葡萄糖和胰岛素对血管内皮细胞衰老的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:细胞衰老促进机体老化和老年相关疾病如动脉粥样硬化、高血压等发生。糖尿病患者的心脏事件发生率增加,病变程度加重,但其发生机制还不明确。本文探讨体外培养条件下,不同浓度的葡萄糖和胰岛素对人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)衰老及蛋白激酶B(protein kinase B,PKB/AKT)活化的影响。以期了解葡萄糖和胰岛素对心血管的作用,并进一步研讨糖尿病致动脉粥样硬化的发病机制。
     方法:用含10%胎牛血清的DMEM低糖培养基行体外培养人脐静脉内皮细胞,取其对数生长期细胞用于实验。实验分组:(1)葡萄糖干预组:不同浓度的葡萄糖,包括5.6mmol/L、16.7mmol/L、33mmol/L组;(2)胰岛素组:对照组、1nmol/L、10nmol/L、100nmol/L组。各组细胞培养至对数生长期,分别给与相应浓度的处理因素,作用24h,用β半乳糖酶染色法检测细胞衰老率,并用免疫组化法检测各组细胞总AKT蛋白及磷酸化AKT (p-AKT)表达水平。β半乳糖酶染色法染色后,倒置显微镜下观察,胞浆蓝染者为衰老细胞,随机取四个视野,计数阳性细胞数和细胞总数,取其平均值计算细胞衰老率。免疫组化法染色结果使用imagej图像处理软件测量灰度值。
     结果:
     1.不同浓度葡萄糖干预HUVEC 24h后,随着葡萄糖浓度增加,细胞衰老率增加。5.6mmol/L葡萄糖对内皮细胞衰老作用不明显。与5.6mmol/L葡萄糖组比较,16.7mmol/L和33mmol/L葡萄糖组均导致细胞衰老率的显著增加(P<0.01)。33mmol/L组与16.7mmol/L组相比,衰老率存在显著差异性(P<0.01)。各葡萄糖组总AKT蛋白表达水平变化无统计学意义(P>0.05)。p-AKT蛋白表达水平随着葡萄糖浓度的增加出现下调,并与细胞衰老呈负相关。16.7mmol/L和33mmol/L组与5.6mmol/L组比较,p-AKT表达明显下调(P<0.01)。33mmol/L组与16.7mmol/L组比较,p-AKT表达下调存在显著差异性(P<0.01)。
     2.不同浓度胰岛素干预HUVEC 24h后,各组细胞衰老率具有明显差异。与对照组比较,1nmol/L胰岛素组和10nmol/L胰岛素组细胞衰老率降低(P<0.01),且1nmol/L组细胞衰老率较10nmol/L组降低更明显(P<0.05)。与对照组和其他胰岛素组比较,100nmol/L胰岛素组细胞衰老率明显增加(P<0.01)。
     3.不同浓度胰岛素与对照组间,总AKT蛋白表达无差异(P>0.05)。与对照组相比,1nmol/L胰岛素组和10nmol/L胰岛素组p-AKT表达上调(P<0.01),1nmol/L组较10nmol/L组p-AKT表达上调更显著(P<0.01)。100nmol/L胰岛素组p-AKT表达与对照组比较,无统计学差异(P>0.05)。
     结论:
     1.高浓度葡萄糖可诱导人脐静脉内皮细胞衰老,随着浓度增加衰老程度加重,其机制可能与AKT蛋白活性下调有关。
     2.低浓度胰岛素可延缓内皮细胞衰老,可能与AKT蛋白活性上调有关,且其保护作用可能与降低葡萄糖浓度效应无关。
     3.高浓度胰岛素可导致血管内皮细胞衰老,其机制可能与AKT蛋白活化无关。
Background and Objective:Cell senescence is one of the main causes of organism aging and diseases including atherosclerosis and hypertension. The prevalence of heart event and more severe heart problems increased obviously in patients with Diabetes mellitus. Nevertheless, the mechanism of how diabetes induces heart disease is unclear. This study intends to investigate the effects of glucose and insulin on the human umbilical vein endothelial cells (HUVECs) senescence in vitro, and to detect the activity of protein kinase B (PKB/AKT) in these cells under different doses of glucose and insulin condition. Hopefully, the results might be helpful to understand the cardiovascular effects of glucose and insulin, and to explore the mechanism of diabetes-induced atherosclerosis.
