yin H, Gao L, Hagiwara M, Shen B, Yang ZR, et al. Tissue kallikrein elicits cardioprotection by direct kinin b2 receptor activation independent of kinin formation. Hypertension.2008;52:715-20.
    32. Wang T, Hou LB, Liu ZJ, Wang Y, Chen CL, Xiao X, et al. Intramuscular delivery of rAAV-mediated kallikrein gene reduces hypertension and prevents cardiovascular injuries in model rats. Acta Pharmacol Sin.2007;28:1898-906.
    33. Murakami H, Yayama K, Miao RQ, Wang C, Chao L, Chao J. Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. Hypertension.1999;34:164-70.
    34. Emanueli C, Salis MB, Chao J, Chao L, Agata J, Lin KF, et al. Adenovirus-mediated human tissue kallikrein gene delivery inhibits neointima formation induced by interruption of blood flow in mice. Arterioscler Thromb Vasc Biol.2000;20:1459-66.
    35. Tu L, Xu X, Wan H, Zhou C, Deng J, Xu G, et al. Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther. 2008; 19:318-30.
    36. Liu L, Zhang R, Liu K, Zhou H, Yang X, Liu X, et al. Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway. Exp Neurol.2009.
    37. Liu L, Zhang R, Liu K, Zhou H, Tang Y, Su J, et al. Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res.2009.
    38. Vandell AG, Larson N, Laxmikanthan G, Panos M, Blaber SI, Blaber M, et al. Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J Neurochem.2008;107:855-70.
    1. Poulter N. Coronary heart disease is a multifactorial disease. Am J Hypertens 1999;12:92S-95S.
    2. Moran A, Zhao D, Gu D, et al. The future impact of population growth and aging on coronary heart disease in China:projections from the coronary heart disease policy model-China. BMC Public Health 2008;8:394.
    3. Menotti A, Keys A, Blackburn H, et al. Comparison of multivariate predictive power of major risk factors for coronary heart diseases in different countries:results from eight nations of the Seven Countries Study,25-year follow-up. J Cardiovasc Risk 1996;3:69-75.
    4. Geographical variation in the major risk factors of coronary heart disease in men and women aged 35-64 years. The WHO MONICA Project. World Health Stat Q 1988;41:115-40.
    5. Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension 2003;42:1026-33.
    6. Cheng J, Zhao D, Zeng Z, et al. The impact of demographic and risk factor changes on coronary heart disease deaths in Beijing,1999-2010. BMC Public Health 2009;9:30.
    7. Chang ST, Chu CM, Lin PC, et al. Different degrees of overweight:anthropometric indices in patients with coronary heart disease. Acta Cardiol 2009;64:291-6.
    8. Chida Y, Steptoe A. The association of anger and hostility with future coronary heart disease:a meta-analytic review of prospective evidence. J Am Coll Cardiol 2009;53:936-46.
    9. Sveger T, Fex G Apolipoprotein A-I and B levels in adolescents; a trial to define subjects at risk for coronary heart disease. Acta Paediatr Scand 1983;72:499-504.
    10. Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation 2005;112:3375-83.
    11. Stehle G, Hinohara S, Cremer P, et al. Risk factor patterns for coronary heart disease in China, Japan and Germany. Chin Med J (Engl) 1992;105:356-9.
    12. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke 1997;28:1283-8.
    13. Hecquet C, Tan F, Marcic BM, Erdos EG Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Mol Pharmacol 2000;58:828-36.
    14. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol 2005;90:291-8.
    15. Chao J, Bledsoe G, Yin H, Chao L. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem 2006;387:665-75.
    16. Regoli D, Rhaleb NE, Drapeau Q Dion S. Kinin receptor subtypes. J Cardiovasc Pharmacol 1990; 15 Suppl 6:S30-8.
    17. Sharma JN, Abbas SA, Yusof AP, Shah RP, Gan EK. Tissue kallikrein increases duration of survival after prolonged coronary artery ligation in hypertensive rats. Pharmacology 2004;70:201-5.
