用户名: 密码: 验证码:
基因重组白眉蝮蛇去整合素Adinbitor及其周边序列定点突变体功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究室从产于中国旅顺的白眉蝮蛇(Gloydius blomhoffi brevicaudus)毒腺中提取总RNA,利用自行设计的引物进行RT-PCR扩增,获得了219bp的白眉蝮蛇去整合素基因。将去整合素基因进行克隆、转化与诱导后,得到了该蛋白的可溶性高效表达。经组氨酸亲和层析纯化,获得了分子量为9kD的均质蛋白,并将其命名为Adinbitor。经研究证实;Adinbitor具有去整合素的典型生物活性,即可以显著抑制血小板聚集和血管新生。
     本研究试图通过对去整合素Adinbitor结构的改造从而改变其功能。本研究室已经获得AdinbitorRGD模体突变成为KGD的突变型Adinbitor(以下简称KGD突变体),并证实其不具有抑制血管新生的功能而仅保留抑制血小板聚集的功能[1]。本研究采用引物延伸PCR的方法获得了Adinbitor的突变序列,经转化、表达和纯化后,得到RGD模体前序列RIA突变成RPT的突变型Adinbitor(以下简称RPT突变体)。经血小板聚集实验初步证实,在与野生型Adinbitor相同浓度下,突变型Adinbitor对血小板聚集的影响很小。而据本室报道,野生型Adinbitor可显著性抑制血小板聚集,其IC50为6μmol/L[2]。为进一步阐明该作用的分子机制,运用流式细胞技术分析野生型及两种突变型Adinbitor对CD41及CD62p抗体与血小板膜糖蛋白整合素αⅡbβ3结合的影响。CD41是αⅡbβ3受体的抗体,它可与静止及活化的αⅡbβ3受体发生特异性结合。流式细胞仪检测结果表明野生型和KGD突变型Adinbitor可抑制PE标记的CD41抗体与αⅡbβ3的结合。这种抑制作用呈现出剂量依赖性。说明野生型Adinbitor和KGD突变体可通过占据αⅡbβ3位点,从而发挥其抑制血小板聚集的功能。而在相同浓度下的RPT突变体的作用下,血小板聚集度几乎没有变化,流氏细胞仪检测结果显示该突变体未明显影响CD41抗体与αⅡbβ3的结合,说明突变后,推测该RPT突变可能引起了Adinbitor空间构象的改变,从而导致Adinbitor与αⅡbβ3的亲和力显著降低。而静止血小板与CD62p结合的检测表明:野生Adinbitor及两种突变型Adinbitor均具有活化血小板的功能。
     为研究RIARGD突变成为RPTRGD后Adinbitor是否影响其抑制血管新生功能,用体内实验进一步验证。采用鸡胚绒毛尿囊膜(chicken chorioallantoic membrane,CAM)模型作为本实验的血管生成体内实验模型。运用Image pro plus6.0软件计算新生血管面积与CAM开窗面积的比值,该比值可以比较准确地表现血管新生的情况[3]。本研究室已完成野生型Adinbitor血管新生的研究,证实野生型Adinbitor可显著减少CAM模型新生血管数,血管发生断裂。故本文仅对突变型Adinbitor进行考察,研究结果显示:该突变体可以显著抑制CAM模型的血管新生,血管数明显减少,血管面积与CAM开窗面积的比值随着剂量的加大而减少,阴性对照为14.4%,而加入突变体5μg、20μg、50μg时该比值分别为11.4%、9.4%、6.3%,呈现出剂量依赖性,说明该突变体仍保留有抑制血管新生的功能。
     本文还研究了三种Adinbitor对SSMC7721细胞株增殖、凋亡、黏附、迁移以及侵袭的影响。用Transwell检测Adinbitor对SSMC7721细胞迁移的作用;MTT法检测Adinbitor对SSMC7721细胞增殖的作用;Hoechst33258试剂盒检测Adinbitor对SSMC7721凋亡的影响.Transwell和Matrigel检测两种Adinbitor对SSMC7721细胞侵袭的影响。结果显示:三种Adinbitor均可以显著性抑制细胞的增殖、迁移和侵袭,抑制细胞的黏附,促进细胞的凋亡。说明RPT和KGD突变型Adinbitor均保留了野生型Adinbitor所具有的这些生物活性。
     为深入研究Adinbitor生物活性的分子机制,我们检测了野生型和RPT突变型Adinbitor对Akt信号转导通路的影响。Western-blotting法检测去整合素Adinbitor对信号分子Akt、p-Akt、NF-κB阻遏蛋白IκB-α、RelA(p65)的影响,分光光度法检测其对caspase-3活性的影响.结果显示Adinbitor可显著抑制SSMC7721细胞的迁移和增殖(与对照组比较,p<0.05),促进凋亡。Akt的磷酸化受到抑制,而细胞浆内IκB-α表达增加,细胞核内RelA(p65)表达减少,说明Adinbitor可通过抑制Akt相关信号转导分子的作用而抑制与Akt相关信号分子相关的一系列生物功能,如增殖、迁移、侵袭、黏附等。
     我们同时检测了野生型及RPT突变型Adinbitor促进细胞凋亡的分子机制,Western blotting分析其对SSMC7721细胞p-Caspase-3表达的影响;Caspase-3活性检测试剂盒检测其对p-Caspase-3活性的影响。结果显示:在野生型Adinbitor作用下,胞浆p-Caspase-3含量减少,说明p-Caspase-3被剪切活化成为活性形式。同时活化程度增高,活化倍数在2.24-3.85之间。而RPT突变型Adinbitor亦可使胞浆caspase-3含量减少,活化Caspase-3的倍数在2.22-4.11之间,说明三种Adinbitor均可以通过影响Caspase-3而促进凋亡。