     Methods:Human umbilical vein endothelial cells were cultured in vitro with low glucose DMEM medium plus 10% fetal bovine serum.3-5 generation of these cells in logarithmic growth phase were used in study. The cultured human umbilical vein endothelial cells were divided into two parts which were treated with different doses of glucose and insulin respectively, (1) glucose group:5.6mmol/L,16.7mmol/L,33mmol/L; (2) insulin group: control, 1nmol/L, 10nmol/L, 100nmol/L. Each group of these cells was incubated with different concentrations of glucose and insulin respectively as mentioned previous for 24h. Then, each group of these cells was measured for cell senescent phenotype with SA-β-gal staining assay and expression of total AKT and phospho-AKT (p-AKT) protein with immunohistochemistry staining assay. After senescence-association SA-β-gal staining, cells were observed by inverted microscope, and positive and total cell number were counted in four different visual field, then the average of cellular senescence rate were calculated. Also, total AKT and p-AKT protein expression were analyzed by image manipulation to measure gray scale in each group of these cells.
     Results:
     1. Cell senescence rates were increased with the glucose concentrations. The data shows that as compared with group of 5.6mmol/L glucose which have no evident effect on human umbilical vein endothelial cells senescence, the rate of cells senescence increased obviously in the group of 16.7mmol/L and 33mmol/L glucose (P<0.01). Moreover, as compared with 16.7mmol/L glucose, the cellular senescence rate of 33mmol/L glucose group increased significantly (P<0.01). The level of total AKT expression in each glucose group gave similar results (P>0.05), while p-AKT expression was down-regulated with the increase of glucose concentrations. Compared to 5.6mmol/L glucose, the level of p-AKT expression in the presence of 16.7mmol/L and 33mmol/L of glucose decreased significantly (P<0.01), and the changes of p-AKT expression between 16.7mmol/L glucose and 33mmol/L glucose were obvious(P<0.01), which means that p-AKT expression might be negative correlation to cell senescence.
     2. Different cell senescence rate were observed in human umbilical vein endothelial cells in the presence of lnmol/L, 10nmol/L, 100nmol/L of insulin for 24h. The result shows that when compared to control group, the cellular senescence rate of lnmol/L and lOnmol/L insulin decreased (P<0.01), and the cellular senescence rate of lnmol/L insulin decreased obviously (P<0.01) as compared with 10nmol/L insulin. But the cellular senescence rate of 100nmol/L insulin group increased obviously(P<0.01) as compared with control, 1nmol/L and 10nmol/L insulin group.
     3. There is no difference of total AKT expression between control group and each insulin group (P>0.05). Compared to control group, p-AKT expression was up-regulated(P<0.01) in the presence of 1nmol/L and 10nmol/L of insulin. While p-AKT expression unchanged (P>0.05) in 100nmol/L insulin group as compared with control instead, even though the cellular senescence rate of this group increased obviously.
     Conclusion:
     1. High glucose might induce vascular endothelial cell senescence and which might be related to down-regulation of AKT activity.
     2. Low concentration insulin might inhibit human umbilical vein endothelial cells senescence and up-regulate the activity of p-AKT. And which might not be correlated to the glucose reduction effect of insulin.
     3. High dose of insulin might enhance cellular senescence, and which might be unrelated to the activation of p-AKT protein.
引文
[1]彭艳华,王跃.细胞衰老与机体老化关系的研究进展[J].中国老年学志,2008,5(9):932-934.
    [2]Minamino T,Komuo I. Vascular cell senescence:contribution to atherosclerosis [J].Circ Res,2007,100(1):15-26.
    [3]单海燕,白小涓,张四扬,陈香美.Ang II诱导血管内皮细胞衰老及凋亡相关基因的表达[J].中国病理生理杂志,2008,24(6):041-47.
    [4]周颖,王建,贺福初.蛋白激酶B(PKB/AKT)的结构、调控与功能[J].生命的化学,2006,26(3):226-228.