    18. Koch M, Spillmann F, Dendorfer A, et al. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction. Eur J Pharmacol 2006;550:143-8.
    19. Agata J, Chao L, Chao J. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 2002;40:653-9.
    20. Guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of diagnostic and therapeutic cardiovascular procedures (subcommittee on coronary angiography). J Am Coll Cardiol 1987;10:935-50.
    21. Da Costa Castro JM, Deschamps F, Benbachir M, Henrichsen J, Volle PJ, Guinet RM. Highly sensitive biotin-avidin sandwich ELISA for the rapid detection of pneumococcal capsular polysaccharide antigens. J Immunol Methods 1987;104:265-70.
    22. Lee YW, Min WK, Lee W, et al. Risk analysis of coronary heart diseases in Korean adults by using the National Cholesterol Education Program Adult Treatment Panel Ⅲ. J Clin Lab Anal 2007;21:178-82.
    23. Schmechel H, Schulze J, Hanefeld M, et al. [Coronary heart diseases and associated risk factors in newly manifested type Ⅱ diabetic patients over the course of 5 years]. Z Gesamte Inn Med 1989;44:172-5.
    24. Criqui MH, Heiss G, Cohn R, et al. Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 1993;328:1220-5.
    25. Lei Y. [Clinical epidemiological study on risk factors of coronary heart disease in 743 subjects]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1992;12:394-7,387.
    26. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease:risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 2009;53:1925-32.
    27. Ling L, Hou Q, Xing S, Yu J, Pei Z, Zeng J. Exogenous kallikrein enhances neurogenesis and angiogenesis in the subventricular zone and the peri-infarction region and improves neurological function after focal cortical infarction in hypertensive rats. Brain Res 2008; 1206:89-97.
    28. Sharma JN, Abbas SA, Yusof AP, Shah RP. Evaluation of tissue kallikrein activity on survival time after acute coronary artery ligation in hypertensive rats. Int Immunopharmacol 2003;3:329-34.
    29. Pons S, Griol-Charhbili V, Heymes C, et al. Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. Eur J Heart Fail 2008; 10:343-51.
    30. Messadi-Laribi E, Griol-Charhbili V, Pizard A, et al. Tissue kallikrein is involved in the cardioprotective effect of AT1-receptor blockade in acute myocardial ischemia. J Pharmacol Exp Ther 2007;323:210-6.
    31. Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin receptors in pain and inflammation. Eur J Pharmacol 2001;429:161-76.
    32. Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation 1994;89:2232-40.
    33. Abramson BL, Ando S, Notarius CF, Rongen GA, Floras JS. Effect of atrial natriuretic peptide on muscle sympathetic activity and its reflex control in human heart failure. Circulation 1999;99:1810-5.
    34. Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood:an eight-year follow-up. Circulation 1978;58:908-15.
    1. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol 1997;17:1114-20.
    2. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383-9.
    3. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998;97:1440-5.
    4. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels:results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. Jama 1998;279:1615-22.
    5. Poulter N. Coronary heart disease is a multifactorial disease. Am J Hypertens 1999;12:92S-95S.
    6. Moran A, Zhao D, Gu D, et al. The future impact of population growth and aging on coronary heart disease in China:projections from the Coronary Heart Disease Policy Model-China. BMC Public Health 2008;8:394.
    7. Khoury P, Morrison JA, Mellies MJ, Glueck CJ. Weight change since age 18 years in 30- to 55-year-old whites and blacks. Associations with lipid values, lipoprotein levels, and blood pressure. Jama 1983;250:3179-87.
    8. Liu A, Lee L, Zhan S, et al. The S447X polymorphism of the lipoprotein lipase gene is associated with lipoprotein lipid and blood pressure levels in Chinese patients with essential hypertension. J Hypertens 2004;22:1503-9.
    9. McCrohon JA, Nakhla S, Jessup W, Stanley KK, Celermajer DS. Estrogen and progesterone reduce lipid accumulation in human monocyte-derived macrophages:a sex-specific effect. Circulation 1999;100:2319-25.