     总之,RPT突变型Adinbitor部分或者全部地去除了其对血小板聚集的抑制作用,同时保留了其对血管新生、细胞迁移、增殖、侵袭、黏附和凋亡的作用。以上生物学活性可能通过其对Akt信号通路的抑制而实验。若将其开发成抗肿瘤药物,其最重要的副作用已经去除。本研究为今后的研究奠定了理论和实验基础。
Adinbitor was cloned from Gloydius blomhoffi brevicaudus and character- rized as a novel disintergrin. Total RNA was extracted from venom gland and RT-PCR was used to generate a cDNA, which was 219 bp long. The sequence encoded a polypeptide with 73 amino acids including 12 cysteines and an RGD motif, the signature motif of disintergrin. Recombinant Adinbitor (rAdinbitor) was expressed in E.coli and purified by using the His-Bind affinity chromatography. In previous study, Adinbitor could dose-dependently inhibit ADP-induced human platelet aggregation in human platelet-rich plasma (PRP) system. The IC50 value of Adinbitor for platelet aggregation was 6μmol/L. Furthermore, Adinbitor significantly inhibited angiogenesis both in vivo and in vitro. Taken together, these results suggested that Adinbitor had typical functions of disintegrins.
     In our previous study, we constructed the site-directed mutagenesis of RGD motif of Adinbitor to KGD (we called it KGD mutant for short). We found that the KGD mutant could inhibit platelet aggregation but couldn’t inhibit angiogenesis in CAM model. In the present study, we constructed the site-directed mutagenesis of Adibibitor. The sequences RIARGD of Adinbitor was mutated to RPTRGD (we called it RPT mutant for short) by the method based on PCR mutagenesis. We evaluated the platelet aggre- gation of the RPT mutant Adinbitor, the results suggested that it had lost the function of inhibiting platelet aggregation. In order to elucidate the molecular mechanism of three kinds of Adinbitor for platelet aggregation, we evaluated the rate of CD41 binding to GPⅡb/Ⅲa by flow cytometry. Our data demonstrated that both the wild type Adinbitor and KGD mutant could inhibit the binding of anti-CD41 antibody toαⅡbβ3 in a dose-dependent manner with an IC50 of 1.72μmol/L and an IC50 of 1.72μmol/L. The effect of RPT mutant Adinbitor on the subsequent binding of anti-CD41 antibody was negligible at the same concentration. We believed that both the wild type Adinbitor and KGD mutant could competitively occupy the binding site of CD41 which then did not allow the binding for CD41 antibody. By mutating the amino acid residues flanking the RGD motif to RPTRGD, a conforma- tional change in the spatial structure of this motif could be suggested, and which resulted in the remarkable decrease in the affinity for integrinαⅡbβ3.
