京海黄鸡分子标记与生长及屠宰性状关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以优质肉鸡品种京海黄鸡为试验材料,分析该品种早期生长规律及与早期生长相关的基因在表达上的差异,系统研究E-FABP和Ghrelin基因单核苷酸多态性,以及微卫星位点的遗传多样性,并与该品种的生长及屠宰性状进行联合分析,为京海黄鸡早期生长分子标记辅助选择提供有效的遗传标记。试验测定了京海黄鸡早期生长、屠宰性状,利用3个生长曲线模型、典型性状相关及主成分分析研究了京海黄鸡早期生长规律;利用DDRT-PCR技术分析了3个不同生长阶段京海黄鸡大脑和小肠组织的差异表达情况;利用PCR-SSCP技术研究了E-FABP和Ghrelin基因不同区段的SNPs;采用14对微卫星位点对京海黄鸡的遗传特性进行了探索;并分析了所得SNPs及微卫星多态性与京海黄鸡早期生长及屠宰性状之间的关系。
     研究结果如下:
     (1)京海黄鸡16周龄公鸡平均体重为1849.57 g,母鸡平均体重为1444.49 g。Logistic、Gompert、Bertalanffy生长曲线模型均能很好的拟合京海黄鸡生长过程,拟合度(R2)均超过了99%,但综合分析表明:Bertalanffy曲线模型最适合。京海黄鸡典型相关分析结果表明:体重性状与体尺性状间相关显著主要是由12周龄及16周龄体重与胫长引起的;体重性状与屠宰性状间相关显著主要反映了12周龄及16周龄体重与胴体重相关密切;体尺性状与屠宰性状间相关显著主要反映出体斜长及胫长与半净膛重相关密切。主成分分析结果表明:前5个主成分能尽可能多的反映屠宰性状原始数据所提供的信息。
     (2)初步认为GTPase激活蛋白作为一种激发因子,在雏鸡的生长发育过程中具有重要作用。
     (3)E-FABP基因引物P1(P99)在京海黄鸡中检测到AA、CC、AB、AC、BC 5种基因型,BB型缺失,其中A、C等位基因频率均为0.45,B等位基因频率为0.10;引物P95(P98)检测到DD、DE、EE 3种基因型,其中D等位基因频率为0.61,E等位基因频率为0.39。卡方检验表明在这2个基因位点上基因频率和基因型频率都达到了Hardy-Weinberg平衡状态。引物P74检测到Ⅰ、Ⅱ、Ⅲ3种基因型,基因型频率分别为0.71、0.09、0.21。首次在京海黄鸡E-FABP基因研究中检测到6个SNP位点,测序结果表明:引物P1(P99)在第3内含子4269-4288bp处存在“CTTAAATTTTCCTTACATTC”20个碱基缺失;引物P95(P98)在第2内含子4015bp处发生了碱基A→G突变;引物P74在第1内含子2187bp处发生了碱基G→A突变,2268bp处发生了碱基T→C突变,2273bp处发生了碱基T→A突变,2342bp处发生了碱基T→C突变。
     (4)Ghrelin基因引物P1在京海黄鸡中检测到AA、BB、CC、AB、BC、AC 6种基因型,A、B、C频率分别为0.36,0.48,0.16;引物P3检测到DD、EE、DE 3种基因型,D、E基因频率分别为:0.81,0.19;这2个基因多态位点都处于Hardy-Weinberg平衡状态。而引物P5只检测到FF、FG 2种基因型,GG型缺失,F、G基因频率分别为0.96,0.04。测序结果发现引物P1扩增产物相对于AA型而言,BB型在DNA序列73bp处存在“TC”2bp缺失,CC型在79bp处存在“CTAACCTG”8bp缺失;引物P3在546bp处发生了碱基T→A突变;引物P5在1274bp处发生了碱基T→C突变。
     (5)E-FABP及Ghrelin基因的SNPs多态位点对京海黄鸡的生长及屠宰性状,尤其对体重及屠宰性状有重要影响,可以尝试将其作为相关性状的分子标记用于鸡的分子标记辅助选择。
     (6)京海黄鸡试验群各微卫星位点的平均杂合度为0.32;14对微卫星位点的平均多态信息含量为0.59;所有微卫星位点的D值都小于0,说明微卫星位点杂合子少于理论值。京海黄鸡历经7世代选择后其遗传多样性比较丰富,存在继续选择空间。
     (7)ADL136、ADL185、MCW0058及MCW0328位点对京海黄鸡早期体重、体尺及屠宰性状、MCW120位点对屠宰性状的影响均达到显著或极显著水平,可尝试运用这5个位点对京海黄鸡进行早期选择、分子标记辅助选择。
In order to give effective molecular markers for the marker-assisted selection (MAS) on early production performance of chickens, the systematic investigation was conducted on Jinghai yellow chicken breed, including the early growth rule and different expression of correlated gene, SNP polymorphism of E-FABP and Ghrelin gene, population genetic diversity, and the relationship between molecular markers and correlation characteristics. The early growth rule was studied with three curve models, canonical correlation analysis and principal component analysis, and the gene differential expression in the brain and small intestine tissues of three growth periods was detected with DDRT-PCR method, the polymorphism and relationship between polymorphism and growth and carcass characteristics were analyzed by PCR-SSCP(PCR-RFLP) and microsatellite marker techniques.
     The results were as follows:
     (1) The average weight of male and female was 1849.57 g and 1444.49 g respectively at the age of 16 weeks. Logistic, Gompertz and Bertalanffy model can fit the growth very well,and the values of R2 were all exceed 99%, but integrated analysis showed that the Bertalanffy model was the best to this breed. Results by canonical correlation analysis showed that the significant correlation between weight at the age of 16 and 12 weeks and shank length, between weight at the age of 16 and 12 weeks and dressing weight, between body length, shank length and semi-eviserated weight reflected the essential relationship of three characteristics. Results by principal component analysis indicted that the first 5 principal components reflected the information of the carcass characteristic from the original data as much as possible.
     (2) The GTPase activating protein played an important role during the growth and development period of chickling as a type of activating factor.
     (3) Five genotypes of AA, CC, AB, AC and BC with primer P1 (P99) of E-FABP genes were detected, genotype BB was not found, the allele frequency of A, B and C allele were 0.45, 0.10 and 0.45 respectively. With primer P95 (P98), results showed three genotypes of DD, DE and EE, and the allele frequency of D and E allele was 0.61 and 0.39 respectively. The gene frequencies and genotype frequencies both reached the Hardy-Weinberg equilibrium at those two loci indicated by theχ2 test. With primer P74, three genotypes ofⅠ,ⅡandⅢwere detected, and the allele frequency was 0.71, 0.09, and 0.21 respectively. Through sequencing alignment, results showed that there was“CTTAAATTTTCCTTACATTC”20bp absence on the site of 4269-4288bp with primer P1 (P99) of E-FABP gene, A conversion to G on the site of 4015bp with primer P95 (P98), and G conversion to A on the site of 2187bp, T changed to C on the site of 2268bp and 2342bp respectively, T changed to A on the site of 2273bp with primer P74.
