降钙素基因相关肽抑制异丙肾上腺素诱导心肌重构的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心肌重构是指心肌在多种病理情况下(如缺血、压力超负荷等)作出的适应性反应,包括心肌细胞肥大、间质纤维化和心肌细胞凋亡等。早期的重构在短期内对维持心功能具有一定的积极作用,但持续的重构会导致心功能失代偿而出现心力衰竭。最近的研究表明,辣椒素敏感的感觉神经功能低下以及microRNA-1、microRNA-133a和结缔组织生长因子(CTGF)的表达异常可能参与了心肌重构的形成。敲除辣椒素受体(VR1)可加重心肌缺血诱导的心肌重构,激活VR1促进感觉神经递质的释放则具有改善心功能的作用,说明病理状态下的心肌重构可能与感觉神经功能低下有关。吴茱萸次碱(Rut)是从中药吴茱萸中提取的一种生物碱,可通过激活VR1促进感觉神经递质——降钙素基因相关肽(CGRP)的合成和释放发挥一系列的心血管保护作用。基于心肌重构可能与感觉神经功能低下有关,因此本实验以异丙肾上腺素(Iso)诱导的心肌重构为模型,探讨降钙素基因相关肽(CGRP)在心肌重构中的作用和机制;并探讨吴茱萸次碱(Rut)对心肌重构的作用和机制。
     研究方法
     动物实验
     SD大鼠每天皮下给予Iso (5mg/kg,连续10天)诱导心肌重构模型,Rut治疗组在皮下注射Iso的同时,灌胃给予不同剂量的Rut(10mg/kg或40mg/kg)。给药结束后,检测大鼠心脏结构的变化(超声心动图);分离心脏,测量全心重与体重以及左心室重与体重的比值;观察心肌细胞大小的改变(苏木素-伊红染色)以及肥大标志物心钠素(ANP)和脑钠素(BNP) mRNA表达(RT-PCR)的变化;检测心肌细胞凋亡指数(TUNEL染色)以及凋亡相关基因Bax和Bcl-2mRNA的表达(RT-PCR);观察心肌胶原沉积(Masson染色)以及Ⅰ、Ⅲ型胶原和结缔组织生长因子(CTGF) mRNA表达(RT-PCR)的变化;检测心肌组织microRNA-1和microRNA-133a的表达(real-time PCR);取血浆和背根神经节分别检测CGRP的血浆浓度(放射免疫法)和α、β-CGRP mRNA的表达(RT-PCR)。
     细胞实验
     体外培养的心肌细胞和心肌成纤维细胞,以Iso来诱导心肌细胞的凋亡和成纤维细胞的增殖,CGRP在Iso处理前1 h给予。药物处理结束后,观察细胞活力的变化(MTT)以及心肌细胞凋亡的改变(Hoechest染色和流式细胞术);检测心肌细胞Bax和Bcl-2以及成纤维细胞Ⅰ、Ⅲ型胶原和结缔组织生长因子(CTGF) mRNA的表达(RT-PCR);观察心肌细胞microRNA-1和microRNA-133a表达的变化(real-time PCR)以及细胞内活性氧(ROS)水平的改变(DCFH-DA荧光法)。
     研究结果
     动物实验
     与对照组相比,给予Iso后可明显增加大鼠的收缩末左室内径(LEVDs)、收缩末左室后壁厚度(LVPWTs)和舒张末左室后壁厚度(LVPWTd)以及全心重与体重、左心室重与体重的比值,同时心肌细胞横截面积和ANP、BNPmRNA的表达也显著增加;心肌细胞凋亡指数和Bax mRNA的表达较对照组明显升高,而Bcl-2的mRNA表达则显著降低;给予Iso后大鼠心肌组织中胶原的沉积以及Ⅰ、Ⅲ型胶原和CTGF mRNA的表达显著增加;Iso还可明显上调microRNA-1的表达,而microRNA-133a的表达则显著下调;Iso处理大鼠后可显著降低背根神经节α、β-CGRP mRNA的表达和血浆中CGRP的浓度。给予Rut可显著促进CGRP的合成和释放,同时心肌重构得到明显的改善,而预先应用CGRP耗竭剂——辣椒素耗竭CGRP后则可取消Rut的上述有益作用。
     细胞实验
     在心肌细胞,Iso处理后可显著降低细胞的活性,增加心肌细胞的凋亡;促凋亡基因BaxmRNA的表达在Iso处理后明显上调,而抗凋亡基因Bcl-2 mRNA的表达并无显著性改变,导致Bax与Bcl-2的比值明显增加;Iso可明显上调心肌细胞microRNA-1的表达以及下调microRNA-133a的表达;另外,Iso处理后还可显著升高细胞内ROS的水平;预先给予CGRP后,可明显降低ROS的产生以及抑制Iso诱导的microRNA-1和microRNA-133a表达的变化,同时心肌细胞的凋亡也显著降低,但CGRP的这种保护作用可被CGRP受体拮抗剂CGRP8-37所取消。
     在心肌成纤维细胞,Iso处理后可明显增加细胞的增殖活性;Ⅰ、Ⅲ型胶原和结缔组织生长因子(CTGF) mRNA的表达也显著增加;细胞内ROS的水平在Iso处理后也明显高于对照组;预先应用CGRP后也可显著抑制Iso的上述效应,同样,CGRP的这种保护作用可被CGRP8-37所取消。
     结论
     1.辣椒素敏感感觉神经的功能减弱以及miRNA-1、miRNA-133a和CTGF的表达异常可能参与了Iso诱导的心肌重构的形成;
     2.Rut可抑制Iso诱导的心肌重构,其机制与激活VR1促进CGRP的合成和释放,进而调节miRNA-1、miRNA-133a和CTGF的表达有关;
     3. CGRP对miRNA-1、miRNA-133a和CTGF表达的调节可能与其抑制ROS的产生有关。