     Angiogenesis, the formation of new capillaries from pre-existing vessels, is involved in the pathogenesis of inflammatory diseases as well as in tumor progression. The CAM model provides an excellent method to investigate the role of a wide spectrum of pro- or antiangiogenic substances. In our study, the RPTRGD Adinbitor mutant inhibited angiogenesis in the CAM model significantly versus the control group, p<0.05. The ratio of the vessel numbers to the total CAM area exposed of the control group was 14.4%, the ratio of 5μg, 20μg and 50μg group were 11.4%, 9.4%, and 6.3%, respectivaly.
     The results demonstrated that the mutant Adinbitor had maintained the biological function of inhibiting angiogenesis while it was no longer to inhibit platelet aggregation. This strategy may represent a novel potential anti-tumor agent devoid of the potential side effect on inhibiting blood clotting.
     We also explored the effects of three kinds of Adinbitor on cell proliferation, apoptosis, migration, invasion and adhesion. MTT assay was used to detect the effect of the Adinbitors on proliferation. SSMC7721 cells were incubated with different concentrations of Adinbitor and stained by fluorescence dye Hoechst 33258 to observe apoptosis .Transwell was used to explore the effect of three kinds of Adinbitor on cell migration. Transwell and matrigel were used to observe the effect of Adinbitor on cell invasion. Our results showed that three kinds of Adinbitor could inhibit cell proliferation and enhance cell apoptosis. All of them could inhibit cell migration and invasion significantly.
     In order to elucidate the mechanism of three kinds of Adinbitor for apoptosis, the amount of caspase-3 was detected by Western blotting. Spectrophotometric method was selected to explore the activity of caspase-3. The results showed that the amounts of caspase-3 in cytoplasm were decreased. The activity of caspase-3 was increased remarkably.
     In order to elucidate some of the potential underlying mechanism by which Adinbitor inhibited angiogenesis, we explored the effects of the mutant Adinbitor on the signaling molecules Akt, p-Akt, NF-κB, IκB-α, RelA ( p65 ) NF-κB by Western blotting. NF-κB had previously been demonstrated to have critical role for endothelial cell migration, angio- genesis, and tumor metastasis. The results indicated that the phosphory- lation of Akt was inhibited, the expression of IκB-αin cytoplasm increased, the expression of RelA(p65)in nucleus decreased significantly. Our results suggested that these effects of both the wild type and RPT mutant Adinbitor were at least through Akt, which activated NF-κB. These results should provide clues for a better understanding of the mechanisms underlying angiogenesis.
     In summary, the mutation of RIA residues at the flank of RGD to RPT decreased the binding affinity for integrinαⅡbβ3. Wild type Adinbitor’s function of inhibiting platelet aggregation had been eliminated in the mutant Adinbitor by this same mutation. However, the RPT mutant Adinbi- tor could still inhibit angiogenesis possibly through an Akt and NF-κB dependant pathway. Adinbitor as a potential anti-tumor agent would always suffer from the potential undesirable side effect of platelet aggregation inhibition. This experiment lays a ground work for understanding the influence between primary protein structure and the effects on spatial structure in proteins, and the interactions between proteins. In future studies, it may be possible to obtain molecules with a higher specificity for integrinαvβ3 or for integrinαⅡbβ3 by further mutagenesis.
引文
1.王敏,顾健.血管新生在急慢性白血病中的研究及临床评价,白血病·淋巴瘤2006;15(2):118-120
    2. Ogunshola O O,Antic A,Donoghue M J.Paracfine and antocrine functions of neuronal vascular endothelial growth factor(VEGF) in the central nervous system, J Biol Chem2002;277(13):l1410-114155.
    3. Wirostko B, Wong T Y,SimóR.Vascular endothelial growth factor and diabetic complications,Prog Retin Eye Res2008; 27( 6): 608-621
    4. Gupta S, Goldberg JM, Aziz N, et al.Pathogenic mechanisms in endometriosis- associated infertility, Fertil Steril2008;90(2): 247-257
    5. Wei L,Erinjeri JP,Rovainen CM,et al.Collateral growth and angiogenesis around cortical stroke,Stroke 2001;32:2179-2184
    6. Kasama T,Kobayashi K,Yajima N, et al.Expression of vascular endothelial growth factor by synovial fluid neutrophils in rheumatoid arthritis,Clin Exp Immunol 2000;121(3):533-538