     (4) Six genotypes of AA, BB, CC, AB, BC and AC were detected with primer P1 of Ghrelin gene, the allele frequency of A, B and C allele was 0.36, 0.48 and 0.16 respectively; three genotypes of DD, EE and DE were detected with primer P3, the allele frequency of D and E allele was 0.81, 0.19 respectively. The gene frequencies and genotype frequencies were both fit Hardy-Weinberg equilibrium at those two loci. Two genotypes of FF and FG were found with primer P5, and GG genotype was absent. Allele frequency of F and G allele was 0.96 and 0.04 respectively. Through sequencing alignment, for BB genotype, there was“TC”2bp absence on the site of 73bp relative to AA genotype, and for CC genotype,“CTAACCTG”8bp absence on the site of 79bp with primer P1; T changed to A was detected on the site of 546bp with primer P3, and T changed to C on the site of 1274bp with primer P5.
     (5) Those SNPs of E-FABP and Ghrelin gene had important effect on the growth and carcass characteristics in Jinghai yellow chicken breed, and could be used to MAS as molecular markers of correlation characteristics.
     (6) For Jinghai yellow chicken breed, the average of H (Heterozygosity) and PIC (Polymorphism Information Content) were 0.32 and 0.59 respectively, and the values of D were below 0 among all the loci, which showed that heterozygosity was under theory value. The genetic diversity was comparatively abundant and there was much space for selection though the breed had been bred for 7 generations.
     (7) Those loci of ADL136, ADL185, MCW0058, MCW0328 and MCW120 had significant or highly significant effect on the growth and carcass characteristics, which would be used for early selection and MAS in Jinghai yellow chicken breed.
引文
1. 徐云碧. 分子标记在数量基因定位中的应用. 遗传,1992,14(2):45~48.
    2. 龚炎长,彭中镇. SNP 及其检测、分型的方法与原理. 第七次全国畜禽遗传标记研讨会论文集,2000, 13~19.
    3. Grodzicker T. Cold Spring Harbour Symp Quant Bio, 1974, 39: 493.
    4. Botstein D, White R, Skolnick, et al. Construction of genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 1980, (32): 314~331.
    5. Upholt WB, Dawid IB. Mapping of mitochondrial DNA of individual sheep and goats rapid evolution in the D loop region. Cell, 1977, 11: 571~583.
    6. Vilhlta M, Fernandez-Silva P, Beltran B, et al. Molecular characterization and cloning of sheep mitochondrial DNA. Current Genetics, 1992,21: 235~240.
    7. 黄海根. 牛的高变异小卫星和微卫星序列的克隆、结构分析及其应用. 中国农业大学博士学位论文,1995.
    8. Winter? AK, Fredholm M, Thomsen PD. Variable (dG-dT)n- (dC-dA)n sequences in the porcine genome. Genomics, 1992, 12: 281~288.
    9. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res, 1989, 17(16): 6463~6471.
    10. Primmer CR, Raudsepp T, Chowdhary BP, et al. Low frequency of microsatellites in the avian genome. Genome Res, 1997, 7(5): 471~482.
    11. Epplen JT, Maueler W, Santos EJ. On GATAGATA and other “junk” in the barren stretch of genomic desert.Cytogenet Cell Genet, 1998, 80(1-4): 75~82.
    12. Moran C. Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. J. Hered, 1993, 84(4): 274~280.
    13. Weber JL. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics, 1990, 7: 524~530.
    14. Groenen MA, Ruyter D, Verstege EJ. Development and mapping of ten porcine microsatellite markers. Animal Genetics, 1995, 26(2): 115~118.
    15. Moore SS, Sangeant LL, King TJ. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species.Genomics, 1991, 10: 654~670.
    16. Breen M, Downs P, Irvin Z, et al. Intrageneric amplification of horse microsatellite markers with emphasis on the Przewalski's horse (E. przewaskii). Animal Genetics, 1994, 25(6): 401~405.
    17. Levin I, Cheng HH, Baxter-Jones C, et al. Turkey microsatellite DNA loci amplified by chicken-specificprimers. Animal Gentics, 1995, 26: 107~110.
    18. Pang SWY, Ritland C, Carlson JE, et al. Japanese quail microsatellite loci amplified with chicken-specific primers. Animal Gentics, 1999, 30: 195~199.
    19. Reed KM, Mendoza KM, Beattie CW. Comparative analysis of microsatellite loci in chicken and turkey. Genome, 2000, 43: 796~802.
    20. Cheeg HH, Crittenden LB. Microsatellite markers for genetic mapping in the chicken. Poultry Science, 1994, 73(4): 539~546.
    21. Cheng HH, Levin I, Vallejo RL, et al. Development of a genetic map of the chicken with markers of high utility. Poultry Science, 1995, 74(11): 1855~1874.
    22. Crooijmans RP, Groen AF, van Kampen AJ, et al. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled bolld samples. Poultry Science, 1996b, 75(7): 904~909.
    23. Groenen MA, Crooijmans RP, Veenandaal A, et al. A comprehensive microsatellite linkage map of the chicken genome. Genomics, 1998, 49(2): 265~274.
    24. Groenen MA, Cheng HH, Bumstead N, et al. A consensus linkage map of the chicken genome. Genome Research, 2000, 10: 137~147.
    25. Schmid M, Nanda I, Guttenbach M, et al. First report on chicken genes and chromosomes . Cytogenet Cell Genet, 2000, 90: 169~218.
    26. Groenen MA, Crooijmans RP, Dijkhof RJ, et al. Extending the chicken-human comparative map by placing 15 genes on the chicken linkage map. Animal Genetics, 1999, 30(6): 418~422.
    27. Georges M, Nielsen S, Mackinnon M, et al. Using a complete microsatellite map and the grand-daughter design to locate polygenes controlling milk production. Proc. World 5th Congr. Genet. Appl Livest Prod, 1994, 2181~2185.
    28 .Ashwell MS, Rexroad CEJR, Miller RH, et al. Mapping economic trait loci for somatic cell score in Holstein cattle using microsatellite markers and selective genotyping. Animal Genetics, 1996, 27(4): 235~242.
    29. 吴信生,陈国宏,王得前等. 利用微卫星技术分析中国部分地方鸡种的遗传结构. 遗传学报,2004,31(1):43~50.
    30. Olowofeso O, Wang JY, Dai GJ. Measurement of genetic parameters within and between haimen chicken populations using microsatellite markers. International Journal of Poultry Science, 2005, 4 (3): 143~148.
    31. Olowofeso O, Wang JY, Shen JC, et al. Estimation of the cumulative power of discrimination in Haimen chicken populations with ten microsatellite markers. Asian-Aust J Anim Sci, 2005, 18.
    32. Usha AP. Evaluation of microsatellite markers for parentage verification. Animal Genetics, 1994, 25(Supplement, 2): 41.
    33. Yonash N, Cheng HH, Hillel J, et al. DNA microsatellite linked to quantitative trait loci affecting antibody response and surviral rate in meat-type chickens. Poultry Science, 2001, 80: 22~28.
    34. Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18(22): 6531~6535.
    35. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18(24): 7213~7218.
    36. 戴国俊. 双分子遗传标记与新扬州鸡早期生长关系的联合分析. 扬州大学博士学位论文,2004.
