基于三维SVMs的肺部CT中的结节检测算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机辅助肺部CT图像中的结节检测技术属于数字图像处理和医学的交叉课题。可靠的检测结果需凭借有效的图像分割、特征提取和机器学习技术。
     候选结节的分割与提取,及其精确识别(去除假阳性)是计算机辅助肺部结节检测的两大主要部分。针对这两个部分,国内外现有算法主要的研究重点可以归纳为:
     (1)在候选结节的分割和提取这一环节,研究重点是对因为与正常组织粘连程度较大而被漏检的候选结节的修复。由于某些粘连型结节与周围的正常组织灰度相近,无论用灰度阈值法或基于滤波器的图像增强法都很难加以区别;而由于肺部组织的复杂性,也很难用模板匹配法提取。
     (2)在候选结节的精确识别(去除假阳性)这一环节,研究重点是去除一些由于大的血管和支气管的截面造成的假阳性判断。肺部结节通常被定义为一定半径范围内的类圆形,而大的血管和支气管在二维CT断层中的截面通常也为类圆形,很难加以区分;另外,传统的机器学习方法如神经网络等,存在网络不稳定(对初始权值敏感)、维数灾难、过收敛和局部最小化等问题,严重制约识别效果。
     针对以上问题,论文的主要研究目标为:在三维矩阵中分析候选结节的三维特性,以存在于连续断层间的候选结节的三维感兴趣体(Volume of Interest, VOI)代替传统方法中的单幅CT图像中的二维感兴趣区(Region of Interest, ROI),作为提取和识别的对象,有效提高检测精确度、抑制假阳性判断。具体内容如下:
     (1)为了在三维空间中分析更多的有用信息,以达到有效去除肺部各组织之间的粘连的目的,提出一种基于快速三维主成分分析(Three Dimension Principal Component Analysis,3DPCA)的肺部病灶提取算法。首先用3DPCA法在CT序列构成的三维空间内提取特征点;然后,以提取出的特征点为种子点,进行区域生长以获取完整的疑似病灶区域;最后,根据医学图像具体特征,设计一种高维张量奇异值分解(Higher-order Tensor Singular Value Decomposition, HOSVD)的简化分解算法来降低3DPCA的计算复杂度。3DPCA相比于传统的2DPCA,可在一定程度上提高病灶区的提取精度;另外,快速3DPCA与3DPCA比较,计算次数可降低到约为原来的1/3。
     (2)为了有效修复由于与正常组织粘连程度较大而被漏提取的结节,提出一种基于相邻模板限制的区域生长法的候选结节提取算法。首先结合阈值法、圆点滤波器增强法和滚球法对整个CT序列进行逐层地预提取;然后,以所有包含候选结节的断层作为基准层,以候选结节的位置作为基准位置,以基准层的肺区作为限制条件,在相邻层中寻找种子点并进行区域生长,有效修复被漏提取的候选结节,并构成候选结节的三维VOI。通过实验可以证明,该方法的提取效果优于单独的滚球法、区域生长法,以及Snake算法、GVF Snake算法。提取出的三维VOI是下一步的基于三维SVMs精确识别(去除假阳性)的基础。
     (3)为了有效提高候选结节的识别精度,考虑以三维VOI作为分类器的识别对象,代替传统算法中的二维ROI,提出基于三维矩阵模式的支持向量机(Support Vector Machines based on 3D matrix, SVMs3Dmatrix)算法,可以处理基于三维矩阵模式的输入样本。
     a.展开模式的SVMs3Dmatrix
     首先利用高维张量的展开方法(本文中指三维矩阵),将基于三维矩阵模式的输入样本从三维空间的三个方向展成三个不同的二维矩阵;然后,分别对每个二维矩阵进行基于矩阵模式的SVMs (SVMs based on matrix, SVMsmatrix)的识别,得到三个不同的决策函数;最后利用三人投票选举法得到最终决策。
     b.非展开模式的SVMs3Dmatrix
     利用三维矩阵的乘法法则,改进传统SVMs,使之可以直接处理基于三维矩阵模式的输入样本,而避免了三维矩阵的展开:通过增加右乘向量的方式来重新构造优化条件;然后利用梯度下降法迭代地求解原来的左乘向量和两个新增的右乘向量。
     通过实验可以证明,SVMs3Dmatrix与二维线性判别分析(Two Dimension Linear Discrimination Analysis,2D-LDA)、大规模样本训练的神经网络(Mative Training Argificial Nural Network, MTANN)、SVMsmatrix相比,可以更精确地区分结节与非结节。并且,非展开模式的SVMs3Dmatrix与展开模式的SVMs3Dmatrix相比,由于可以直接处理基于三维矩阵模式的输入而避免分别处理三个展开后的大矩阵,在提高分类精确度的基础上进一步减少内存占用。
     (4)为了更好地符合肺部结节的复杂性、多样性,在二分类SVMs3Dmatrix基础上,进一步提出多分类的SVMs3Dmatrix (Multi-class SVMs3Dmatrix, MC-SVMs3Dmatrix)。首先分析当前存在的多种MC-SVMs方法,选择一种可以并行处理多分类问题且不存在“不可分类区”这一缺陷的一种基于编码的MC-SVMs,将之与二分类的SVMs3Dmatrix相结合,设计一种基于编码的MC-SVMs3Dmatrix。通过实验可以证明,MC-SVMs3Dmatrix的识别效果更优于二分类SVMs3Dmatrix。
     本文数据来自于XX肿瘤医院胸一、胸二、胸三,三个科室从2009.6-2010.6的96组临床病例,每一组均配有专家会诊后的批注。用国际上计算机辅助肺部结节检测中几种较新算法与本文算法做出比较,并用通用的ROC曲线方法分析实验结果,可以证明本文算法的有效性。
Computer-aided Diagnosis (CAD) of lung nodules is the intersecting subject of image processing and medicine. Realible results of lung CAD depend on effective image segmentation, extraction and machine learning technology. Lung CAD usually includes two main parts:extraction and accurate recognition of potential nodules. Major focuses of the two parts by current lung CAD schemes can be summarized as follows:
     (1)In the part of segmentation and extraction, researches focus on repairing the lossed nodules which adhere to normal structure seriously. As gray level of these juxta-nodules is usually similar to the surrounding normal structures, they are hard to be distinguished from normal structures by threshold method and image enhancement; On the other hand, as the complex of lung areas, they are hard to be extracted by mask matching.