    7. Plate KH,Breior G,Weich HA,et al.Angiogenesis:molecule and mode,Nature 1992;359:845-848
    8. Schaper W, Ito WD.Molecular Mechanisms of coronary collateral vessel Growth, Circulation Res 1996;79(5):911-919
    9. Folkman J,Haudenschild C.Angiogenesis in vitro,Nature 1980; 288: 551-556.
    10. D’Amore P A. Capillary Growth: a two-cell system.Semin,Cancer Biol1992; 3(2): 49-56
    11. Ferrara N,Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cell,Biochem Bioph Res Co 1989; 161(2):851-858
    12. Xiao Z,WangY,Lu L, et al. Anti-angiogenesis effects of meisoindigo on chronic myelogenous leukemia in vitro, Lewkemia Res 2006;30(1):54-59
    13. DeVeies C,Escobedo JA,UenoH.et a1.The fms-like tyrosine kinase,a receptor for vascular endothelial growth factor,Science1992;255 (5047):989-991
    14.金惠铭.心血管疾病中的血管新生与促血管新生治疗,中国病理生理杂志2002;18(13):1638-1641
    15. Wanami L S,Chen HY,PeiróS, et al. Vascular endothelial growth factor-A stimu- lates snail expression in breast tumor cells :implication for tumor progress-sion ,Exp Cell Res 2008; 314(13):2448-2453
    16. Su J L, Chen P S, Chien M H, et al. Further evidence for expression and function of the VEGF-C/VEGFR-3 Axis in cancer cells ,Cancer Cell 2008;13(6): 557- 560
    17. Roskoski R Jr. Vascular endothelial growth factor(VEGF)signaling in tumor progression,Crit Rev Oncol Hemat 2007;62(3):179-213
    18. Shang Z J, Shao Z, Zhang WF,et al.P25 overexpression of EphA2 and VEGF in relation to tumor angiogenesis and clinical outcome of tongue cancer,Oral Oncol Suppl 2007;2(1):139
    19. Klein M, Catargi B.VEGF in physiological process and thyroid disease,Ann Endocrinol 2007;68(6):438-448
    20. Ohta M,Konno H,Tanaka T,et a1.The significance of circulating vascular endothelial growth factor(VEGF) protein in gastric cancer,Cancer Lett 2003; 192 (2): 2I5-225.
    21. Maehara K A,Koga T,et a1.Vascular invasion and potential for tumor angio- genesis and metastasis in gastric carcinoma,Surgery 2000;128(3): 408-416.
    22. Wong C,Wellman TL,Lounsbury KM.VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer, Gynecol Oncol2003; 91(3): 513-517.
    23. Gadducci A,Viacava P,Cosio S,et a1.Vascular endothelial growth factor (VEGF) expression in primary tumors and peritoneal metastases from patients with advanced ovarian carcinoma,Anticancer Res 2003;23(3C):3001-3008
    24.常宏,吴泰璜,穆庆岭,等.VEGF与MMP-2在肝细胞肝癌中的表达及其临床意义,山东医药2003;43(27):14-15
    25. Suzuki K,Hayashi N,Miyamoto Y,et a1.Expression of vascular permeability factor/ vascular endothelial growth factor in human hepatocellular carcinoma, Cancer Res 1996;56(13):3004-3009
    26.向昕,刘志伟。顾万清.等. TACE后肝癌微血管密度及VEGF表达与再手术治疗,肝胆外科杂志2004;12(1): 24-26
    27. Gunningham SP,Currie M J,Han C,et a1. Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcino- mas: regulation by the von Hippel-lindau gene and hypoxia,Cancer Res 200;61(7): 3206-321
    28. Saad RS,Liu YL,Nathan G, et al.Endoglin(CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer,Mod Pathol 2004; 17(2):197-203
    29. Perez-Atyde AR,Sallan SE,Tedrow U, et al.Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia,Am J Pathol 1997;150(3):815-821
    30. Aguayo A.Kantarjlan H,Manshouri T ,et a1.Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes, Blood 2000;96(6): 2240·2245
    31. Perez-Atayde A R ,Sallan S E.Tedrow U,et a1.Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastie leukemia,Am J Patho1 1997;150(3): 815-821.