    37. Jeffreys AJ, Wilson V, Thein SL. Hypervariable minisatellite regions in human DNA. Nature, 1985, 314: 67~73.
    38. 罗怀容,施鹏,张亚平. 单核苷酸多态性的研究技术. 遗传,2001,5: 471~476.
    39. 杜玮南,孙红霞,方福德. 单核苷酸多态性的研究进展. 国外医学·遗传学分册,2000,4:392~394.
    40. Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and inkage-disequilibrum analysis are necessary for whole genome association studies in human. Nature Genetics, 2003, 33: 518~521.
    41. Mullikin JC, Hunt SE, Cole CG, et al. An SNP map of human chromosome 22. Nature, 2000, 407: 516~520.
    42. 蔡辉国,陈佩贞等. PCR-SSCP 分析实践. 生物化学与生物物理进展,1995,22(5):473~475.
    43. 戚豫, 黄丽英. DNA 单链构象多态性原理. 北京医科大学学报,1997,29(1):81~82.
    44. 欧阳建华, 黄建安. PCR-SSCP 技术的研究进展. 上海畜牧兽医通讯,2002,4: 10~11.
    45. Ravnik-Glavac M, Glavac D, Dean M. Sensitivity of single-strand conformation polymorphisms and hierodule method for mutation detection in the cystic fibrosis gene. Hum Mol Genet, 1994, 3: 801~807.
    46. Orita M, Twahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel eletrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci Usa, 1989, 86: 2766.
    47. Cotton RGH, Malcolm ADB. Mutation detection. Nucleic Acids Res, 2000, 25 (2): 347~353.
    48. Bunn CF, Lintott CJ, Scott RS, et al. Comparison of SSCP and DHPLC for the detection of LDLR mutations in a New Zealand Cohort. Hum Mutat Mar, 2002, 19 (3): 311.
    49. 沈靖,王润田,徐希平. 筛查未知 SNPs 的变性高效液相色谱 DHPLC 技术. 国外医学·遗传学分册,2001,6:341~344.
    50. 邓琳,赵晓荣,潘凯枫等. 用 DHPLC 法研究细胞周期蛋白 D1 的多态性与 NPC遗传易感性之间的关系. 生物化学与生物物理学报,2002,34(1):16~20.
    51. 杜红丽,聂庆华,罗庆斌等. 变性高效液相色谱在鸡未知 SNPs 筛选中的应用. 第十二次全国动物遗传育种学术会议论文集,2003,474~479.
    52. Xiao W, Oefner P. Denaturing high-performance liquid chromatography: a review. Hum Mutat, 2001, 17: 439~474.
    53. 许琪,吴冠芸. 毛细血管电泳与核酸分析. 国外医学与分子生物学分册,2000,22(2):120~123.
    54. Altshuler D, Pollara VJ, Cowles CR, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 2000, 407: 513~516.
    55. Orita M, Suzuki Y, Sekiva T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics, 1989, 5(4):874~879.
    56. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762): 656~660.
    57. Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Invest, 2000, 23(8): 493~495.
    58. Toshinai K, Mondal MS, Nakazato M, et al. Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun, 2001, 281(5): 1220~1225.
    59. Hosoda H, Kojima M, Matsuo H, et al. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun, 2000, 279(3): 909~913.
    60. Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology, 2000, 141(11): 4255~4261.
    61. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology, 2000, 141(11): 4325~4328.
    62. Wang G, Lee HM, Englander E, et al. Ghrelin-not just another stomach hormone. Regul Pept, 2002,105(2): 75~81.
    63. Muccioli G, Papotti M, Locatelli V, et al. Binding of 1251-labeled ghrelin to membranes from human hypothalamus and pituitary gland. J Endocrinol Invest, 2001, 24(3): RC7~9.
    64. Lee HM, Wang G, Englander EW, et al. Ghrelin, a now gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine and dietary manipulations. Endocrinology, 2002, 143(1): 185~190.
    65. Nishi Y, Hiejima H, Hosoda H, et al. Ingested mediun-chain fatty acids are directly utilized for the acyl-modification of ghrelin. Endocrinology, 2005.
    66. Bednarek MA, Feighner SD, Pong SS, et al.Structure-function studies on the now growth hormone-releasing peptide, ghrelin:minimal sequence of ghrelin necessaryfor activation of growth hormone secretagogue receptor 1a. J Med Chem, 2000, 43(23): 4370~4376.
    67. Adami GF, Cordera R, Marinari G, et al. Plasma ghrelin concentration in the short-term following biliopancreatic diversion. Obes Surg, 2003, 13(6): 889~892.
    68. Osawa H, Nakazato M, Date Y, et al. Impaired production of gastric ghrelin in chronic gastritis associated with Helicobacter pylori. J Clin Endocrinol Metab, 2005, 90(1): 10~16.
    69. Popovic V, Miljic D, Pekic S, et al. Low plasma ghrelin level in gastrectomized patients is accompanied with enhanced sensitivity to the ghrelin-induced growth hormone release. J Clin Endocrinol Metab, 2005.
    70. Hosoda H, Kojima M, Mizushima T, et al. Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem, 2003, 278(1): 64~70.
    71. Lai JK, Cheng CH, Ko WH, et al. Ghrelin system in pancreatic AR42J cells: its ligand stimulation evokes signaling through ghrelin receptors. Int J Biochem Cell Biol, 2005, 37(4): 887~900.
    72. Kageyama H, Funahashi H, Hirayama M, et al. Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept, 2005, 126(1-2): 67~71.
    73. Caminos JE, Gualillo O, Lago F, et al. The endogenous growth hormone secretagogue (ghrelin) is synthesized and secreted by chondrocytes. Endocrinology, 2005, 146(3): 1285~1292.
    74. Mondal MS, Date Y, Yamaguchi H, et al. Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept, 2005, 126(1-2): 55~59.
    75. Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab, 2002, 87(6): 2988.
    76. Tene-Sempere M, Barreiro ML,Gonzalez LC, et al.Novel expression and functional role of ghrelin in rat testis. Endocrinology, 2002, 143: 717~725.
    77. Andin S,Ozkan Y, et al. Ghrelin is present in human colostrum, transitional and mature milk. Clin Chem, 2005, 51(6): 997~1006.
    78.火焱,杨银凤. 脑肠肽 ghrelin 的研究进展. 中国兽医科学,2006,36(3):252~256.
    79. Feighner S, Tan C, Mckee K, et al. Receptor for motilin identified in the human gastrointestinal system. Science, 1999, 284: 2184~2188.
    80. Pombo M, Pombo CM, Garcia A, et al. Hormonal Control of growth hormone secretion. Hormone Research, 2001, 55: 11~16.
    81. Shuto YJ, Wada K, Parhar I, et al. Generation of polyclonal autiserum against the growth hormone secretagogus receptor(GHS-R) -Evidence that the GHS-R exist in the hypothalamus, pituitary and stomach of rats. Life Sciences, 2001, 168(9): 991~996.
    82. 徐春兰,汪以真. 生长激素释放肽 Ghrelin 的研究进展. 中国兽医学报,2006, 26(3):222~225.