     (2)In the part of accurate recognition, researches focus on removing False Positives (FP) caused by some large vessels and bronchus. Lung nodules usually are defined as sphere with the diameter in a certain range, but cross profiles of some large vessels are also sphere, which would increase FP. In addition, instability, minimization and overfitting of some traditional machine learning methods such as Nerual Network (NN) would affect seriously the performance of recognition.
     Aiming at above problems, main purpose in the paper is effectively improving the performance of classifiers. It would be achived by analyzing 3D features of potential nodules in 3D space, and 3D Volum of Interest (VOI) of potential nodules in successive sections are chosen as the identify object instead of 2D ROI. The details are as follows:
     (1)In order to analyze more information in 3D space and effectively remove the adhesions between different structures, a fast Three Dimension Principle Component Analysis (3DPCA) is presented. Firstly, feature points in 3D space made up of a CT set are extracted by 3DPCA; Secondly, region grow method is used to obtain the whole suspected lesions by choosing the feature points as the seed points; Lastly, a fast decomposition algorithm of Higher-Order Singular Value Decomposition (HOSVD) is designed in order to reduce computation of 3DPCA. Recognition accuracy of lung lesions is improved by 3DPCA comparing with traditional 2DPCA, and computation is reduced to 1/3 by fast 3DPCA.
     (2)In order to repair lossed potential nodules which adhere to normal structure seriously, extraction algorithm based on restrict by successive sections is proposed. Firstly, potential nodules in all sections are extracted respectively by combining of threshold method, image enhancement (by Dot Filter) and rolling ball method; Secondly, let the sections including potential nodules as base sections, locations of potential nodules as base locations and lung area of base sections as restrict conditions; At last, lossed potential nodules are repaired by region grow method. It is proved by experiment that the lossed nodules can be repaired more effectively by above extraction algorithm comparing with rolling ball method, region grow method, Snake and GVF Snake method. And 3D VOI of potential nodules are made for further recognition.
     (3)In order to improve performance of recognition,3D VOI of potential nodules are chosen as the identification objects instead of traditional 2D ROI. For above reason, SVMs3Dmatrix which can process the input samples based on 3D matrix patterns is proposed.
     a.Unfolding SVMs3Dmatrix
     Firstly, unfolding method of high-order tensor is used to unfold the input sample based on 3D matrix into three 2D matrixes; Secondly, SVMsmatnx is used to obtain three decisions of the three 2D matrixes; At last, the three people's voting method is used to obtain the final decision.
     b.Non-unfolding SVMs3Dmatrix
     Multiplication of 3D matrix is used to design non-unfolding SVMs3Dmatrix, which can process input samples based on 3D matrix patterns directly and avoiding unfolding. Firstly, new optimum codition of SVMs is conducted by increasing two right-vectors; Secondly, the left-vector and two right-vectors can be solved iteratively by the gradient descent method.