    32. Padro T,Ruiz S,Bieker R,et a1.Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia,Blood 2000;95(8): 2637-2644.
    33. Ribatti D,Vacca A,Nico B, et a1.Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma,Br J Haematol1999;79 (4): 451-455
    34. Dachs G U,Tozer G M. Hypoxia modulated gene expression: angiogenesis , metastasis and therapeutic exploitation,Eur J Cancer 2000;36(13):1649-1660
    35. Aita M,Fasola G,Defferrari C, et al. Targeting the VEGF pathway: Antiangio- genic strategies in the treatment of non-small cell lung cancer,Crit Rev Oncol Hemat 2008;68(3):183-196
    36. Sato T. Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance, Pharmacol Ther 2000;87(1):51-60
    37. Blancher C,Moore JW,Talks KL,et a1.Relationship of hypoxia . inducible factor(HIF)- 1 alpha and HIF-2 alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines,Cancer Res2000;60(24): 7106-7113.
    38. Gerber HB,Condorelli F,Park J,et a1.Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes.Fh-1,but not Flk- 1/ KDR,is up-regulated by hypoxia,J Biol Chem1997;272(38): 23659-23667.
    39. Holash J,Maisonpierre PC,Compton D,et a1. Vessel eooptionregression, and growth in tumors mediated by angiopoietins and VEGF,Science1999;284:1994- 1998
    40. Risau W.Mechanisms of angiogenesi , Nature1997;386:671-674
    41. Harada H,Nakagawa K,Iwata S,et al.Restoration of wild–type p16 down regu- lates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas,Cancer Res1999;59(15);3783-3789
    42. Teodoro JG, Parker AE, Zhu XC,et al. P53 mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase ,Science 2006 ;313: 968-971
    43. Cardone MH,Roy N,Stennicke HR,et al.Regulation of ce11 death protease caspase-9 by phosphorylation,Science 1998;282(5392): 1318-1321.d angio- poietins-1 and -2 during ischemia-induced coronary angiogenesis,Am J Physiol Heart Cire Physiol 2003;285(1):H352- H358.
    44. Koga K,Todaka T,Mofioka M,et al.Expression of angiopoietin-2 in human glioma cells and its role for angiogenesls,Cancer Res 2001;61(16): 6248-6254
    45. Stoeltzing O,Ahmad SA,Liu W,et a1.Angiopoietin-1 inhibits vascular permea- bility angiogenesis and g..
    46. Menon J,Soto-Pantoja DR,Callahan MF,et a1.Angiotensin (1-7)inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase- 2,Cancer Res2007;67(6): 2809-281
    47. Oka N,YamamotoY,Takahashi M,et al.Expression of angiopoietin- 1 and- 2,and its clinical significance in human bladder cancer,BJU Int 2005;95(4): 660-663
    48. Torimura T,Ueno T,Kin M,et a1.Overexpression of angiopoietin- 1 and angio- poietin- 2 in hepatocellular carcinoma,J Hepatol 2004;40(5): 799-807
    49. Sugimachi K,Tanaka S,Tagnchi K,et a1.Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma,J Clin Pathol 2003; 56(1 1): 854-860.
    50. Holmgren L,et al.Dormancy of micrometestases ;Blanced proliferation and apoptosis in the presence of angiogenesis suppression,Nature Med1995; 1:149- 153
    51. Herbst RS , Hess KR,Tran I-IT,et a1.PhaseI study of recombinant human endostatin in patients with advanced solid tumorsm.J Clin Oncol,2002,20(18): 3792-380
    52.车国卫,刘伦旭,周清华.肿瘤休眠及其机制研究进展,癌症2006;25(10):1315-131
    53. Hurwitz H,Fehrenbacher L,Novotny W,et al.Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer, N Engl J Med2004;350(23): 2335-2342
    54. Gatto B,Cavalli M.From proteins to nucleic acid-based drugs:the role of biotech in anti-VEGF therapy,Anti cancer Agents Med Chem2006;6(4): 287-301.
    55. Ranieri G,Patruno R,Ruggieri E,et a1.Vascular endothelial growth factor(VEGF)as a target of bevacizumab in cancer:from the biology to the clinic,Curr Med Chem 2006;l3(16): 1845-1857.
    56. Chapman JA,Beckey C.Pegaptanib:a novel approach to ocular neovascularization, Ann Pharmacother 2006;40(7-8): 1322-1326.