    83. Wang G, Lee HM, Englander E, et al. Ghrelin-not just another stomach hormone. Regulatory Peptides, 2002, (105): 75~81.
    84. Camina JP, Carreira MC, Micic D, et al. Regulation of ghrelin secretion and action. Endocrine, 2003, 22(1): 5~12.
    85. Cassoni P, Ghe C, Marrocco T, et al. Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin in human prostate neoplasms and related cell lines. Eur J Endocrinol, 2004, 150(2): 173~184.
    86. Papotti M, Ghe C, Cassoni P, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab, 2000, 85(10): 3803~3807.
    87. Benso A, Broglio F, Marafetti L, et al. Ghrelin and synthetic growth hormone secretagogues are cardioactive molecules with identities and differences. Semin Vasc Med, 2004, 4(2): 107~114.
    88. Kamegai J, Tamura H, Shimizu T, et al. Insulin-like growth factor- Ⅰd own-regulates ghrelin receptor (growth hormone secretagogue receptor) expression in the rat pituitary. Regul Pept, 2005, 127(1-3): 203~206.
    89. Carraro G, Albertin G, Abudukerimu A, et al. Growth hormone secretagogue receptor subtypes 1a and 1b are expressed in the human adrenal cortex. Int J Mol Med, 2004, 13(2): 295~298.
    90. Mazzocchi G, Neri G, Rucinski M, et al. Ghrelin enhances the growth of cultured human adrenal zona glomerulosa cells by exerting MAPK-mediated proliferogenicand antipoptotic effects. Peptides, 2004, 25(8): 1269~1277.
    91. Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Molecular Brain Research, 1997, 48: 23~49.
    92. Arvate E, Divito L, Broglto F, et al. Preliminary evidence that ghrelin, the natural GH secretagogue-receptour ligand, strongly stimulates GH secretion in human. J. Endocrinol Invest, 2000, 23: 493~495.
    93. 高庆,张克英. Ghrelin: 一个重要脑肠肽生物学效应的研究进展. 中国畜牧杂志,2006,42(7):39~41.
    94. Julie Eisenstein MD, Andrew Greenberg MD. Ghrelin: Update. Nutr Rev, 2003, 61(3): 101~104.
    95. Date Y, Murakami N, Kojima M, et al. Central effects of a novel acylated peptide, Ghrelin, on growth hormone release in rats. Biochem Biophys Res Commun, 2000, 275: 477~480.
    96. Divito L, Broglio F, Benso A, et al. The GH-releasing effect of ghrelin, a nutural secretgogue, is only blunted by the infusion of exogenous somatostatin in human. Clin Endocrinol, 2002, 56: 643~648.
    97. Bowers CY. Unnatural growth hormone-releasing acylate peptide begets natural ghrelin. Clin Endocrinol Metab, 2001, 86: 1464~1469.
    98. 李双月,孙长凯. Ghrelin 研究及其临床意义. 国外医学、生理、病理科学与临床手册,2003,23(2):193~195.
    99.Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulate food intake and growth hormone secretion. Endocrinology, 2000, 141: 4324~4328.
    100.Fopovic V, Duntas LH. Brain somatic cross-taik: ghrelin, leptin and ultimate challengers of obesity. Nutr Neurosel, 2005, 8(1): 1~5.
    101.Wynne K, Stanley S, Bloom S. The gut and regulation of body weight. J Clin Endocrinol Metab, 2004, 89(3): 2576~2582.
    102.Furse M, Tachibana T, Ohgushi A, et al. Injection of ghrelin and growth hormone releasing factor inhibits food intake in neonatal chicks. Neurosci Lett, 2001, 301(2): 13~126.
    103.Volkoff LF, Canosa S, Unniappan JM, et al. Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol, 2005, 142(6): 3~19.
    104.Shintanim M, Ogawa Y, Ebihara K, et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that an tagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 pathway. Diabetes, 2002, 282(6): G948~952.
    105.Vettor R, Fabris R, Pagano C. Neuroendocrine Regulation of eating behavior. J. Endocrinol Invest, 2002, 25(4): 836~854.
    106.Neary NM, Goldstone AP, Bloom SR. A petice regulation from the gult to the hypothalamus. Clin Endocrinol, 2004, 60(4): 153~160.
    107.Masud AY, Tanak AT, Nomat AN. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun, 2000, 276(3): 905~908.
    108.Chang L, Du JB, Gao LR, et a1. Effect of ghrelin on septic shock in rats. Acta Pharmacol Sin, 2003, 24: 45~49.
    109.杜改梅,赵茹茜. Ghrelin 及其生物学功能. 畜牧与兽医,2005,37(7):55~57.
    110.Nagaya N, Miyataka K, Uematsu M. Hemodynamic renal and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab, 2001, 86(4): 5854~5859.
    111.Salfen BE, Carroll JA, Safranski TA. Effects of exogenous ghrelin on feed intake, weight gain, behavior and endocrine respondence in weaning pig. Journals of Anminal Science, 2004, 82(3): 1057~1966.
    112.Elin K, Monika S, Maria A. Acute psychological stress raises plasma ghrelin in the rat. Regulatory Peptites, 2006, 134(3): 114~117.
    113.Furuta M, Funabashi T, Kimura F. Intracerebroventricular administration of ghrelin rapidly suppressed pulsatile luteinizing hormone secretion in ovariectomized rats. Biochem Biophy Commun, 2001, 288: 780~785.
    114.Tsch?p M, Smiley DL, Heimen ML. Ghrelin induces adiposity in rodents. Nature, 2000, 7: 908~913.
    115.Volante M, Fulcheri E, Allia E, et al. Ghrelin expression in fetal, infant, and adult human lung. J Histochem Cytochem, 2002, 50(8): 1013~1021.
    116.Cassoni P, Papotti M, Ghe C, et al. Identification, characterization, and biological activity of receptors for natural (Ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. J Clin Endocrinol Metab, 2001, 86(4): 1738~1745.
    117.Bhatti SF, Vliegher SP, Mol JA, et al. Ghrelin-stimulation test in the diagnosis of canine pituitary dwarfism. Res Vet Sci, 2006, 81(1): 24~30.
    118.Hayashida T, Murakami K, Mogi K. Ghrelin in domestic animals distribution instomach and its possible role. Domest Anim Endocrinol, 2001, 21(1): 17~24.
    119.Grouselle MT, Bluet PA. Circulating but not CSF, ghrelin is involved in food intake in sheep. Frontiers in Neuroendocrinology, 2006, 27(1): 34~38.
    120.Iseri SO, Sener G, Yuksel M, et al. Ghrelin against alendronate-induced gastric damage in rats. J Endocrinol, 2005, 187(3): 399~406.
    121.Glatz JF, Veerkamp JH. Intracellular fatty acid-binding proteins. Int J Biochem, 1985, 17: 13~22.
    122.Sweetser DA, Birkenmeier EH, Klisak IJ, et al. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987, 262(33): 16060~16071.
    123.Veerkamp JH, Maatman RGHJ. Cytoplasmic fatty acid binding proteins: their structure and genes. Progress in Lipid Research, 1995, 34: 17~52.