    10. Leon-Sanz M, Garcia-Luna PP, Sanz-Paris A, et al. Glycemic and lipid control in hospitalized type 2 diabetic patients:evaluation of 2 enteral nutrition formulas (low carbohydrate-high monounsaturated fat vs high carbohydrate). JPEN J Parenter Enteral Nutr 2005;29:21-9.
    11. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol 2005;90:291-8.
    12. Pons S, Griol-Charhbili V, Heymes C, et al. Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. Eur J Heart Fail 2008;10:343-51.
    13. Da Costa Castro JM, Deschamps F, Benbachir M, Henrichsen J, Volle PJ, Guinet RM. Highly sensitive biotin-avidin sandwich ELISA for the rapid detection of pneumococcal capsular polysaccharide antigens. J Immunol Methods 1987; 104:265-70.
    14. Hecquet C, Tan F, Marcic BM, Erdos EG Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Mol Pharmacol 2000;58:828-36.
    15. Koch M, Spillmann F, Dendorfer A, et al. Cardiac function and remodeling is attenuated in transgenic rats expressing the human kallikrein-1 gene after myocardial infarction. Eur J Pharmacol 2006;550:143-8.
    16. Ling L, Hou Q, Xing S, Yu J, Pei Z, Zeng J. Exogenous kallikrein enhances neurogenesis and angiogenesis in the subventricular zone and the peri-infarction region and improves neurological function after focal cortical infarction in hypertensive rats. Brain Res 2008;1206:89-97.
    17. Murakami H, Yayama K, Miao RQ, Wang C, Chao L, Chao J. Kallikrein gene delivery inhibits vascular smooth muscle cell growth and neointima formation in the rat artery after balloon angioplasty. Hypertension 1999;34:164-70.
    18. Emanueli C, Salis MB, Chao J, et al. Adenovirus-mediated human tissue kallikrein gene delivery inhibits neointima formation induced by interruption of blood flow in mice. Arterioscler Thromb Vasc Biol 2000;20:1459-66.
    19. HDL and coronary heart disease. Lancet 1980;2:1139-40.
    20. Barter P, Gotto AM, LaRosa JC, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 2007;357:1301-10.
    1. Poulter N. Coronary heart disease is a multifactorial disease. Hypertension.1999;12(10 Pt 2):92S-95S.
    2. Moran A, Zhao D, Gu D, et al. The future impact of population growth and aging on coronary heart disease in China:projections from the Coronary Heart Disease Policy Model-China. BMC public health.2008;8:394.
    3. Athyros VG, Mikhailidis DP, Papageorgiou AA, et al. Effect of statins and ACE inhibitors alone and in combination on clinical outcome in patients with coronary heart disease. Hypertension.2004;18(11):781-788.
    4. Turnbull F, Neal B, Pfeffer M, et al. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. Hypertension.2007;25(5):951-958.
    5.杨建伟.冠心病的临床进展.医学综述.2009;6(7):317-319.
    6. Ferreira SH. Angiotensin converting enzyme:history and relevance. Semin Perinatol. 2000;24(1):7-10.
    7. Agarwal R. Bradykinin and inhibition of angiotensin-converting enzyme in hypertension. NEngl JMed.1999;340(12):967-968.
    8. Hecquet C, Tan F, Marcic BM, et al. Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Molecular pharmacology.2000;58(4):828-836.
    9. Valdes G, Germain AM, Corthorn J, et al. Tissue kallikrein and bradykinin B2 receptor in human uterus in luteal phase and in early and late gestation. Endocrine. 2001;16(3):207-215.
    10. Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am JPhysiol.2003;285(1):R1-13.
    11. Tschope C, Schultheiss HP, Walther T. Multiple interactions between the renin-angiotensin and the kallikrein-kinin systems:role of ACE inhibition and AT1 receptor blockade. J Cardiovasc Pharmacol.2002;39(4):478-487.