    57. Tozer GM,Kanthou C,Baguley BC. Disrupting tumor blood vessels ,Nat Rev Cancer 2005; 5:423-426
    58. Denton MD, Magee C, Melter M,et al.TNP-470,an angiogenesis inhibitor, attenuates the development of allograft vasculopathy,Transplantation 2004; 78 (8):1218-1221
    59. Tran HT,Blumenschein GR Jr,Lu C,et a1.Clinical and pharmacokinetic study of TNP-470, an angiogenesis inhibitor, in combination with paclitaxel and carbo- platin in patients with solid tumors,Cancer Chem Phar 2004;54(4): 308-314.
    60.邓永强.TNP-470联合应用其它疗法抗肿瘤治疗的研究进展,国外医学口腔学分册2001;28(6):341-344
    61. Colombo MP,Trinchieri G.Interleukin-12 in antitumor immunity and immuno- therapy,Cytokine Growth F R2002;13(2):155-168
    62. Putzer BM,Rodicker F,Hitt MM, et a1. Improved treatment of pancreatic cancer by IL 12 and B7.1 costimulation: antitumor efficacy and immunoregulation in a nonimmunogenic tumor model,Mol Ther 2002;5(4): 405-412.
    63. Marler JJ,Rubin JB,Treds NS, et al.Successful antiangiogenic therapy of giant cell angioblastoma with interferon alfa 2b:report of 2 cases,Pediatrics 2002; 109:E37-42
    64. Shepherd FA,Beaulieu R,Gelmon K,et al.A prospective randomized trial of two dose levels of interferon-alpha with zidovudine for the treatment of Kaposi’s sarcoma associated with human immunodeficiency virus infection,J Clin Oncol 1998;16:1736-1741
    65.高勇,王杰军,许青,等.人参皂甙Rg3抑制肿瘤新生血管形成的研究,第二军医大学学报2001;22(1):40-42
    66.朱瑾波,户田宪一,今村贞夫,等.雷公藤对培养血管内皮细胞生物学活性的影响——关于新生血管方面,中国中医科技1996;3(1):16-18
    67.徐中平,李福川,王海仁.昆布多糖硫酸酯的抑制血管生成和抗肿瘤作用,中草药1999;30(7):551—553
    68.李墨林.蟾酥对小鼠膀胱癌的抗癌作用研究,中医药学刊,2004,4.
    69. Fong TA,Shawver LK,Sun L, et al.SU5146 is a potent and selective inhibitor ofthe vascular endothelial growth factor receptor(Flk-1/KDR)that inhibits tyrosine kinase catalysis ,tumor vascularization and growth factor of multiple tumor types, Cancer Res1999;59(1):99-106
    70. Laschke MW,Elitzsch A,Vollmar B,et a1.Combined inhibition of vascular endothelial growth factor(VEGF), fibroblast growth factor and platelet-derived growth factor but not inhibition of VEGF alone effectively suppresses angio- genesis and vessel maturation in endometriotic lesions,Hum Reprod 2006; 21(1): 262-268.
    71. Bergers G,Song S.Meyer-Morse N,et a1.Benefits of targeting both pericytes and endothelial cells in the tumor vascularture with kinase inhibitors,Clin Invest 2003;11(9): 1287-1292
    72. Olivo M,Lye KY,et a1.Enhancing the therapeutic responsiveness of photo- dynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models,Cancer Chemoth Pharm 2005;56(6): 569 -577.
    73. Ohta M ,Konno H,Tanaka T,et a1.The significance of circulating vascular endothelial growth factor(VEGF)protein in gastric cancer,Cancer Lett 2003;192 (2): 215-225.