    124.Paulussen RJA, Geelen MJH, Beynen AC, et al. Immunochemical quantization of fatty-acid-binding proteins.Ⅰ . Tissue and intracellular distribution, postnatal development and influence of physiological conditions on rat heart and liver FABP. Biochim Biophys Acta, 1989, 1001(2): 201~209.
    125.Peeters RA, Simon TC. The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem, 1989.
    126. Peeters RA, Veerkamp JH. Does fatty acid-binding protein play a role in fatty acid transport?. Molecular and Celluar Biochemistry, 1989, 88: 45.
    127.Veerkamp JH, Kuppevelt THMSM van, Maatman RGHJ, et al. Structural and functional aspects of cytosolic fatty acid binding proteins. Prostaglandins Leukot. Essent Fatty Acids, 1993, 49: 887~906.
    128.Hanhoff T, Lucke C, Spener F. Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell Biochem, 2002, 239(1~2): 45~54.
    129.B(?)rchers T, Spener F. Fatty acid binding proteins. Curr Top Membr, 1994, 40: 261~294.
    130.Stewart J. The cytoplasmic fatty-acid-binding proteins: thirty years and counting. Cell Mol Life Sci, 2000, 57: 1345~1359.
    131.Gentili C, Cermelli S, Tacchetti C. Expression of the extracellular fatty acid binding protein during muscle fiber formation in vivo and vitro. Exp Cell Res, 1998, 242: 410~418.
    132.Cancedda FD, Malpeli M, Gentili C, et al. The developmentally regulated avian Ch21 lipocalin is an extracellular fatty acid-binding protein. J Biol Chem, 1996, 271: 20163~20169.
    133.Sewell JE, Davis SK, Hargis PS. Isolation, characterization, and expression of fatty acid binding protein in the liver of Gallus domesticus. Comp Biochem Physiol B, 1989a, 92(3): 509~516.
    134.Sewell JE, Young CR, Davis SK, et al. Isolation and characterization of two fatty acid binding proteins from intestine of Gallus domesticus. Comp Biochem Physiol B, 1989b, 92(4): 623~629.
    135.Sams GH, Hargis BM,Hargis PS. Isolation and characterization of a fatty acid binding protein in adipose tissue of Gallus domesticus. Comp Biochem Physiol B, 1990, 96(3): 585~590.
    136.Sams GH, Hargis BM, Hargis PS. Dentification of two lipid binding proteins from liver of Gallus domesticus. Comp Biochem Physiol B, 1991,99(1): 213~219.
    137.Gotz FM, Thole HH. Smooth muscle fatty acid binding protein: a regulator of smooth muscle contraction?. Biol Chem, 1996, 377(10): 633~638.
    138.Sellner PA. Retinal FABP principally localizes to neurons and not to glial cells. Mol Cell Biochem, 1993, 123(1-2): 121~127.
    139.Hohoff C, B?rchers T, Rüstow B, et al. Expression, purification and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. Biochemistry, 1999, 38: 12229~12239.
    140.Lüche C, Rademacher M, Zimmerman AW, et al. Spin-system heterogeneitiesindicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). Biochem J, 2001, 354: 259~266.
    141.Young ACM, Scapin G, Kromminga A, et al. Structure studies on human muscle fatty acid binding protein at 1.4 ? resolution: binding interactions with three C18 fatty acids. Structure, 1994, 2: 523~534.
    142.Hertzel AV, Bernlohr DA. Cloning and chromosomallocation of the murine keratinocyte lipid-binding proteinhene. Gene, 1998, 221: 235~243.
    143.Hayasaka K, Himoro J, Takada G, et al. Structure and localization of the gene encoding human peripheral myelin protein 2 (PMP2). Genomics, 1993, 18: 244~248.
    144.Prinsen CFM, De Bruijn DRH, Merkx GFM, et al. Assignment of the human adipocyte fatty acid-binding protein gene (FABP4) to chromosome 8q21 using somatic cell hybrid and fluorescence in situ hybridization techniques. Genomics, 1997,40: 207~209.
    145.Guttenbach M, Nanda I, Brickell PM, et al. Chromosomal localization of the genes encoding ALDH, BMP-2, R-FABP, IFN-gamma, RXR-gamma, and VIM in chicken by fluorescence in situ hybridization. Cytogenet Cell Genet, 2000, 88(3-4): 266~271.
    146.王启贵. 鸡 FABP 基因克隆、表达特性及功能研究. 东北农业大学博士学位论文,2004.
    147.Veerkamp JH. Fatty acid transport and fatty acid-binding proteins. Proc Nutr Soc, 1995, 54: 23~37.
    148.Madsen P, Rasmussen HH, Leffers H, et al. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J. Invest. Dermatol, 1992, 99(3): 299~305.
    149.Krieg P, Feil S, Furstenberger G, et al. Tumor-specific overexpression of a novel keratinocyte lipidbinding protein: identification and characterization of a cloned sequence activated during multistage carcinogenesis in mouse skin. J Biol Chem, 1993, 268(23): 17362~17369.
    150.Wen Y, Li GW, Chen P, et al. Lens epithelial cell mRNA, Ⅱ Expression of amRNA encoding a lipid-binding protein in rat lens epithelial cells. Gene, 1995, 158: 269~274.
    151.Jaworski C, Wistow G. LP2, a differentiation-associated lipid-binding protein expressed in bovine lens. Biochem J, 1996, 320: 49~54.
    152.Masouyé I, Hagents G, Van Kuppevelt TH, et al. Endothelial cells of the human microvasculature express epidermal fatty acid-binding protein. Circ Res, 1997, 81: 297~303.
    153.Veerkamp JH, Zimmerman AW. Fatty acid-binding proteins of nervous tissue. J Mol Neurosci, 2001, 16: 122~142.
    154.Liu Y, Molina CA, Welcher AA, et al. Expression of DA11, a neuronal-injury-induced fatty acid binding protein, coincides with axon growth and neuronal differentiation during central nervous system development. J Neurosci Res, 1997, 48: 551~562.
    155.Owada Y, Yoshimoto T, Kondo H. Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J Chem Neuroanat, 1996,12: 113~122.
    156.Sellner PA, Chu W, Glatz JFC, et al. Developmental role of fatty acid-binding proteins in mouse brain. Dev Brain Res, 1995, 89: 33~46.
    157.Veerkamp JH, Peeters RA, Maatman RGHJ. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta, 1991,1081: 1~24.
    158.Glatz JFC, Vork MM, van der Vusse GJ. Significance of cytoplasmic fatty acid-binding protein for the ischemic heart. Mol Cell Biochem, 1993, 123: 167~173.
    159.Sinha P, Hütter G, K?ttgen E, et al. Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-s (statifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis, 1999, 20: 2952~2960.
    160.Ockner RK, Manning JA, Poppenhausen RB, et al. Binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science, 1972, 177: 56~58.
    161.Owada Y, Kondo H. Alteration of water barrier function of the skin in epidermal type fatty acid binding protein deficient mice (abstract). 4th Int. Conf. Lipid Binding Proteins, Maastricht, The Netherlands, 2001, 38.
    162.Hotamisligil GS, Johnson RS, Distel RJ, et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science, 1996, 274: 1377~1379.
    163.Coe NR, Simpson MA, Bernlohr DA. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res, 1999, 40: 967-972.