    12. Chao J, Bledsoe G, Yin H, Chao L. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem.2006;387(6):665-675.
    13. Xia CF, Yin H, Yao YY, et al. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Gene Ther. 2006;17(2):206-219.
    14. Da Costa Castro JM, Deschamps F, Benbachir M, et al. Highly sensitive biotin-avidin sandwich ELISA for the rapid detection of pneumococcal capsular polysaccharide antigens. J Immunol Methods.1987;104(1-2):265-270.
    15. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol.2005;90(3):291-298.
    16. Campbell DJ. The renin-angiotensin and the kallikrein-kinin systems. Int J Biochem Cell Biol.2003;35(6):784-791.
    17. Wilkinson-Berka JL, Fletcher EL. Angiotensin and bradykinin:targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr Pharm Des. 2004; 10(27):3313-3330.
    1. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins:kallikreins, kininogens, and kininases. Pharmacol Rev 1992;44:1-80.
    2. Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin receptors in pain and inflammation. Eur J Pharmacol 2001;429:161-76.
    3. Fujita M, Andoh T, Ohashi K, Akira A, Saiki I, Kuraishi Y. Roles of kinin B(1) and B(2) receptors in skin cancer pain produced by orthotopic melanoma inoculation in mice. Eur J Pain 2009.
    4. Regoli D, Rizzi A, Calo G Pharmacology of the kallikrein-kinin system. Pharmacol Res 1997;35:513-5.
    5. Zamechnik TV. [Components of the kinin system in blood plasma and lymph from various regions in intact dogs]. Patol Fiziol Eksp Ter 1997:10-1.
    6. Regoli D, Rhaleb NE, Drapeau G, Dion S. Kinin receptor subtypes. J Cardiovasc Pharmacol 1990;15 Suppl 6:S30-8.
    7. Chao J, Stallone JN, Liang YM, Chen LM, Wang DZ, Chao L. Kallistatin is a potent new vasodilator. J Clin Invest 1997;100:11-7.
    8. Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003;285:R1-13.
    9. Shen B, El-Dahr SS. Cross-talk of the renin-angiotensin and kallikrein-kinin systems. Biol Chem 2006;387:145-50.
    10. Campbell DJ. The renin-angiotensin and the kallikrein-kinin systems. Int J Biochem Cell Biol 2003;35:784-91.
    11. Tschope C, Schultheiss HP, Walther T. Multiple interactions between the renin-angiotensin and the kallikrein-kinin systems:role of ACE inhibition and AT1 receptor blockade. J Cardiovasc Pharmacol 2002;39:478-87.
    12. Cumming AD, Jeffrey S, Lambie AT, Robson JS. The kallikrein-kinin and renin-angiotensin systems in nephrotic syndrome. Nephron 1989;51:185-91.
    13. Wilkinson-Berka JL, Fletcher EL. Angiotensin and bradykinin:targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr Pharm Des 2004; 10:3313-30.
    14. Croxatto H. [Kallikrein versus renin? Changes in kallikrein excretion in experimental hypertension and other conditions]. Rev Med Chil 1972;100:708-17.
    15. Tschope C, Gavriluk V, Reinecke A, et al. Bradykinin excretion is increased in severely hyperglycemic streptozotocin-diabetic rats. Immunopharmacology 1996;33:344-8.
    16. Scholkens BA. Kinins in the cardiovascular system. Immunopharmacology 1996;33:209-16.
    17.Fomenko GV, Kuznetsov VA, Nikolaeva LF, Bol'shakova TD, Arabidze GG, Titov VN. [The effect of physical training on the indices of the general hemodynamics and kinin-kallikrein system activity in hypertension patients]. Ter Arkh 1991;63:34-7.
    18. Mohamed M, Larmie ET, Singh HJ, Othman MS. Tissue kallikrein and kininogen levels in fetoplacental tissues from normotensive pregnant women and women with pregnancy-induced hypertension. Eur J Obstet Gynecol Reprod Biol 2007; 134:15-9.