    1.王继红,任凤,吴毓等.白眉蝮蛇去整合素Adinbitor的基因克隆、表达及部分生物学活性,中国生物化学与分子生物学报2004;20(6):745-749
    2. Wang JH, Wu Y, Ren F, et al.Cloning and characterization of Adinbitor, a novel Disintegrin from the Snake Venom of Agristrodon halys brevicaudus stejnerger, Acta Bioch Bioph Sin 2004;36(6):425-429
    3.许扬,赵英凯,毕明刚等.Image–Pro plus图像分析软件定量鸡胚尿囊膜血管新生面积的方法,中国比较医学杂志2007;17(12)745-748
    4. Robert JG, Mark AP, Paul AF, et al. Disintegrin: a family of integrin inhibitory proteins from veper venoms, Proc Soc Exp Bio Med 1990;195: 168~171
    5. Lu X,Williams JA,Deadman JJ, et al.Preferential antagonism of the interactions of the integrinαIIbβ3 with immobilized glycoprotein ligands by snake-venom RGD(Arg-Gly-Asp), J Biochem1994;304,929-936
    6. Wang WJ,Shih CH,Huang TF.Primary structure and antiplatelet mechanism of a snake venom metalloproteinase ,acurhagin,from agkistrodon acutus venom, Biochimie 2005;87:1065-1077
    7. Brooks PC,Montgomery AM,Rosenfeld M,et al.Integrin alpha v beta 3 antago- nists promote tumor regression by inducing apoptosis of angiogenic blood vessels,Cell 1994;79:1157-1164
    8. Kang IC,Lee YD,Kim DS, et al.A novel disintegrin salmosin inhibits tumor angiogenesis,Cancer Res 1999;59:3754-3760
    9. Pierschbacher MD,Ruoshlahti E.Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion,J.Biol Chem 1987; 262:17294-17298
    10. Zhang X-P, Kamata T, Yokoyama K, et al.Specific interaction of the recombinant disintegrin–like domainof MDC-15(metargidin ,ADAM-15) with integrinαvβ3, J Biol Chem 1997;273 (13) :7345-7350
    11. Jeon Ok-H, Kim D, Choi Y-J, et al.Novel function of human ADAM15 disintegrin like domain and its derivatives in platelet aggregation,Thromb Res2007; 119: 609-619
    12.罗师,希岗.基于PCR的体外诱变技术,国外医学生物医学工程分册2005;(3):188-192
    13. Pfaff M,Tangemann K,Moller B, et al.Selective recognition of cyclic RGD peptides of NWR defined conformation byαIIbβ3 andαvβ3andα5β1 integrins,J Biol Chem 1994;269:20233-20238
    14. Rahman S,Aitken A,Flynn G, et al.Modulation of RGD sequence motifs regulates disintegrin recognition ofαIIbβ3 andα5β1 integrin complexes, J Biol Chem 1998;335 :247-257
    15. Scarborough R M,Rose JW, Naughton M A, et al Characterization of the Integrin Specificities of disintegrins isolated from Amercian Pit viper venoms,J Biol Chem1993;268(2):1058-1065
    16. Ruoslahti E, Pierschbacher MD. New perspective in cell adhesion: RGD and integrins,Science 1987;238: 491-497
    17. Kang IC,Lee YD,Kim DS, et al.A novel disintegrin salmosin inhibits tumor angiogenesis,Cancer Res 1999;59:3754-3760
    18.章良,吴梧桐.蛇毒抗肿瘤组分的究进展,动物学杂志2003;38(6)120-4
    19. Ruoslahti E, Pierschbacher MD. New perspective in cell adhesion: RGD and integrin ,Science 1987;238: 491-497
    20. Calvete J J,Marcinkiewicz C,Monleon D,et al.Snake venom disintegrins: evolution of structure and function,Toxicon 2005;45:1063-1074.