Cardiac remodeling is a pathological condition and ultimately progresses into heart failure. Although the initial remodeling seems to be adaptive and shows beneficial effects on maintaining the heart function in a short term, persistent remodeling may contribute to functional decompensation. Recently, it has been shown that the dysfunction of capsaicin-sensitive sensory nerves and the expression abnormality of microRNA-1, microRNA-133a and connective tissue growth factor (CTGF) may be involved in cardiac remodeling. Deletion of transient receptor potential vanilloid (TRPV1, also named capsaicin receptor, VR1) could exacerbate cardiac remodeling after myocardial infarction, however, stimulating the release of neurotransmitter of sensory nerves by activating VR1 could improve the cardiac function. These reports suggested that cardiac remodeling under pathological conditions might be related to the dysfunction of sensory nerve. Rutaecarpine (Rut) is a major quinazolinocarboline alkaloid isolated from Chinese herbal drug Wu-Chu-Yu, which exerts cardiovascular protective effects by stimulating the synthesis and release of calcitonin gene-related peptide (CGRP), the principal neurotransmitter of sensory nerves, by activation of VR1. Since the dysfunction of sensory nerve was involved in cardiac remodeling, the present study was designed to evaluate the role of CGRP in isoprenaline (Iso)-induced cardiac remodeling and the underlying mechanisms. The effects of Rut on cardiac remodeling and the underlying mechanisms were also explored.
     METHODS
     Animal experiments
     Cardiac remodeling was induced by administration of isoprenaline (5 mg/kg, s.c.) for 10 days, different concentrations of rutaecarpine (10 or 40mg/kg, i.g.) were co-administrated with isoprenaline. At the end of the drugs treatment, the cardiac morphology changes were measured by echocardiogram; the hearts were harvested, and the heart weight (HW), left ventrucular weight (LVW) were recorded and normalized for body weight (BW); the morphology and the size of cardiac cells were evaluated by hematoxylin-eosin staining; the apoptosis of cardiomyocytes was analyzed by TUNEL staining; the collagen deposition was evaluated by Masson's trichrome staining; the plasma level of CGRP were measured by RIA assay; the expression of microRNA-1 and microRNA-133a was determined by real time PCR; the mRNA expression of atrial natriuretic peptide (ANP, a hypertrophy marker) and brain natriuretic peptide (BNP, a hypertrophy marker), Bax and Bcl-2, collagen typeⅠ,Ⅲand CTGF, and CGRP (αandβisoforms) were examined by RT-PCR.