     It is proved by experiment that the perfomence of SVMs3Dmatrix is better than that of Two Dimension Linear Discrimination Analysis (2D-LDA), Massitive Training Artificial Neural Network (MTANN) and SVMsmatrix. Furthermore, as avoiding the unfolding, memory occupy of non-unfolding SVMs3Dmatrix is effectively reduced comparing with that of unfolding SVMs3Dmatrix.
     (4) In order to better meet complex and variety of lung nodules, Multi-class SVMs based on 3D matrix pattern (MC-SVMs3Dmatrix) is further designed on the basis of two-class SVMs3Dmatrix. Firstly, several current MC-SVMs are compared, and sencondly, one based on encoding is chosen to be extended to MC-SVMs3Dmatrix. It is proved by experiment that the performance of MC-SVMs3Dmatrix is better than that of two-class SVMs3Dmatrix.
     Data set in the paper is made up of 96 cases form Chest No.1-No.3 in XX Tumor Hospital (2009.6-2010.6). All of them are with expert notations. Other CAD schemes and method in the paper are compared by ROC. The results confirm the availability of the method in the paper.
引文
[1]李连弟,鲁凤珠,张思维等.中国恶性肿瘤死亡率20年变化趋势和近期预测分析[J].中华肿瘤杂志.1997,19(1):3-9.
    [2]陈万青,张思维,邹小农.中国肺癌发病死亡的估计和流行趋势研究[J].中国肺癌杂志.2010,13(5):488-493.
    [3]Jaffar M. A., Hussain A., Anwar M. M. Fuzzy Entropy based Optimization of Clusters for the Segmentation of Lungs in CT Scanned Images[J]. Knowledge and Information Systems.2010,24(1):91-111.
    [4]Hoffman E. A., Mclennan G.. Assessment of the Pulmonary Structure-function Relationship and Clinical Outcomes Measures Quantitative Volumetric CT of the Lung[J]. Academic Radiology.1997,4(11):408-417.
    [5]Samuel G. A. Ⅲ, Maryellen L. G.., Catherine J. M., et al. Computerized Detection of Pulmonary Nodules on CT Scans. Imaging& Therapeutic Technology [J]. 1999,19:1303-1311.
    [6]Lin D. T., Yan C. R. Lung Nodule Identification Rules Extraction with Neural Fuzzy Network[C]. Proceeding of the 9th International Conference on Neural Information. 2002,4:2049-2053.
    [7]Gurcan M. N., Sanhiner B., Petrick N. Lung Nodule Detection on Thoracic Computed Tomography Images:Preliminary Evaluation of a Computer-aided Diagnosis Systems [J]. Med Phys.2002,29:2552-2558.
    [8]Ge Z. Y., Sahineer B., Chan H. P., et al. Computer-aided Detection of Lung Nodules: False Positive Reduction Using a 3D Gradient Field Method and 3D Ellipsoid Fitting[J]. Med Phy,2005,32:2443-2454.
    [9]Zhao B. S., Gamsu G, Ginsburg M. S., et al. Automatic Detection of Small Lung Nodules on CT Utilizing a Local Density Maximum Algorithm[J]. Journal of Applied Clinical Medical Physics.2003,4:248-260.
    [10]El-Baz A, Farag A. A., Falk R., et al. A Unified Approach for Detection, Visualization and Identification of Lung Abnormalities in Chest Spiral CT Scan. Proceedings of Computer Assisted Radiology and Surgery[C].2003,1256:998-1004.
    [11]Antonelli M., Lazzerini B., Marcelloni F. Segmentation and Reconstruction of the Lung Volume in CT Images.20th Annual ACM Symposium on Applied Computing[C].2005,1:255-259.
    [12]Kim, D. Y., Kim, J. H., Noh, S. M., et al. Pulmonary Nodule Detection Using Chest CT Images[J]. Acta. Radiol.2003,44:252-257.
    [13]Kuhnigk J.-M., Dicken V., Bornemann L., et al. Morphological Segmentation and Partial Volume Analysis for Volumetry of Solid Pulmonary Lesions in Thoracic CT Scans[J]. IEEE Trans. Med. Imaging.2006,25:417-434.