    [5]李俊发,贺俊崎.细胞信号转导研究技术[M].北京:中国协和医科大学出版社,2008:161-162.
    [6]Ichiki T, Jougasaki M, Setoguchi M, et al. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells [J]. Am J Physiol Heart Circ Physiol,2008,294(2):H750-763.
    [7]Tong Z, Fan Y, Zhang W, et al. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling[J]. Cell Res,2009, 19(6):710-719.
    [8]李围,杨晓明.激酶调控PKB/AKT活性的机制[J].医学分子生物学杂志,2007,4(4):343-346.
    [9]Ma Ira G D, Salv IM, Arr Igon I. all Protein kinaseCK2 phosphorylates and up regulates AKT/PKB[J]. Cell Death Differ,2005,12:6682-6771.
    [10]Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis:role of telomere in endothelial dysfunction [J].Circulation 2002,105:1541-1544.
    [11]Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y, Toko H, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis[J].Circulation 2003,108:2264-2269.
    [12]Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS. eNOS activity is reduced in senescent human endothelial cells:Preservation by hTERT immortalization[J].Circ Res 2001,89:793-798.
    [13]Nakajima M, Hashimoto M, Wang F, Yamanaga K, Nakamura N, Uchida T, et al. Aging decreases the production of PGI2 in rat aortic endothelial cells[J].Exp Gerontol 1997,32:685-693.
    [14]Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. AKT negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway [J].EMBO J.2004,23:212-220:
    [15]ontecucco F, Steffens S, Burger F, Da Costa A, Bianchi G, Bertolotto M, Mach F, Dallegri F, Ottonello L. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD 18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways [J].Cell Signal,2008,20(3):555-557
    [16]azdanpanah M, Rietveld I, Janssen JA, et al. An insulin-like growth factor-I promoter polymorphism is associated with increased mortality in subjects with myocardial infarction in an elderly Caucasian population[J]. Am J Cardiol,2006,97:1274-1276.
    [17]刘海涛,张海锋,司瑞,等.胰岛素保护缺血/再灌注心脏:PI3K/AKT和JNKs信号通路间的交互作用.生理学报,2007;5:117-125.
    [18]Hojlund K, Staehr P, Hansen BF, Green KA, Hardie DG, Richter EA,Beck-Nielsen H, Wojtaszewski JF. Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes[J]. Diabetes,2003,52:1393-1402.
    [19]Angelo Avogaro; Saula Vigili de Kreutzenberg; Gian Paolo Fadini, Insulin signaling and life span [J]. Eur J Physiol 2009,459(3):301-314
    [20]Stamler J,Vaccaro O, Neaton JD,et al. Diabetes, other risk factors,and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trai[J]. Diabetes care,1993,16(2):434-444.
    [21]Mittinen H, Lehto S, Salomaa V. et al. Impact of diabetes on mortality after the first myocardial infarction[J]. Diabetes care,1998,21(1):68-75
    [22]Behar S, Boyko V, Reicher HC, et al. for the Sprint study group. Ten years survival after myocardial infarction. Comparison of patients with and without diabetes [J].Am Heart J,1997,133(3):290-296.
    [23]Erusalimsky JD, Kurz DJ. Cellular senescence in vivo:its relevance in ageing and cardiovascular disease [J]. Exp Gerontol,2005,40:634-642.
    [24]Fuster JJ, Andres V. Telomere biology and cardiovascular disease [J]. Circ Res,2006,99:1167-1180.
    [25]Minamino T, Komuro I. Role of telomere in endothelial dysfunction in atherosclerosis [J]. Curr Opin Lipidol,2002,13:537-543.
    [26]Kim KS, Kang KW, Seu YB. Interferon-gamma induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells [J]. Mech Ageing Dev,2009,130(3):179-188.
    [27]Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis[J]. Cell Tissue Res.2009,335(1):191-203.
    [28]Li M, Chiu JF, Gagne J, Fukagawa NK. Age-related differences in insulin-like growth factor-1 receptor signaling regulates AKT/FOXO3a and ERK/Fos pathways in vascular smooth muscle cells [J]. J Cell Physiol,2008,217(2):377-387.