     Cell experiments
     The cardiomyocytes and cardiac fibroblasts were pretreated with CGRP at different doses for 1 h before incubating with isoprenaline (Iso) for 48 h. At the end of the drugs treatment, the cell viability was measured by MTT; the rate of apoptotic cells was examined by hoechst staining and flow cytometry; the mRNA expression of Bax, Bcl-2, collagen typeⅠandⅢ, and connective tissue growth factor (CTGF) was detected by RT-PCR; the expression of microRNA-1 and microRNA-133a was measured by real time PCR; The intracellular reactive oxygen species (ROS) production was examined by DCFH-DA flurescent probe.
     RESULTS
     Animal experiments
     In comparison with control group, isoprenaline (Iso) treatment significantly increased the left ventricular end-systolic diameter (LVEDs), left ventricular end-systolic posterior wall thickness (LVPWTs) and left ventricular end-diastolic posterior wall thickness (LVPWTd); the ratio of HW/BW and LVW/BW, caridac myocyte cross-sectional area (CSA) and hypertrophic gene expression were also dramatically increased. Administration of Iso significantly increased the percentage of TUNEL-positive cells and Bax mRNA expression, while the Bcl-2 mRNA expression was markedly decreased. Iso treatment could also remarkably increased myocardial collagen deposition and collagen typeⅠ,Ⅲand CTGF mRNA expression. In Iso-treated rats, the expression of microRNA-1 was significantly up-regulated, while the microRNA-133a was markedly down-regulated. In the this study, we also found that the CGRP mRNA expression in dorsal root ganglion and concentration in plasma were significantly decreased. Co-administration of rutaecarpine (Rut) with Iso could remarkably stimulate the synthesis and release of CGRP, and in turn attenuates the cardiac remodeling. However, the beneficial effect of Rut was inhibited by pretreatment of capsaicin, which selectively depletes endogenous CGRP.
     Cell experiments
     Isoprenaline (Iso) treatment significantly decreased the cell viabilty, increased the rate of apoptotic cells in H9c2 cardiomyocytes; the mRNA expression of Bax, a proapoptotic gene, was also remarkably up-regulated after Iso treatment; while the expression of Bcl-2, an antiapoptotic gene, was no significant change. Iso treatment could also increase the expression of microRNA-1, and decrease the expression of microRNA-133a. In addition, the intracellular reactive oxygen species (ROS) level was significantly increased in Iso-treated group. Pretreatment of calcitonin gene-related peptide (CGRP) could markedly decrease the generation of intracellular ROS, correct the abnormal expression of microRNA-1 and microRNA-133a induced by Iso, and in turn decreased the rate of apoptotic cells. However, the protective effect of CGRP was abolished by pretreatment of CGRP receptor antagonist CGRP8-37.
     In cardiac fibroblasts, Iso treatment markedly increased the proliferation activity; the mRNA expression of collagen typeⅠandⅢand connective tissue growth factor (CTGF) was also significantly up-regulated; In addition, the intracellular reactive oxygen species (ROS) level was significantly increased in Iso-treated group. Pretreatment of CGRP could markedly inhibt these detrimental effects induced by Iso, the beneficial effect of CGRP was abolished by CGRP8-37.
     CONCLUSIONS
     1.The dysfunction of capsaicin-sensitive sensory nerves and the abnormal expression of microRNA-1, microRNA-133a and CTGF may be involved in Iso-induced cardiac remodeling.
     2. Rut could inhibit Iso-induced cardiac remodeling, which was related to regulating the expression of microRNA-1, microRNA-133a and CTGF through stimulating the synthesis and release of CGRP.
     3.The effect of CGRP on the expression of microRNA-1, microRNA-133a and CTGF may be associated with inhibiting the generation of intracellular ROS.
引文
[1]Krishnamurthy P, Subramanian V, Singh M, Singh K. Betal integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension.2007,49:865-872.
    [2]Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF. Electrical and structural remodeling of the failing ventricle. Pharmacol Ther.2001,92: 213-230.
    [3]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation.1990,81: 1161-1172.