    21. Sanchez EE,Galan JA,Russell WK,et al.Isolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus(Mohave rattlesnake), Toxicol Appl Phar 2006;212:59-68
    22. Zhou XD,Jin Y,Chen RQ,et al.Purification,cloning and biological characteri- zation of a novel disintegrin from Trimesurus jerdomiivenom,Toxicon 2004;43(1) 69-75
    23. A.W. Nap, G.A. Dunselman, A.W. Griffioen, et al., Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane,Fertil Steril 2005;83: 793-795
    24. Neuyen M,Shing Y,Folkman J.Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrance,Microvasc Res 1994;47(1):31-40
    25. Vacca A,Presta M, et al.Integrn alpha V beta engagement modulates cell adhension,proliferation,and protease secretion in human lymphoid tumor cells, Exp Hematol 2001;29:993-1003
    26. Liapis H,Elath A,Kitazawa S, et al.Integrin alpha V beta 3 expression by bone– residing breast cancer matastasis,Diagn Mol Pathol 1996;5(2):127-135
    27. Yun Z,Menter DG, Nicolson G, et al.Involvement of integrin alpha V beta 3in cell adhension,motility and liver metastasis of murine RAW 117 large cell lymphoma, Cancer Res 1996;56:3103-3110
    28. Patey M,Delener B,Bellon G,et al.Immunohistochemical study of thrombos- pondin and its receptorsαvβ3 and CD36 in nomal thyroid and in thyroid tumors,J Chin Pathol 1999;52:895-900
    29. Kim D-S, Jeon O-H, Lee H-D,et al.Integrinαvβ3-mediated transcriptional regulation of TIMP-1 in a human ovarian cancer cell line,Biochem Bioph Res Co. 2008;377(2) :479-483
    30. Liotta LA. Tumor invasion and metastases-role of the extracellular matrix, Cancer Res 1986; 46(1): 1-7
    31. Rossi F,Rossi E, Pareti F I,et al.In vitro measurement of platelet glycoprotein Ⅱb/Ⅲa receptor blockade by abciximab :interindividual variation and increased platelet secrertion,Haematol 2001;86(2): 192-198
    32. Lei D Q,Zhou XL,Li YX.Purification of a small peptide to inhibit platelet aggregationfor A gkistrodon acutus venom,Chin Pharmacol Bull 2006; 22 (9): 1126-9
    33. Peter K,Schwarz M,Ylane J,et al.Induction of fibrinogen binding and platelet aggregation as a potential intrinsic property of various glycoprotein IIb/IIIa (alphaIIbbeta3)inhibitors, Blood 1998;92(9)3240-9
    34. Huang GF, Zhou ZM, Srinivasan R, et al.Affinity manipulation of surface- conjugated RGD peptide to modulate binding of liposomes to activated platelet, Biomaterials 2008;29(11):1676-1685
    35. Wang X X,Li X Z,Liu H L.Mechanism of AoGDW inhibiting platelet aggregation, Chin Pharmacol Bull 2007;23(5):6295-9
    36. Xu J,Cai J,Peek SF,et al.Characterization of equine P-selectin glycoprotein ligand-1by using a specific monoclonal antibody ,Vet Immunol Immunop 2008; 121(1-2):144-149
    37. Bozulic L,Hemmings B A.PIKKing on PKB:regulation of PKB activity by phosphorylation,Curr Opin Cell Biol 2009;21(2):256-261
    38. Chin YR,Toker A. Function of Akt/PKB signaling to cell motility, invasion andthe tumor stroma in cancer,Cell Signal 2009;21(2):470-476
    39. Jalali S,Aghasi M,Yeganeh B, et al.Calreticulin regulates insulin receptor expression and its downstream PI3 kinase/Akt signaling pathway,BBA-Mol Cell Res 2008;1783(12):2344-51
    40. Stadler M E,Patel M R,Louch MC,et al. Molecular biology of head and neck cancer:risks and pathways, Hematol Oncol Clin N 2008;22(6): 1099-1124
    41. Rojo F, Albanell J,Rovira ,et al. Target therapies in breast cancer,Semin Diagn Pathol 2008;25(4):245-261
    42. Hewson QD, Lovat PE, Corazzari M, et al. The NF-κB pathway mediates fenretinide induced apoptosis in SH-SY5Y neuroblastoma cells,Apoptosis 2005;10(3):493-498
    43.黄文林,朱孝峰等.信号转导.北京:人民卫生出版社,2005.136-139
    44. Li Q, Verma IM. NF-kappa B regulation in the immune system,Nat Rev Immunol 2002;2(10):725-734
    45. Huang CY,Fong YC,Lee CY, et al.CCL5 increases lung cancer migration via PI3k,Akt and NF-κB pathways,Biochem Pharmacol 2009; 77(5): 794-803
    46. Naugler W E,Karin M. NF-κB and cancer-identifying targets and mechanisms,Curr Opin Genet Dev 2008;18(1):19-26
    47.来茂德.凋亡与坏死及相关问题,浙江大学学报(医学版)2001;30( 6):245-247
    48. Boosni C S,Cosgrove D,Sudhakar A, et al. Regulation of caspase-3 mediated apoptosis and tumor angiogenesis,Matrix Biol 2008;27(1):18
    49. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase3/CPP32 to apoptosis and its associated nuclear changes.Genes Dev1998;12 (6): 806-819

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700