    [29]Tsirpanlis G. Cellular senescence, cardiovascular risk, and CKD:a review of established and hypothetical interconnections [J].Am J Kidney Dis,2008, 51(1):131-144.
    [30]Li Y, Gilbert TR, Matsumoto AH, Shi W. Effect of aging on fatty streak formation in a diet-induced mouse model of atherosclerosis [J]. J Vasc Res,2008,45(3):205-210.
    [31]Hong Y, Quintero M, Frakich NM, et al. Evidence against the involvement of nitric oxide in the modulation of telomerase activity or replicative capacity of human endothelial cells [J]. Exp Gerontol,2007,42:904-910.
    [32]Charis Costopoulos, Tze Vun Liew, Martin Bennett. Ageing and atherosclerosis: Mechanisms and therapeutic options [J]. biochemical pharmacology,2008, 75:1251-1261.
    [33]Kurz DJ, Hong Y, Trivier E, et al. Fibroblast growth factor-2, but not vascular endothelial growth factor, upregulates telomerase activity in human endothelial cells [J]. Arterioscler Thromb Vasc Biol,2003,23:748-754.
    [34]Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress[J]. J Hypertens,2005,23:97-104.
    [35]Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells [J]. J Cell Sci,2004,117:2417-2426.
    [36]Doshida M, Ohmichi M, Tsutsumi S,et al. Raloxifene increases proliferation and up-regulates telomerase activity in human umbilical vein endothelial cells [J]. J Biol Chem,2006,281(34):24270-24278.
    [37]Yokoi T, Fukuo K, Yasuda O. Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells [J]. Diabetes,2006, 55(6):1660-1665.
    [38]Hayashi T, Matsui-Hirai H, Miyazaki-Akita A. Endothelial cellular senescence is inhibited by nitric oxide:implications in atherosclerosis associated with menopause and diabetes [J].Proc Natl Acad Sci U S A,2006,103(45):17018-17023.
    [39]Zhong W, Zou G, Gu J. L-arginine attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells [J]. Diabetes Res Clin Pract,2010 Apr 14. [Epub ahead of print].
    [40]immeler S, Dernbach E, Zeiher AM:Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration [J]. FEBS Lett,2000,477:258-262.
    [41]rbich C, Reissner A, Chavakis E, et al. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin[J]. FASEB J 2002,16:706-708.
    [42]Jojima T, Suzuki K, Hirama N. Glimepiride upregulates eNOS activity and inhibits cytokine-induced NF-kappaB activation through a phosphoinoside 3-kinase-AKT-dependent pathway [J]. Diabetes Obes Metab,2009,11 (2):143-149.
    [43]Chen YH, Lin SJ, Lin FY. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms [J]. Diabetes,2007,56(6):1559-1568.
    [44]Tong Q, Zheng L, L in L, et al. Hypoxia2induced mitogenic factor promotes vascular adhesion molecule21 exp ression via the PI3K/Akt/NF-kappaB signaling pathway[J]. Am J Resp irCellMolBiol,2006,35 (4):444-456.
    [45]Ksiazek K, Witowski J. Impaired insulin signaling and human aging[J]. Postepy Hig Med Dosw (Online),2008,62:263-271.
    [46]13 Rota M, LeCapitaine N, Hosoda T, Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene[J]. Circ Res,2006, 99(1):42-52.
    [47]Kosugi R, Shioi T, Watanabe-Maeda K, Angiotensin II receptor antagonist attenuates expression of aging markers in diabetic mouse heart[J]. Circ J,2006,70(4):482-488.
    [48]Takebayashi K,Aso Y,Inukai T. Initiation of insulin therapy reduces serum concentrations of high-sensitivity C-reactive protein in patients with type 2 diabetes[J].Metabolism,2004,53(6):693-699.
    [49]Thum T, Hoeber S, Froese S, et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1 [J].Circ Res,2007,100(3):434-443.
    [50]Zhao L, Sun D, Cao F. Can insulin resistance be reversed by insulin therapy? [J]. Med Hypotheses,2009,72(1):34-35.