    [4]Yamada T, Nagata K, Cheng XW, et al. Long-term administration of nifedipine attenuates cardiac remodeling and diastolic heart failure in hypertensive rats. Eur J Pharmacol.2009,615(1-3):163-170.
    [5]Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, et al. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res.2009,81(3):429-438.
    [6]Gao Z, Barth AS, DiSilvestre D, et al. Key pathways associated with heart failure development revealed by gene networks correlated with cardiac remodeling. Physiol Genomics.2008,35(3):222-230.
    [7]Westcott KV, Huang BS, Leenen FH. Brain renin-angiotensin-aldosterone system and ventricular remodeling after myocardial infarct:a review. Can J Physiol Pharmacol.2009,87(12):979-988.
    [8]Bhattacharya SK, Gandhi MS, Kamalov G, et al. Myocardial remodeling in low-renin hypertension:molecular pathways to cellular injury in relative aldosteronism. Curr Hypertens Rep.2009,11(6):412-420.
    [9]Levick SP, Murray DB, Janicki JS, et al. Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension.2010,55(2):270-276.
    [10]Huang BS, Leenen FH. The brain renin-angiotensin-aldosterone system:a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr Heart Fail Rep.2009,6(2):81-88.
    [11]Maekawa Y, Mizue N, Chan A, et al. Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling:a regulator of bone marrow-derived dendritic cells. Circulation.2009,120(14):1401-1414.
    [12]Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension.2007,49:241-248.
    [13]Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart.2007,93:903-907.
    [14]Araujo A, Enzveiler A, Schenkel P, et al. Oxidative stress activates insulin-like growth factor I receptor protein exptession, mediating cardiac hypertrophy induced by thyroxine. Mol Cell Biochem.2007,303:89-95.
    [15]Aikawa R, Nagai T, Tanaka M, et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun.2001, 289(4):901-907.
    [16]Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997,275:90-94.
    [17]Szabo-Fresnais N, Lefebvre F, Germain A, et al. A New Regulation of IL-6 Production in Adult Cardiomyocytes by beta-Adrenergic and IL-1beta Receptors and Induction of Cellular Hypertrophy by IL-6 Trans-Signalling. Cell Signal.2010, [Epub ahead of print]
    [18]Kewalramani G, Puthanveetil P, Wang F, et al. AMP-activated protein kinase confers protection against TNF-{alpha}-induced cardiac cell death. Cardiovasc Res.2009,84(1):42-53.
    [19]Feng W, Li W, Liu W, et al. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol.2009,87(3):212-218.
    [20]Daniels A, van Bilsen M, Goldschmeding R, et al. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf).2009,195(3):321-338.
    [21]Dean RG, Balding LC, Candido R, et al. Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem.2005, 53(10):1245-1256.
    [22]Lang C, Sauter M, Szalay G, et al. Connective tissue growth factor:a crucial cytokine-mediating cardiac fibrosis in ongoing enterovirus myocarditis. J Mol Med.2008,86(1):49-60.
    [23]Tung JN, Lang YD, Wang LF, et al. Paraquat increases connective tissue growth factor and collagen expression via angiotensin signaling pathway in human lung fibroblasts. Toxicol In Vitro.2010,24(3):803-808.
    [24]Chen MM, Lam A, Abraham JA, et al. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes:a potential role in heart fibrosis. J Mol Cell Cardiol.2000,32(10):1805-1819.
    [25]Martin J, Denver R, Bailey M, et al. In vitro inhibitory effects of atorvastatin on cardiac fibroblasts:implications for ventricular remodelling. Clin Exp Pharmacol Physiol.2005,32(9):697-701.
    [26]Park SK, Kim J, Seomun Y, et al. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun.2001,284(4): 966-971.
    [27]Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor:implications for a role of microRNAs in myocardial matrix remodeling. Circ Res.2009,104(2):170-178.
    [28]Yang L, Zou XJ, Gao X, et al. Sodium tanshinone ⅡA sulfonate attenuates angiotensin Ⅱ-induced collagen type Ⅰ expression in cardiac fibroblasts in vitro. Exp Mol Med.2009,41(7):508-516.
    [29]Eckstein F. Small non-coding RNAs as magic bullets. Trends Biochem Sci. 2005,30(8):445-452.