    19. Campbell DJ. The kallikrein-kinin system in humans. Clin Exp Pharmacol Physiol 2001;28:1060-5.
    20. Braun C, Kleemann T, Hilgenfeldt U, Riester U, Rohmeiss P, van der Woude FJ. Activity and functional significance of the renal kallikrein-kinin-system in polycystic kidney disease of the rat. Kidney Int 2002;61:2149-56.
    21. Rodriguez F, Llinas MT, Moreno C, Salazar FJ. Role of Cyclooxygenase-2- Derived Metabolites and NO in Renal Response to Bradykinin. Hypertension 2001;37:129-134.
    22. Tornel J, Madrid MI, Garcia-Salom M, Wirth KJ, Fenoy FJ. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure. Circ Res 2000;86:589-95.
    23. Majima M, Hayashi I, Fujita T, Ito H, Nakajima S, Katori M. Facilitation of renal kallikrein-kinin system prevents the development of hypertension by inhibition of sodium retention. Immunopharmacology 1999;44:145-52.
    24. Meini S, Lecci A, Carini F, et al. In vitro and in vivo activity of analogues of the kinin B2 receptor antagonist MEN1 1270. Can J Physiol Pharmacol 2002;80:293-302.
    25. Seyedi N, Win T, Lander HM, Levi R. Bradykinin B2-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ Res 1997;81:774-84.
    26. Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 2005;97:698-706.
    27. Duka I, Kintsurashvili E, Gavras I, Johns C, Bresnahan M, Gavras H. Vasoactive potential of the b(1) bradykinin receptor in normotension and hypertension. Circ Res 2001;88:275-81.
    28. Wicklmayr M, Rett K, Baldermann H, Dietze G. The kallikrein/kinin system in the pathogenesis of hypertension in diabetes mellitus. Diabete Metab 1989;15:306-10.
    29. Chen K, Zhang X, Dunham EW, Zimmerman BG Kinin-mediated antihypertensive effect of captopril in deoxycorticosterone acetate-salt hypertension. Hypertension 1996;27:85-9.
    30. Majima M, Mizogami S, Kuribayashi Y, Katori M, Oh-ishi S. Hypertension induced by a nonpressor dose of angiotensin II in kininogen-deficient rats. Hypertension 1994;24:111-9.
    31.Rhaleb NE, Yang XP, Nanba M, Shesely EG, Carretero OA. Effect of Chronic Blockade of the Kallikrein-Kinin System on the Development of Hypertension in Rats. Hypertension 2001;37:121-128.
    32. Tschope C, Seidl U, Reinecke A, et al. Kinins are involved in the antiproteinuric effect of angiotensin-converting enzyme inhibition in experimental diabetic nephropathy. Int Immunopharmacol 2003;3:335-44.
    33. Madeddu P, Anania V, Parpaglia PP, et al. Chronic kinin receptor blockade induces hypertension in deoxycorticosterone-treated rats. Br J Pharmacol 1993;108:651-7.
    34. Madeddu P, Parpaglia PP, Demontis MP, et al. Bradykinin B2-receptor blockade facilitates deoxycorticosterone-salt hypertension. Hypertension 1993;21:980-4.
    35. Madeddu P, Milia AF, Salis MB, et al. Reno vascular hypertension in bradykinin B2-receptor knockout mice. Hypertension 1998;32:503-9.
    36. Gainer JV, Brown NJ, Bachvarova M, et al. Altered frequency of a promoter polymorphism of the kinin B2 receptor gene in hypertensive African-Americans. Am J Hypertens 2000;13:1268-73.
    37. Cervenka L, Harrison-Bernard LM, Dipp S, Primrose G, Imig JD, El-Dahr SS. Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension 1999;34:176-80.
    38. Korbut RA, Madej J, Adamek-Guzik T, Korbut R. Secretory dysfunction of vascular endothelium limits the effect of angiotensin converting enzyme inhibitor quinapril on aggregation of erythrocytes in experimental hypertension. J Physiol Pharmacol 2003;54:397-408.
    39. Jain S, Rajeshwari J, Khullar M, Kumari S. Enalapril acts through release of nitric oxide in patients with essential hypertension. Ren Fail 2001;23:651-7.