    [51]陆庆明,邸春霞,王海昌,张荣庆.原发性高血压大鼠骨髓来源内皮祖细胞数量、功能及吡格列酮的预处理[J].中国组织工程研究与临床康复,2008,9:27-30.
    [52]Pandolfi A, Solini A, Pellegrini G, et al. Selective insulin resistance affecting nitric oxide release but not plasminogen activator inhibitor-1 synthesis in fibroblasts from insulin-resistant individuals [J]. Arterioscler Thromb Vasc Biol,2005, 25(11):2392-2397.
    [53]马向红,黄体钢,杨万松.高糖和胰岛素对内皮细胞产生一氧化氮的影响[J].Tianjin Med J,2006,34(8):522-524.
    [54]陈永松,张娟,朱旭新.胰岛素对高葡萄糖浓度下内皮细胞的凋亡及bax和bcl-2表达的影响[J].中国临床实用医学,2007,8(8):1-3.
    [55]Bulhak AA, Jung C, Ostenson CG. PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury:involvement of the PI3Kinase/AKT and NO pathway [J]. Am J Physiol Heart Circ Physiol,2009,296(3):H719-727.
    [56]Kobashi C, Urakaze M, Kishida M, et al. Adiponectin inhibits endothelial synthesis of interleukin-8[J]. Circ Res,2005,97 (12):1245-1252.
    [57]Natalicchio A, De Stefano F, Perrini S, et al. Involvement of the p66Shc protein in glucose transport regulation in skeletal muscle myoblasts [J]. Am J Physiol Endocrinol Metab,2009,296:E228-E237
    [58]Natalicchio A, Laviola L, De Tullio C, et al. Role of the p66Shc isoform in insulin-like growth factor I receptor signaling through MEK/Erk and regulation of actin cytoskeleton in rat myoblasts [J]. J Biol Chem,2004,279:43900-43909.
    [1]ontecucco F, Steffens S, Burger F, et al. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways[J]. Cell Signal,2008,20(3):557-568.
    [2]Ichiki T, Jougasaki M, Setoguchi M, Imamura J, Nakashima H, Matsuoka T, Sonoda M, Nakamura K, Minagoe S, Tei C.Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells[J]. Am J Physiol Heart Circ Physiol.,2008,294(2):H750-763.
    [3]Tong Z, Fan Y, Zhang W, et al. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling[J]. Cell Res,2009, 19(6):710-719.
    [4]Ma Ira G D, Salv IM, Arr Igon I. all Protein kinaseCK2 phosphorylates and up regulates AKT/PKB[J]. Cell Death Differ,2005,12:6682-6771.
    [5]Thum T, Hoeber S, Froese S. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1[J]. Circ Res,2007,100(3):434-443.
    [6]Li M, Chiu JF, Gagne J, et al. Age-related differences in insulin-like growth factor-1 receptor signaling regulates AKT/FOXO3a and ERK/Fos pathways in vascular smooth muscle cells[J]. Cell Physiol,2008,217(2):377-387.
    [7]Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a) [J]. Mol Cel,2004,14:501-513.
    [8]Doshida M, Ohmichi M, Tsutsumi S,et al. Raloxifene increases proliferation and up-regulates telomerase activity in human umbilical vein endothelial cells[J]. J Biol Chem,2006,281(34):24270-24278.
    [9]Miyauchi H, Minamino T, Tateno K,et al. AKT negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway[J].EMBO J,2004, 23:212-220.
    [10]Kenyon C. The plasticity of aging:insights from long-lived mutants[J].Cell,2005, 120:449-460.
    [11]Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and-independent effects[J]. Cell,2004,118:375-387.
    [12]Braz JC, Gill RM, Corbly AK, et al. Selective activation of PI3Kalpha/AKT/GSK-3beta signalling and cardiac compensatory hypertrophy during recovery from heart failure[J]. Eur J Heart Fail,2009,11(8):739-748.
    [13]Xu R, Lin F, Zhang S, Chen X,et al. Signal pathways involved in reverse remodeling of the hypertrophic rat heart after pressure unloading[J].Int J Cardio,2009 Jul 23. [Epub ahead of print]
    [14]Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the AKT/GSK-3beta/mTOR signaling pathway[J]. Basic Res Cardiol,2009 Jul 9. [Epub ahead of print]
    [15]Guo J, Gertsberg Z, Ozgen N, et al. p66Shc links alphal-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes[J]. Circ Res,2009,104(5):660-669.