    [30]Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell.2005,120(1): 21-24.
    [31]Wagner KD, Wagner N, Ghanbarian H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell.2008,14(6):962-969.
    [32]YH Tang, JY Zheng, Y Sun, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J.2009,50:377-387.
    [33]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med.2007,13(5):613-618.
    [34]CQ Xu, YJ Lu, ZW Pan, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci.2007,120(Pt 17):3045-3052.
    [35]Zvara A, Bencsik P, Fodor G, Csont T, Hackler L, Jr., Dux M et al. Capsaicin-sensitive sensory neurons regulate myocardial function and gene expression pattern of rat hearts:a DNA microarray study. FASEB J.2006,20: 160-162.
    [36]Hu CP, Li NS, Xiao L, Deng HW, Li YJ. Involvement of capsaicin-sensitive sensory nerves in cardioprotection of rutaecarpine in rats. Regul Pept.2003,114: 45-49.
    [37]Katona M, Boros K, Santha P, et al. Selective sensory denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn-Schmie-deberg's Arch Pharmacol.2004,370:436-443.
    [38]Franco-Cereceda A. Calcitonin gene-related peptide and tachykinins in relation to local sensory control of cardiac contractility and coronary vascular tone. Acta Physiol Scand.1988,133(Suppl 596):1-63.
    [39]Gomes RN, Castro-Faria-Neto HC, Bozza PT, et al. Calcitonin gene-related peptide inhibits local acute inflammation and protects mice against lethal endotoxemia. Shock.2005,24(6):590-594.
    [40]Feng G, Xu X, Wang Q, et al. The protective effects of calcitonin gene-related peptide on gastric mucosa injury after cerebral ischemia reperfusion in rats. Regul Pept.2010,160(1-3):121-128.
    [41]Brain SD, Williams TJ, Tippin JR, Morris HR, Macintyre I. Calitonin gene-related peptide is potent vasodilator. Nature.1985,313:54-56.
    [42]Li J, Zhao H, Supowit SC, DiPette DJ, Wang DH. Activation of the rennin-angiotensin system in alpha-calcitonin generelated peptide/calcitonin gene knockout mice. J Hypertens.2004,22:1345-1349.
    [43]Dai Li, Jun Peng, Hong-Ya Xin, et al. Calcitonin gene-related peptide-mediated antihypertensive and anti-platelet effects by rutaecarpine in spontaneously hypertensive rats. PEPTIDES.2008,29:1781-1788.
    [44]Portaluppi F, Trasforini G, Margutti A, et al. Circadian rhythm of calcitonin gene-related peptide in uncomplicated essential hypertension. J Hypertens.1992, 10:1227-1234.
    [45]Tjen-A-Looi S, Kraiczi H, Ekman R, et al. Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul Pept.1998,74(1):1-10.
    [46]Huang W, Rubinstein J, Prieto AR, Thang LV, Wang DH. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction. Hypertension.2009,53:243-250.
    [47]Sueur S, Pesant M, Rochette L, Connat JL. Antiapoptotic effect of calcitonin gene-related peptide on oxidative stress-induced injury in H9c2 cardiomyocytes via the RAMP1/CRLR complex. J Mol Cell Cardiol.2005,39:955-963.
    [48]Simone NL, Soule BP, Ly D, et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One.2009,4(7):e6377.
    [49]Lukiw WJ, Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 2007,101(9):1265-1269.
    [50]Song SW, Guo KJ, Shi R, et al. Pretreatment with calcitonin gene-related peptide attenuates hepatic ischemia/reperfusion injury in rats. Transplant Proc. 2009,41(5):1493-1498.
    [51]She F, Sun W, Mao JM, et al. Calcitonin gene-related peptide gene therapy suppresses reactive oxygen species in the pancreas and prevents mice from autoimmune diabetes. Acta Physiologica Sinica.2003,55(6):625-632.
    [52]Ding JS, Gao R, Li D, et al. Solid dispersion of rutaecarpine improved its antihypertensive effect in spontaneously hypertensive rats. Biopharm Drug Dispos.2008,29(9):495-500.