    40. Okada H, Watanabe Y, Kikuta T, et al. Bradykinin decreases plasminogen activator inhibitor-1 expression and facilitates matrix degradation in the renal tubulointerstitium under angiotensin-converting enzyme blockade. J Am Soc Nephrol 2004;15:2404-13.
    41. Pu Q, Brassard P, Javeshghani DM, et al. Effects of combined AT1 receptor antagonist/NEP inhibitor on vascular remodeling and cardiac fibrosis in SHRSP. J Hypertens 2008;26:322-33.
    42. Kaihara M, Nakamura Y, Makino H. [Effect of angiotensin Ⅱ receptor blocker on insulin signaling in skeletal muscle cells]. Nippon Rinsho 2002;60:1945-8.
    43. Emanueli C, Maestri R, Corradi D, et al. Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 1999;100:2359-65.
    44. Hagiwara M, Murakami H, Ura N, et al. Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens Res 2004;27:399-408.
    45. Katori M, Majima M. Role of the renal kallikrein-kinin system in the development of hypertension. Immunopharmacology 1997;36:237-42.
    46. Tschope C, Heringer-Walther S, Walther T. Regulation of the kinin receptors after induction of myocardial infarction:a mini-review. Braz J Med Biol Res 2000;33:701-8.
    47. Bogutskii BV, Karpitskii VV, Kozachenko Iu I, Guz S. [State of the kallikrein-kinin system of the blood and kidneys in different hemodynamic variants of hypertension]. Ter Arkh 1979;51:70-3.
    48. Chernova NA, Nekrasova AA. [Urinary kallikrein in hypertension and renovascular hypertension]. Kardiologiia 1971;11:84-9.
    49. Ando T, Shimamoto K, Ura N, et al. The renal kallikrein-kinin system in renoparenchymal hypertension. Adv Exp Med Biol 1989;247B:127-32.
    50. Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood:an eight-year follow-up. Circulation 1978;58:908-15.
    51. Zinner SH, Margolius HS, Rosner B, Keiser HR, Kass EH. Familial aggregation of
    urinary kallikrein concentration in childhood:relation to blood pressure, race and urinary electrolytes. Am J Epidemiol 1976; 104:124-32.
    52. Berry TD, Hasstedt SJ, Hunt SC, et al. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 1989;13:3-8.
    53. Song Q, Chao J, Chao L. DNA polymorphisms in the 5'-flanking region of the human tissue kallikrein gene. Hum Genet 1997;99:727-34.
    54. Yu H, Song Q, Freedman BI, et al. Association of the tissue kallikrein gene promoter with ESRD and hypertension. Kidney Int 2002;61:1030-9.
    55. Hirata H, Hinoda Y, Kikuno N, et al. Bcl2-938C/A polymorphism carries increased risk of biochemical recurrence after radical prostatectomy. J Urol 2009; 181:1907-12.
    56. Diz DI, Nasjletti A, Baer PG Renal denervation at weaning retards development of hypertension in New Zealand genetically hypertensive rats. Hypertension 1982;4:361-8.
    57. Chao J, Jin L, Chen LM, Chen VC, Chao L. Systemic and portal vein delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hum Gene Ther 1996;7:901-11.
    58. Gavras I, Gavras H. Anti-hormones and blood pressure:bradykinin antagonists in blood pressure regulation. Kidney Int Suppl 1988;26:S60-2.
    59. Morris BJ, Zee RY, Ying LH, Griffiths LR. Independent, marked associations of alleles of the insulin receptor and dipeptidyl carboxypeptidase-I genes with essential hypertension. Clin Sci (Lond) 1993;85:189-95.
    60. Havlik RJ. Predictors of hypertension. Population studies. Am J Hypertens 1991;4:586S-589S.
    61. Chao J, Chai KX, Chen LM, et al. Tissue kallikrein-binding protein is a serpin. I. Purification, characterization, and distribution in normotensive and spontaneously hypertensive rats. J Biol Chem 1990;265:16394-401.