    [16]Li XM, Ma YT, Yang YN, Liu F, et al. Downregulation of survival signaling pathways and increased apoptosis in the transition of pressure overload-induced cardiac Hypertrophy towards to heart failure[J]. Clin Exp Pharmacol Physiol,2009 Jun 29. [Epub ahead of print]
    [17]Westermann D, Riad A, Richter U, Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure[J]. Basic Res Cardiol,2009, 104(5):499-509.
    [18]Kawahara S,Umemoto S, TanakaM, et al. Up-regulation of AKT and eNOS induces vascular smooth muscle cell differentiation in hypertension in vivo[J]. J Cardiovasc Pharmacol,2005,45 (4):367-374.
    [19]Taniyama Y,Ushio-FukaiM, Hitomi H, et al. Role of p38MAPK and MAPKAPK-2 in angiotensin Ⅱ-induced AKT activation in vascular smooth muscle cells[J]. Am J Physiol Cell Physiol,2004,287(2):494-499.
    [20]Yang HM, Kim HS, Park KW, et al. Celecoxib, a cyclooxygenase-2 inhibitor, reduces neointimal hyperp lasia through inhibition of AKT signaling[J]. Circulation,2004, 110 (3):301-308.
    [21]Li XM, Ma YT, Yang YN, et al. Downregulation of survival signaling pathways and increased apoptosis in the transition of pressure overload-induced cardiac Hypertrophy towards to heart failure[J], Clin Exp Pharmacol Physiol.2009 Jun 29. [Epub ahead of print]
    [22]inamino T, Miyauchi H, Tateno K,et al. AKT-induced cellular senescence:implication for human disease[J]. Cell Cycle,2004,3(4):449-451.
    [23]azdanpanah M, Rietveld I, Janssen JA, et al. An insulin-like growth factor-I promoter polymorphism is associated with increased mortality in subjects with myocardial infarction in an elderly Caucasian population[J]. Am J Cardiol,2006,97:1274-1276.
    [24]刘海涛,张海锋,司瑞,等.胰岛素保护缺血/再灌注心脏:PI3K/AKT和JNKs信号通路间的交互作用[J].生理学报,2007,5:117-125.
    [25]Yang JY, Yeh HY, Lin K, et al. Insulin stimulates AKT translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium[J]. J Mol Cell Cardiol,2009,46(6):919-926.
    [26]Luckey SW, Walker LA, Smyth T, et al. The role of AKT/GSK-3beta signaling in familial hypertrophic cardiomyopathy[J]. J Mol Cell Cardiol,2009,46(5):739-747.
    [27]Hayashidani S, Tsutsui H, Shiomi T, et al. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction[J]. Circulation,2002,105:868-873.
    [28]Schafer A, Fraccarollo D, Eigenthaler M, et al. Rosuvastatin reduces platelet activation in heart failure:role of NO bioavailability[J]. Arterioscler Thromb Vasc Biol,2005, 25:1071-1077.
    [29]单海燕,白小涓,张四扬,等.Ang II诱导血管内皮细胞衰老及凋亡相关基因的表达[J].中国病理生理杂志,2008,24(6):041-047.
    [30]Yasuda S, Kobayashi H, Iwasa M. Antidiabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3Kinase, AKT, and eNOS pathway in a rabbit model of myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2009, 296(5):H1558-556
    [31]陆庆明,邸春霞,王海昌,张荣庆.原发性高血压大鼠骨髓来源内皮祖细胞数量、功能及吡格列酮的预处理[J].中国组织工程研究与临床康复,2008,9:27-30.
    [32]Wang M, Wang Y, Weil B, et al. Estrogen receptor beta mediates increased activation of PI3K/AKT signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol[J],2009,296(4):R972-978.
    [33]Koricanac G, Milosavljevic T, Stojiljkovic M, et al. Impact of estradiol on insulin signaling in the rat heart. Cell Biochem Funct[J],2009,27(2):102-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700