    [53]Liu YZ, Zhou Y, Li D, et al. Reduction of asymmetric dimethylarginine in the protective effects of rutaecarpine on gastric mucosal injury. Can J Physiol Pharmacol.2008,86(10):675-681.
    [54]Qin XP, Zeng SY, Li D, et al. Calcitonin gene-related Peptide-mediated depressor effect and inhibiting vascular hypertrophy of rutaecarpine in renovascular hypertensive rats. J Cardiovasc Pharmacol.2007,50(6):654-659.
    [55]Li D, Zhang XJ, Chen L, et al. Calcitonin gene-related peptide mediates the cardioprotective effects of rutaecarpine against ischaemia-reperfusion injury in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol.2009,36(7): 662-667.
    [56]Zhang GX, Kimura S, Nishiyama A, et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res.2005,65(1):230-238.
    [57]Srivastava S, Chandrasekar B, Gu Y, et al. Downregulation of CuZn-superoxide dismutase contributes to beta-adrenergic receptor-mediated oxidative stress in the heart. Cardiovasc Res.2007,74(3):445-455.
    [58]Lips DJ, de Windt LJ, van Kraaij DJ, et al. Molecular determinants of myocardial hypertrophy and failure:alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J.2003,24:883-896.
    [59]Frey N, Barrientos T, Shelton JM, et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med.2004,10:1336-1343.
    [60]Simko F. Physiologic and pathologic myocardial hypertrophy-physiologic and pathologic regression of hypertrophy? Med Hypotheses.2002,58(1):11-14.
    [61]Bivalacqua TJ, Hyman AL, Kadowitz PJ, Paolocci N, Kass DA, Champion HC. Role of calcitonin gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary hypertension in the mouse. Influence of gene transfer in vivo. Regul Pept.2002,108:129-133.
    [62]FreelandK,L iuY Z,L atchmanD S.Distinct signalling pathways mediate the cAMP response element(CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor. BiochemJ.2000,345pt:233-238.
    [63]Garry MG, Walton LP, Davis MA. Capsaicin-evoked release of immuoreactive calctionin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res.2000,861(2):208-219.
    [64]Tang Y, Han C, Fiacus RR, et al. Increase of calcitonin gene-related peptide (CGRP) release and mRNA levels in endotoxic rats. Shock.1997,7(3): 225-229.
    [65]Bracci-Laudiero L, Aloe L, Caroleo MC, et al. Endogenous NGF regulates CGRP expression in human monocytes and affects HLA-DR, CD86 expression and IL-10 production.Blood.2005,106(10):3507-3514.
    [66]Mozsik G, Szolcsanyi J, Racz I. Gastroprotection induced by capsaicin in healthy human subjects. World J Gastroenterol.2005,11:5180-5184.
    [67]Lee SH, Son JK, Jeong BS, et al. Progress in the studies on rutaecarpine. Molecules.2008,13:272-300.
    [68]Hu CP, Xiao L, Deng HW, et al. The cardioprotection of rutaecarpine is mediated by endogenous calcitonin related-gene peptide through activation of vanilloid receptors in guinea-pig hearts. Planta Med.2002,68:705-709.
    [69]Chen Z, Hu G, Li D, Chen J, Li Y, Zhou H et al. Synthesis and vasodilator effects of rutaecarpine analogues which might be involved transient receptor potential vanilloid subfamily, member 1 (TRPV1). Bioorg Med Chem.2009,17: 2351-2359.
    [70]Grace GC, Dusting GJ, Kemp BE, et al. Endothelium and the vasodilator action of rat calcitonin gene-related peptide (CGRP). Br J Pharmacol.1987,91: 729-733.
    [71]Franco-Cereceda A, Rudehill A, Lundberg JM. Calcitonin gene-related peptide but not substance P mimics capsaicin-induced coronary vasodilation in the pig. Eur J Pharmacol.1987,142:235-243.
    [72]Han SP, Naes L, Westfall TC. Calcitonin gene-related peptide is the endogenous mediator of nonadrenergic-noncholinergic vasodilation in rat mesentery. J Pharmacol Exp Ther.1990,255:423-428.