    164.Shaughnessy S, Smith ER, Kodukula S, et al. Adipocyte metabolism in adipocyte fatty acid binding protein knockout (aP2-/-) mice after short-term highfat feeding: functional compensation by the keratinocyte fatty acid binding protein. Diabetes, 2000, 49(6): 904~911.
    165.Siegenthaler G, et al. Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP). Biochem Biophys Res Commun, 1993,190(2): 482~487.
    166.王启贵,李宁,邓学梅等. 鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究. 中国科学(C 辑),2001,31(3):266~270.
    167.迪芬巴赫, 德维克斯勒著, 黄培堂等译. PCR 技术实验指南. 北京,科学出版社,1999.
    168.迟彦,李姗姗,马玺等. 差异显示技术及其研究进展. 遗传,2005,27(2): 309~314.
    169.李亮. 乌骨鸡肝脏差异表达序列标签德筛选及分析鉴定. 四川农业大学博士学位论文,2004.
    170.Liang P, et al. A decade of differential display. Biotechniques, 2002, 33(2): 338~346.
    171.肖华胜,黄文晋. 降低差异显示 PCR 假阳性和提高重复率的几种策略. 生物化学与生物物理进展,1999,26(5):437~438.
    172.唐明娟,郭顺星,中业等. mRNA 差异显示条件的优化. 生物技术通讯,2003,14(3):191~193.
    173.Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by meansof the polymerase chain reaction. Science, 1992, 257(5072): 967~971.
    174.Liang P. Factors ensuring successful use of differential display. Methods,1998, 16(4): 361~364.
    175.Chen Y, Wang B, Weining S. Anchor primer associated problems in differential display reverse transcription polymerase chain reaction. Analytical Biochemistry, 2004, 329(1): 145~147.
    176.Martin KJ, Pardee AB. Principle of differential display. Methods in Enzymology, 1999, 303: 235-259
    177.Yong-jig Cho, Vincent R, Prezioso, Peng Liang. Systematic analysis of intrinsic factors affecting differential display. Biotechniques, 2002, 32: 762~766.
    178.Zhao SC, Ooi SL, Pardee AB. New primer strategy improves precision of differential display. Biotechniques, 1995, 18(5): 842~850.
    179.Kanetaka K, Sakamoto M, Yamamoto Y, et al. Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol, 2001, 35(5): 637~642.
    180.Fujinami K, Uemura H, Ishiguro H, et al. Liprin-alpha2 gene, protein tyrosine phosphatase LAR interacting protein related gene, is downregulated by androgens in the human prostate cancer cell line LNCaP. Int J Mol Med, 2002, 10(2): 173~176.
    181.王新,黄欲新,闻勤生等. 银染 mRNA 差异显示法克隆肝癌相关基因. 第四军医大学学报,2001,22(9):843~845.
    182.王征旭,王红阳等. 一个新的人类肝癌相关基因的克隆和表达. 中华外科杂志,2001,39(3):185~187.
    183. 李友军,谢海龙,陈主初等. 喉癌相关基因 LCRG1 的克隆和表达分析. 生物化学与生物物理学报,2001,33(3):315~319.
    184.南清振,高蕾,杨希山等. mRNA 差异显示法筛选大肠癌相关基因. 第一军医大学学报,2001,21(4):258~260.
    185.陈东,张云汉,殷智榕等. 人食管癌相关基因 cDNA 片段的克隆、筛选与初步鉴定. 河南医科大学学报,2001,36(5):526~530.
    186.郭长青,王明荣等. D10-86 cDNA 片段在人食管癌中的表达. 中国肿瘤临床,2002,29(1):12~14.
    187.王立忠,刘阁玲,陈树强等. 应用 mRNA 差异显示技术分离甲状腺癌相关基因. 中国综合临床,2001,17(7):533~535.
    188.翟惠虹,郭新宁,时永全等. 人核糖体蛋白 S13 编码基因的克隆及其正反义真核表达载体的构建. 宁夏医学院学报,2002,24(5):319~322.
    189.王新,金建平等. 不同 mRNA 差异显示法筛选胃癌细胞耐药相关基因的研究. 肿瘤防治研究,2002,29(3):177~180.
    190.王建华,陈诗书. 荧光差异显示 PCR 克隆参与胃腺癌转移的基因 wcll. 中国生物化学与分子生物学报,2002,18(2):134~138.
    191.夏英,杨梅英. 用 PCR-SSCP 法鉴定差异显示中正确的阳性克隆 cDNA 片段. 中国辐射卫生,2002,11(1):40.
    192.谢海龙,李友军,陈主初等. 肺癌差异表达 cDNA 序列的分离与鉴定. 癌症,2002,21(3):249~253.
    193.张效东,周宁新,卢柏松等. 不同分化胆管癌间差异表达基因的研究. 消化外科,2002,1(1):13~15.
    194.马春树,宁钧宇,由江峰等. TMSG-1 基因功能的初步研究. 中国科学(C 辑),2003,33(4)):338~346.
    195.李小毛,李田,殷恒伟等. 应用荧光标记信使核糖核酸差异显示技术分离子宫肌瘤相关基因片段. 新医学,2003,34(8)):472~474.
    196.Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics, 2001, 158(3): 1125~1136.
    197.邝志和,张清炯等. NADH-细胞色素 b5 还原酶在视网膜色素变性 rds 小鼠中的差异表达. 中国病理生理杂志,2001,17(9):817~820.
    198.周明锐,任祖渊等. EGF 抑制 BT325 细胞生长的相关基因分离、克隆. 中华神经外科杂志,2002,18(2):112~115.
    199.王光海,邹飞. 热适应大鼠下丘脑基因差异表达的研究. 中国公共卫生,2002,18(8):937~938.
    200.Clouscard-Martinato C, Mulsant P, Robic A, et al. Characterization of FSH- regulated genes isolated by mRNA differential display from pig ovarian granulose cells. Anim Genet, 1998, 29(2): 98~106.
    201.Robert C, Gagne D, Bousquet D, et al. Differential display and suppressive subtractive hybridization used to identify granulose cell messenger rna associatedwith bovine oocyte developmental competence, Biol Reprod, 2001, 64(6): 1812~1820.
    202.Kim H, You S, Farris J, et al. Gonad-specific expression of two novel chicken complementary DNA isoforms. Bio Reprod, 2001, 64(5): 1473~1480.
    203.Kim H, You S, Foster LK, et al. Differential expression of chicken dimerization cofactor of hepatocyte nuclear factor-1 (DcoH) and its novel counterpart, DcoHalpha. Biochem J, 2001, 354(Pt3): 645~653.
    204.Bourneuf E, Hérault F, Chicault C, et al. Microarray analysis of differential gene expression in the liver of lean and fat chickens. Gene, 2006, 372: 162~170.
    205.Schwerin M, Czernek-Schafer D, Goldammer T, et al. Applocation of disease-associated differentially expressed genes-mining for functional candidate genes for mastitis resistance in cattle. Genet Sel Evol, 2003, 35(Supp11): S19~S34.
    206.Bertani GR, Gladney CD, Johnson RK, et al. Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR:Ⅱ . Anterior pituitary. J Anim Sci, 2004, 82(1): 32~40.