    [14]Paik D. S., Beaulieu C. R, Rubin G. D., et al. Surface Normal Overlap:a Computer-aided Detection Algorithm with Application to Colonic Polyps and Lung Nodules in Helical CT[J]. IEEE Trans. Med. Imaging.2004,23:661-675.
    [15]Korfiatis P., Kalogeropoulou C, Costaridou L. Computer Aided Detection of Lung Nodules in Multi-slice Computed Tomography[C]. Proceedings of the International Special Topic Conference on Information Technology in Biomedicine.2006,1-4.
    [16]Bae K. T., Kim J. S., Na Y. H., et al. Pulmonary Nodules:Automated Detection on CT Images with Morphologic Matching Algorithm-Preliminary Results[J]. Radiology. 2005,236:286-294.
    [17]Fetita C. I., Preteux F. J., Beigelman-Aubry C.,et al.3-D Automated Lung Nodule Segmentation in HRCT[J]. Lecture Notes in Computer Science,2003, 2878/2003:626-634.
    [18]Bellotti R., De C. F., Gargano G., et al. A CAD System for Nodule Detection in Low-dose Lung CTs based Region Growing and Active Contour Models[J]. Med. Phys.2007,34:4901-4910.
    [19]Kostis W. J., Reeves A. P., Yankelevitz D. F., et al. Threedimensional Segmentation and Growth-rate Estimation of Small Pulmonary Nodules in Helical CT Images[J]. IEEE Trans. Medical Imaging.2003,22,1259-1274.
    [20]Enquobahrie A. A., Reeves A. P., Yankelevitz D. F., et al. Automated Detection of Pulmonary Nodules from Whole Lung Helical CT Scans:Performance Comparison for Isolated and Attached Nodules[C]. In:Proc. of SPIE.2004, vol.5370:791-800.
    [21]Lee Y., Hara T., Fujita H., et al. Automated Detection of Pulmonary Nodules in Helical CT Images based on an Improved Template-Matching Technique[J]. IEEE Trans. Med. Imaging.2001,20:595-604.
    [22]Lee Y., Tsai D. Y., Hara T., et al. Improvement in Automated Detection of Pulmonary Nodules on Helical X-ray CT Images[C]. Proc. of SPIE.2004,5370: 824-832.
    [23]McNitt-Gary M. F., Hart E., Wyckoff M. N., et al. A Pattern Classification Approach to Characterizing Solitary Pulmonary Nodules Imaged on High Resolution CT: Preliminary Results[J]. Med. Phys.1999,26:880-888.
    [24]Shah S. K., McNitt-Gray M. F., Rogers S. R., et al. Computer Aided Characterization of Solitary Pulmonary Nodules Using Volumetric and Contrast Enhancement Features[J]. Acad. Radiol.2005,12,1310-1319.
    [25]Diciotti S., Picozzi G., Falchini M., et al.3D Segmentation Algorithm of Small Lung Nodules in Spiral CT Images[J]. IEEE Trans.Inf. Technol. Biomedical.2008,12: 7-19.
    [26]Daw-Tung L., Chong-Ren Y. Lung Nodules Identification Rules Extraction with Neural Fuzzy Network[C]. Proceedings of the 9th International Conference on Neural Information Proceeding.2002,4:2049-2053.
    [27]Daw-Tung L., Yan C. R., Chen W. T. Autonomous Detection of Pulmonary Nodules on CT Images with a Neural Network-based Fuzzy System[J]. Comput Med Imaging Graph.2005,29 (6):447-58.
    [28]Klik M. A. J., Rikxoort E. M. V., Peters J. F., et al. Improved Classification of Pulmonary Nodules by Automated Detection of Benign Subpleural Lymph Modes[C]. ISBI.2006:494-497.
    [29]Antonelli M., Frosini G., Lazzerini B., et al. A CAD System for Lung Nodule Detection based on an Anatomical Model and a Fuzzy Neural Network[C]. North American Fuzzy Information Processing Society.2006:448-453.
    [30]Kubo M., Kubota K., Yamada N., et al. A CAD System for Lung Cancer based on Low Dose Single-slice CT Images. Proc. SPIE.2002,4684:1672-1680.
    [31]Awai K., Murao K., Ozawa A., et al. Pulmonary Nodules at Chest CT:Effect of Computer-aided Diagnosis on Radiologists'Detection Performance [J]. Radiology. 2004,230:347-352.
    [32]El-Baz A., Gimel'farb G., Falk R., et al. A new CAD System for Early Diagnosis of Detected Lung Nodules[C]. IEEE Int. Conf. Image Process.2007,2:Ⅱ-461-Ⅱ-464.