    [73]Kroeger I, Erhardt A, Abt D, et al. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol.2009, 51(2):342-353.
    [74]Yi HH, Rang WQ, Deng PY, et al. Protective effects of rutaecarpine in cardiac anaphylactic injury is mediated by CGRP. Planta Med.2004,70(12): 1135-1139.
    [75]Chai W, Mehrotra S, Jan Danser AH, Schoemaker RG. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. Eur J Pharmacol.2006,531:246-253.
    [76]Li D, Li NS, Chen QQ, Guo R, Xu PS, Deng HW et al. Calcitonin gene-related peptide-mediated cardioprotection of postconditioning in isolated rat hearts. Regul Pept.2008,147:4-8.
    [77]Li YJ, Song QJ, Xiao J. Calcitonin gene-related peptide:an endogenous mediator of preconditioning. Acta Pharmacol Sin.2000,21:865-869.
    [78]Heymann MA. Control of the pulmonary circulation in the fetus and during the transitional period to air breathing. Eur J Obstet Gynecol Reprod Biol.1999,84: 127-132.
    [79]Kato K, Yin H, Agata J, et al. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J Physiol Heart Circ Physiol.2003,285:H1506-1514.
    [80]Huang R, Karve A, Shah I, et al. Deletion of the mouse alpha-calcitonin gene-related peptide gene increases the vulnerability of the heart to ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol.2008,294: H1291-1297.
    [81]Masano T, Kawashima S, Toh R, et al. Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats:the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Circ J.2008,72(9):1512-1519.
    [82]Takimoto E, Champion HC, Li M, et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest.2005,115(5):1221-1231.
    [83]Losi MA, Memoli B, Contaldi C, et al. Myocardial fibrosis and diastolic dysfunction in patients on chronic haemodialysis. Nephrol Dial Transplant. 2010, [Epub ahead of print]
    [84]Adam O, Lavall D, Theobald K, et al. Racl-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol.2010,55(5):469-480.
    [85]Daniels A, van Bilsen M, Goldschmeding R, et al. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf).2009,195(3):321-338.
    [86]Koitabashi N, Arai M, Kogure S, et al. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension.2007,49(5):1120-1127.
    [1]Eckstein F. Small non-coding RNAs as magic bullets. Trends Biochem Sci. 2005,30(8):445-452.
    [2]Lee RC, Feinbaum RL, Ambros V, et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993, 75(5):843-854.
    [3]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000,403(6772): 901-906.
    [4]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNA. Science.2001,294:853-858.
    [5]李海明.miRNA-一种新的调控基因表达的小分子RNA.中国癌症杂志.2006,16(8):675-678.
    [6]王菲菲,刘新光,梁念慈.微小RNA:一类新的调控性非编码RNA.国外医学临床生物化学与检验学分册.2005,26(11):788-791.
    [7]Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science.2001,294: 858-862.
    [8]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science.2001,294:862-864.
    [9]Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO.2002,21(17):4663-4670.
    [10]Lee Y, Kim M, Han J, Yeom KH, et al. MicroRNA genes are transcribed by RNApolymerase Ⅱ. EMBO.2004,23(20):4051-4060.
    [11]Kim VN. MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Biol.2004,14(4):156-159.
    [12]Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science.2004,303 (5654):95-98.
    [13]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004,116(2):281-297.
    [14]Garzon R, Fabbri M, Cimmino A, et al. MicroRNA expression and function in cancer. Trends Mol Med.2006,12(12):580-587.
    [15]Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev.2003, (17):991-1008.
    [16]Kurihara Y, Watanabe Y. Arabidop sis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA.2004,101(34): 12753-12758.
    [17]Houbaviy HB,Murray MF,Sharp PA. Embryonic stem cell specific microRNAs. Dev Cell.2003,5(2):351-358.
    [18]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science.2004, (303):83-86.
    [19]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005,436(7048):214-220.
    [20]Zhao Y, Ransom JF, Li A, Vedantham V, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell.2007,129 (2):303-317.
    [21]Kwon C, Han Z, Olson EN, Srivastava D, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA.2005,102(52):18986-18991.
    [22]Chen JF,Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletalmuscle proliferation and differentiation. Nat Genet. 2006,38 (2):228-233.