    207.Wimmers K, te Pas MFW, Chang KC. A European initiative towards identification of genes controlling pork quality. 7th World Congress on Genetics Applied to Livestock Production, August 19-23, 2002, Montpellier, France, Communication N: 11~13.
    208.潘佩文,赵书红,余梅等. 一个新的猪肌肉组织 EST 的分离、定位与表达. 遗传学报,2002,29(10):871~874.
    209.王惠,张沅,张超等. 纯种鸡及其杂交种产蛋高峰期卵巢组织基因表达差异分析. 陈瑶生主编:中国动物遗传育种研究进展(第十二次全国动物遗传育种学术会议论文集). 中国农业科学技术出版社,2003,452~456.
    210.孙东晓,王栋,张沅等. 杂种鸡和亲本基因差异表达 及其与杂种优势关系的初步研究. 陈瑶生主编:中国动物遗传育种研究进展(第十二次全国动物遗传育种学术会议论文集). 中国农业科学技术出版社,2003,457~460.
    211.俞英,张沅,孙东晓等. 基因表达差异类型 UNF1 与鸡杂种优势关系的分析. 陈瑶生主编:中国动物遗传育种研究进展(第十二次全国动物遗传育种学术会议论文集). 中国农业科学技术出版社,2003,461~464.
    212.李琴. 四个品种初生雏鸡腿肌差异表达序列标签(ESTs)的筛选及表达分析.四川农业大学硕士学位论文,2005.
    213.崔党群. Logistic 曲线方程的解析与拟合优度测验. 数理统计与管理,2005,24(1):112~115.
    214.裴鑫德. 多元统计分析及其应用. 北京:北京农业大学出版社,1991,287~309.
    215. Muirhead RJ. Aspects of multivariate statistical theory. New York: John Wiley & Sons, Inc, 1982, 548~556.
    216.中国科学院数学研究所数理统计组. 回归分析方法. 北京:科学出版社,1974,74~75.
    217.高惠璇. 实用统计方法与 SAS 系统. 北京:北京大学出版社,2001,310~330.
    218.闫兴才编译. 育成期肉种鸡生产水平与变异系数的关系. 养禽与禽病防治,2003,9:10~11.
    219.杨运清,李辉,张永胜. 鸡体重均匀度期望值的修正. 中国畜牧杂志,2000,36(4):36~37.
    220.李恒德,周忠孝,殷裕斌. 山西瘦肉型猪新品系 SD-Ⅱ系选择效应分析. 湖北农学院学报,2002,22(4):135~140.
    221.王存芳,张劳,李俊英等. 平原饲养的藏鸡体型外貌分析和生长模型拟合的研究. 中国农业科学,2005,38(5):1065~1068.
    222. Laird AK. Postnatal growth of birds and mammals. Growth, 1966, 30: 349~363.
    223. Barbato GF. Genetic architecture of growth curve parameters in chickens. Theor. Appl Genet, 1991, 83: 24~32.
    224.Barbato GF. Divergent selection for exponential growth rate at fourteen or forty-two days of age. I. Early responses. Poult Sci, 1992, 71, 1985~1993.
    225.Ricklefs RY. Modification of growth and development of muscles of poultry. Poultry Science, 1985, 64: 1563~1576.
    226.张力. 闽南火鸡生长特性的研究. 家畜生态,2002,23(3):27~29,36.
    227.Yang Y, Mekki DM, Lv SJ, et al. Analysis of Fitting Growth Models in Jinghai Mixed-sex Yellow Chicken. International Journal of Poultry Science, 2006, 5(6): 517~521.
    228.张浩,吴常信,李俊英等. 藏鸡和低地鸡种的生长曲线拟合与杂种优势分析. 中国畜牧杂志,2005,41(5):34~37.
    229.张德祥,杨山. 不同性别肉仔鸡生长模式差异的研究. 黑龙江畜牧兽医,1998,(3):11~12.
    230.魏法山,韩瑞丽,康相涛等. 不同性别固始鸡生长曲线的分析. 河南畜牧兽医,2005,26(6):4~5.
    231.Hotelling H. The most predictable criterion. Journal of Educational Psychology, 1935, 26: 139~142.
    232.Hotelling H. Relations between two sets of variables. Biomatrika, 1936, 28: 321~377.
    233.Gou ZHK, Fyfe C. A Canonical correlation neural network for multicollinearity and functional data. Neural network, 2004, 17: 285~293.
    234.Michael AG, Raymond CP. Using traffic conviction correlations to identify high accident-risk drivers. Accident Analysis and Prevention, 2003, 35: 903~912.
    235.Tishler AG, Lipovetsky S. Canonical correlation analysis for three data sets: a unified framework with application to management. Computers and Operations Research, 1996, 23: 667~679.
    236.Lebart LA Morineau, Tabard N. Techniques de la Description Statistique, Méthodes et Logiciels Pour L’analyse des Grands Tableaux. Aunod, Paris, 1977, 351.
    237.Rao CR. Linear statistical inference and its application. John Wiley, New York, 1973.
    238.Theil H. Principles of econometrics. John Wiley, New York, 1971.
    239.Chen DL, Chen YM. Association between winter temperature in China and upper air circulation over East Asia revealed by canonical correlation analysis. Global and Planetary Change, 2003, 37: 315~325.
    240.Tibor Cserháti, Agnes Kósa, Sándor Balogh. Comparison of partial least-square method and canonical correlation analysis in a quantitative structure-retention relationship study. J Biochem Biophys Method, 1998,36: 131~141.
    241.Jang SC, Ryu K. Cross-balance sheet interdependencies of restaurant firms: a canonical correlation analysis. Hospitality Management, 2006, 25: 159~166.
    242.Vainionp?? J, Kervinen R, de Prado M, et al. Exploration of storage and process tolerance of different potato cultivars using principal component and canonical correlation analyses. Journal of Food Engineering, 2000, 44: 47~61.
    243.Pan SHY, He SM, Lu GQ. Application of parent-offspring canonical correlation to the domestic silkworm breeding. J Biomath, 1994, 9: 17~22.
    244.陈海燕,吕鸿,朱海平等. 绍兴鸭产蛋、生长及血液性状间的典型性状相关分析. 浙江大学学报(农业与生命科学版),2003,29(3):300~304.
    245.裴鑫德. 中国地方品种鸡生态性状的典型相关分析. 生态学报,1996,16(4):367~374.
    246.刘丽仙,娄义洲. 绿壳蛋土鸡若干种质特性的研究. 云南畜牧兽医,2003,4: 7~8.
    247.王得前,陈国宏,吴信生等. 仙居鸡的体尺测量及屠宰性能测定. 浙江畜牧兽医,2004,3:1~3.
    248.王清华,李辉,张德祥等. 优质黄鸡矮小型品系胫长和胫宽德双向选择效应分析. 中国畜牧杂志,2005,41(8):30~31.
    249.包文斌,周群兰,吴信生等. 藏鸡和萧山鸡体尺及屠宰性能的比较分析. 中国家禽,2005,27(7):17~19.
    250.姜润深,李俊英,李慧锋等. 肉用鸡出生重对生长性状和屠宰性能的影响. 中国畜牧杂志,2005,41(6):45~46.