    62. Woodley-Miller C, Chao J, Chao L. Restriction fragment length polymorphisms mapped in spontaneously hypertensive rats using kallikrein probes. J Hypertens 1989;7:865-71.
    63. Silva JA, Jr., Araujo RC, Baltatu O, et al. Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. Faseb J 2000;14:1858-60.
    64. Dlamini Z, Bhoola KD. Upregulation of tissue kallikrein, kinin B1 receptor, and kinin B2 receptor in mast and giant cells infiltrating oesophageal squamous cell carcinoma. J Clin Pathol 2005;58:915-22.
    65. Wolf WC, Yoshida H, Agata J, Chao L, Chao J. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int 2000;58:730-9.
    66. Chao J, Chen LM, Chai KX, Chao L. Expression of kallikrein-binding protein and alpha 1-antitrypsin genes in response to sex hormones, growth, inflammation and hypertension. Agents Actions Suppl 1992;38 (Pt 1):174-81.
    67. Overlack A, Stumpe KO, Kolloch R, Ressel C, Krueck F. Antihypertensive effect of orally administered glandular kallikrein in essential hypertension. Results of double blind study. Hypertension 1981;3:I18-21.
    68. Wang T, Li H, Zhao C, et al. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene Ther 2004;11:1342-50.
    69. Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension 2003;42:1026-33.
    70. Yan JT, Wang T, Li J, Xiao X, Wang DW. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure. Acta Pharmacol Sin 2008;29:808-14.
    71. Liu YH, Yang XP, Mehta D, Bulagannawar M, Scicli GM, Carretero OA. Role of kinins in chronic heart failure and in the therapeutic effect of ACE inhibitors in kininogen-deficient rats. Am J Physiol Heart Circ Physiol 2000;278:H507-14.
    72. Song QJ, Li YJ, Deng HW. Cardioprotective effect of bradykinin-induced preconditioning mediated by calcitonin gene-related peptide in isolated rat heart. Zhongguo Yao Li Xue Bao 1999;20:162-6.
    73. Messadi-Laribi E, Griol-Charhbili V, Pizard A, et al. Tissue kallikrein is involved in the cardioprotective effect of AT1-receptor blockade in acute myocardial ischemia. J Pharmacol Exp Ther 2007;323:210-6.
    74. Richer C, Domergue V, Gervais M, Fornes P, Trabold F, Giudicelli JF. Coronary dilatation reserve in experimental hypertension and chronic heart failure:effects of blockade of the renin-angiotensin system. Clin Exp Pharmacol Physiol 2001;28:997-1001.
    75. Yao YY, Yin H, Shen B, Chao L, Chao J. Tissue kallikrein and kinin infusion rescues failing myocardium after myocardial infarction. J Card Fail 2007; 13:588-96.
    76. Agata J, Chao L, Chao J. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 2002;40:653-9.
    77. Spilberg I, Osterland CK. Anti-inflammatory effect of the trypsin-kallikrein inhibitor in acute arthritis induced by urate crystals in rabbits. J Lab Clin Med 1970;76:472-9.
    78. Figueiredo EL, Garcia Leao FV, De Oliveira LV, Moreira Mda C, De Souza Figueiredo AF. The amidase activity of human tissue kallikrein is significantly lower in the urine of patients with systolic heart failure. J Card Fail 2006;12:653-8.
    79. Westermann D, Schultheiss HP, Tschope C. New perspective on the tissue kallikrein-kinin system in myocardial infarction:role of angiogenesis and cardiac regeneration. Int Immunopharmacol 2008;8:148-54.
    80. Yoshida H, Zhang JJ, Chao L, Chao J. Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 2000;35:25-31.
    81. Chao J, Yin H, Gao L, et al. Tissue kallikrein elicits cardioprotection by direct kinin b2 receptor activation independent of kinin formation. Hypertension 2008;52:715-20.
    82. Zhang JJ, Chao L, Chao J. Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke 1999;30:1925-31; discussion 1931-2.
    83. Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther 2006;17:206-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700