    [23]Curtis A, Heath C, Rudolf W. MIR-206 regulates connexin43 exptession during skeletal muscle development. Nucleic Acids Res.2006,34:5863-5871.
    [24]Kim HK, Lee YS, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle difrerentiation. J Cell Biol.2006,174:677-687.
    [25]Sun Q, Zhang Y, Yang G, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res.2008, 36(8):2690-2699.
    [26]Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007,13(4):486-491.
    [27]Xiao JN, Luo XB, Lin HX, et al. MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem.2007,282(17):12363-12367.
    [28]潘振伟,吕延杰,初文峰等.缺血性心律失常相关微小RNA在大树心脏的 表达变化.哈尔滨医科大学学报.2007,41(2):95-97.
    [29]Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics.2007,31(3):367-373.
    [30]Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell.2008,15(2): 261-271.
    [31]van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A.2008,105(35):13027-13032.
    [32]Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett.2008,582(30):4137-4142.
    [33]SM Dong, YH Cheng, J Yang, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. ASBMB.2009, Epub ahead of print
    [34]PK Rao, RM Kumar, M Farkhondeh, et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA.2006, 103:8721-8726.
    [35]ZX Shan, QX Lin, YH Fu, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun.2009,381: 597-601.
    [36]YJ Lu, Y Zhang, HL Shan, et al. MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction:a new mechanis for ischaemic cardioprotection. Cardiovasc Res.2009,84(3):434-441.
    [37]Lips DJ, de Windt LJ, van Kraaij DJ, et al. Molecular determinants of myocardial hypertrophy and failure:alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J.2003,24:883-896.
    [38]Martinez RM. Cardiac remodeling and inflammation. Arch Cardiol Mex.2006, 76 Suppl 4:S58-66.
    [39]Armoundas AA, Wu R, Juang G, et al. Electrical and structural remodeling of the failing entricle. Pharmacol Ther.2001,92(2-3):213-230.
    [40]Soeki T, Kishimoto I, Schwenke DO, et al. Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction. Am J Physiol Heart Circ Physiol.2008,294(1): H426-432.
    [41]Shah KB, Duda MK, O'Shea KM, et al. The Cardioprotective Effects of Fish Oil During Pressure Overload Are Blocked by High Fat Intake. Role Of Cardiac Phospholipid Remodeling. Hypertension.2009,54(3):605-611.
    [42]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation.1990,81: 1161-1172.
    [43]Frey N, Barrientos T, Shelton JM, et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med.2004,10:1336-1343.
    [44]Simko F. Physiologic and pathologic myocardial hypertrophy-physiologic and pathologic regression of hypertrophy? Med Hypotheses.2002,58(1):11-14.
    [45]van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA.2006,103(48):18255-18260.
    [46]Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypert rophy. Circ Res.2007,100 (3):416-424.
    [47]Cheng Y, J i R, Yue J, et al. MicroRNAs are aberrantly exp ressed in hypertrophic heart:do they p lay a role in cardiac hypertrophy? Am J Pathol. 2007,170(6):1831-1840.
    [48]Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med.2007,13(5):613-618.
    [49]Van Rooij E, Sutherland LB, Qi XX, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science.2007,316:575-579.
    [50]YH Tang, JY Zheng, Y Sun, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J.2009,50:377-387.
    [51]XY Yu, YH Song, YJ Geng, et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun.2008,376(3): 548-552.
    [52]CQ Xu, YJ Lu, ZW Pan, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci.2007,120(Pt 17):3045-3052.
    [53]YH Cheng, XJ Liu, S Zhang, et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via tis target gene PDCD4. J Mol Cell Cardiol.2009,47(1):5-14.
    [54]Thum T, Gross C, Fiedler J, et al. MicrorNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature.2008, 456(7224):980-984.
    [55]Duisters RF, Tijsen AJ, Schroen B, et al. mir-133 and mir-30 regulate connective tissue growth factor:implications for a role of microrNAs in myocardial matrix remodeling. Circ Res.2009,104(2):170-178.
    [56]Naga Prasad SV, Duan ZH, Gupta MK, et al. Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem.2009,284(40):27487-27499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700