    251.王天行,张泽. 多元生物统计学. 成都,成都科学技术出版社. 1992,(2):126~139.
    252.子元 生物通记者. 生物通报道,2006 年 9 月 12 日, 原载:Nature Neuroscience.
    253.邱德文. 植物用多功能真菌蛋白质.(中国)专利申请号:0112866.0, 2001 年10 月;专利公开号:CN1344727A,专利公开日期:2002 年 4 月 17 日,《中国专利公报》:18(6)期.
    254.韩雅玲,于海波,闫承慧等. Rac1 蛋白活化加速缺氧诱导的人血管内皮细胞衰老. 生理学报,2006,58(3):207~216.
    255.Marita J, Walmsley KT, Steen, et al. B 细胞发育的关键信号 Rac1 和 Rac2. Science, 2003, 302: 445~449.
    256.徐锋,杨勇,谢馥交等. 激活蛋白处理水稻引发基因差异表达的研究. 生物技术通报,2006,4:82~85.
    257.张宁,胡志毅,殷国勇等. G 蛋白耦连受体激酶结合蛋白 1 通过调节细胞外调节激酶 1/2 的活性促进成骨细胞迁移. 中华创伤骨科杂志,2006,8(9):846~851.
    258.刘义军,詹书良. 激活蛋白-1 和脑胶质瘤的研究进展. 医学综述,2006,l12(17):1050~1052.
    259.鲁绍雄,吴常信. 动物育种方法的回顾与展望. 国外畜牧科技,2000,27(1):24~28.
    260.马月辉. 用羊与小尾寒羊杂交效果研究. 中国畜牧杂志,1995,(5):10~12.
    261.刘根义. 小尾寒羊在东胜地区最佳育肥期的研究. 中国畜牧杂志,1995,(6):36,38.
    262.李英. 小尾寒羊和内蒙古细毛羊杂交一代羔羊育肥试验. 内蒙古农牧学院学报,1998,(2):124~126.
    263.树清. 杂种肉羔产肉性能及肉品营养成分分析. 中国养羊,1994,(3):38~43.
    264.Noumi T, Mosher ME, Natori S, et al. A phenylalanine for serine substitution in the beta subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations. J Biol Chem, 1984, 259(16): 10071~10075.
    265.Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5(4): 874~879.
    266.Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA, 1989, 86(8): 2766~2770.
    267.Hoshino S, Kimura A, Fukuda Y, et al. Polymerase chain reaction--single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a simple, economical, and rapid method for histocompatibility testing. Hum Immunol, 1992, 33(2): 98~107.
    268.Hayashi K. PCR-SSCP: A mothed for detection of mutation. GATA, 1992, 9(3): 73 ~79.
    269.Kauppinen R. Single-strand conformation polymorphism (SSCP) analysis applied to the diagnosis of acute intermittent porphyria. Mol Cell Probes. 1992, 6(6): 527 ~ 530.
    270.赵春江. 牛乳蛋白基因多态性性分子遗传学基础的研究. 中国农业大学博士学位论文,1997.
    271.刘佳建,李奎,彭中镇. 甘油浓度对 PCR-SSCP 分辨效果的影响. 生物技术通讯,1998,2:160~161.
    272.李国华. 奶牛抗乳房炎性状候选基因的分析. 中国农业大学博士学位论文,2001.
    273.姜运良,李宁. 影响 PCR-SSCP 的因素分析. 农业生物技术学报,2000,8(3):245~247.
    274.盛志廉,陈瑶生. 数量遗传学. 北京:科学出版社,1999.
    275.Nie Q, Zeng H, Lei M, et al. Genomic organization of the chicken ghrelin gene and its single nucleotide polymorphism detected denaturing high-performance liquid chromatography. British Poultry Science, 2004, 45(5): 611~618.
    276.李文娟,李宏宾,文杰等. 鸡 H-FABP 和 A-FABP 基因表达与肌内脂肪含量相关研究. 畜牧兽医学报,2006,37(5):417~423.
    277.Gerbens F, et al.. Associationa of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. Anim Sci., 2001, 79: 347 ~ 354.
    278.Gerbens F, et al. Characterization, chromosomal localization and genetic variation of the porcine heart fatty acid-binding protein gene. Manm Genome, 1997, 8: 328 ~332.
    279.叶满红. 鸡脂肪酸结合蛋白基因的克隆及其与肌内脂肪含量关系的研究. 中国农业科学院博士学位论文,2003.
    280.Gentili C, Cermelli S, Tacchetti C, et al. Expression of the extracellular fatty binding protein during muscle fiber formation in vivo and in vitro. Express Cell Res, 1998, 242: 410~418.
    281.Wang Qigui, Li Ning, Deng Xuemei, et al. Single nucleotide polymorphism analysis on chicken extraculluar fatty acid binding protein and its associations with fattiness trait. Sci China, 2001, 44: 429~434.
    282.Ukkola O, Ravussin E, Jacobson P, et al. Mutations in the preproghrelin/ghrelin gene associated with obesity in humans. Jouranl of Clinical Metabolism, 2001, 86: 3996~3999.
    283.Poykko S, Ukkola O, Kaumu H, et al. Ghrelin Arg51Glin mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects.Diabetologia, 2003, 46: 455~458.
    284.Hinney A, Hoch A, Geller F, et al. Ghrelin gene: identification of missense variants and a frameshift mutation in extremely obese children and adolescents and healthy normal weight students. Jouanal of Clinical Endocrinoligy Metabolism, 2002, 87: 2716~2719.
    285.Korbonits M, Gueorguiev M, O’Grady E, Lecoeur C, et al. A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children. Journal of Clinical Metabolism, 2002, 87: 4005~4008.
    286.Meixia Fang, Qinghua Nie, Chenglong Luo, et al. An 8 bp indel in exon 1 of Ghrelin gene associated with chicken growth. Domestic Animal Endocrinology,2007, 32(3): 216~225
    287.Chakrabory R, Jin L. Linkage disequilibria among(CA)n polymorphism in the human dustrophin gene and their implications in carrier detection and prenatal diagnosis in duchenne and becker muscular dystrophies. Genomics, 1994, 21(3): 567~570.
    288.Van kaam JBCHM, van Arendonk JAM, Croene MAM, et al. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Live Stock Production Science, 1998, 54: 133~150.
    289.Tatsuda K, Fujinaka K. Genetic mapping of the QTL affecting body weight in chickens using a F2 family. British Poultry Science, 2001, 42(3): 333~337.
    290.Van Kaam JBCHM, Groenen MAM, Bovenhuis H, et al. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. Poultry Science, 1999, 78: 15~23.
    291.Sewalem A, Morriee DM, Law A, et al. Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poultry Science, 2002, 81: 1775~1781.
    292.杜志强. 利用基因组扫描定位鸡的重要性状基因座. 中国农业大学博士学位论文,2003.
    293.童海兵,高玉时,王克华,陈国宏,屠云洁,卢克伦等. 鸡微卫星 DNA 标记与部分屠宰性状相关性分析. 第十次全国畜禽遗传标记研讨会论文集,2006,10(1):183~189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700