    [33]Lee Y., Hara T., Fujita H., et al. Nodule Detection on Chest Helical CT Scans by Using a Genetic Algorithm[C]. In:Proceedings of Intelligent Information Systems. 1997:67-70.
    [34]Dehmeshki J., Ye X., Casique M. V., et al. A Hybrid Approach for Automated Detection of Lung Nodules in CT Images[C].3rd IEEE International Symposium on Biomedical Imaging:Nano to Macro.2006:506-509.
    [35]Farag A., El-Baz A., Gimel'farb G, et al. Automatic Detection and Recognition of Lung Abnormalities in Helical CT Images Using Deformable templates [J]. Medical Image Computing and Computer-assisted Intervention.2004,3217:856-864.
    [36]Kawata Y, Niki N., Ohtmatsu H., et al. Quantitative Surface Characterization of Pulmonary Nodules based on Thin-Section CT Images[J]. IEEE Trans. Nuclear Sci. 1998,45:2132-2138.
    [37]Farag A. A., El-Baz A., Gimel'farb G, et al. Detection and Recognition of Lung Abnormalities Using Deformable Templates[C]. Proceeding of 17th International Conference on Pattern Recognition.2004:23-26.
    [38]Kawata Y., Niki N., Ohmatsu H., et al. Hybrid Classification Approach of Malignant and Benign Pulmonary Nodules based on Topological and Histogram Features[C]. Medical Image Computing and Computer-assisted Intervention—MICCAI.2000,. 1935/2000:297-306.
    [39]Osman O., Ozekes S., Ucan O. N. Lung Nodule Diagnosis Using 3D Template Matching[J]. Comput. Biol. Med.2007,37,1167-1172.
    [40]Wang P., DeNuzio A., Okunieff P., et al. Lung Metastases Detection in CT Images Using 3D Template Matching[J]. Med. Phys.2007,34:915-922.
    [41]Kyongtae T. B., Jin-Sung K., Yong-Hum N., et al. Pulmonary Nodules:Automated Detection on CT Images with Morphologic Matching Algorithm-Preliminary Results[J]. Radiology.2005,236:286-294.
    [42]Rahil G, Ahmad B. D., Hamid A. M., et al. A New Segmentation Method for Lung HRCT Images[C]. Proceedings of the Digital Imaging Computing:Techniques and Applications.2005:52-59.
    [43]Pu J., Roos J., Yi C. A., et al. Adaptive Border Marching Algorithm:Automatic Lung Segmentation on Chest CT Images[J]. Comput Med Imaging Graph.2008, 32:452-462.
    [44]Wei G Q., Fan L., Qian J. Automatic Detection of Nodules Attached to Vessels in Lung CT by Volume Projection Analysis[J]. Medical Image Computing and Computer-assisted Intervention.2002,2488:746-752.
    [45]Retico A., Delogu P., Fantacci M. E., et al. Lung Nodule Detection in Low-dose and Thin-Slice Computed Tomography [J]. Comput. Biol. Med.2008,38:525-534.
    [46]Gori I., Bellotti R., Cerello P., et al. Lung Nodule Detection in Screening Computed Tomography [C]. IEEE Nuclear Science Symposium Conference Record. 2006:3489-3491.
    [47]王文明,孙丰荣,刘炜.基于形态学与局部特征结构的肺血管树重建[J].计算机工程.2009,35(19):200-202.
    [48]Arimura H., Katsuragawa S., Suzuki K., et al. Computerized Scheme for Automated Detection of Lung Nodules in Low-dose Computed Tomography Images for Lung Cancer Screening [J]. Acad. Radiol.2004,11:617-629.
    [49]Kubo M., Kubota K., Yamada N., et al. A CAD System for Lung Cancer based on Low Dose Single-slice CT Images[C]. Proc. SPIE,2002,4684:1672-1680.
    [50]Diciotti S., Picozzi G, Falchini M., et al.3D Segmentation Algorithm of Small Lung Nodules in Spiral CT Images [J]. IEEE Trans. Inf. Technol. Biomedical,2008, 12:7-19.
    [51]Sluimer I. C, Van W. P. F, Vierever M. A., et al. Computer-aided Diagnosis in High Resolution CT of the Lungs [J]. Med. Phys.2003,30:3081-3090.
    [52]Ochs R. A., Goldin J. G, Fereidoun A., et al. Automated Classification of Lung Bronchovascular Anatomy in CT Using Adaboost [J]. Med. Image Anal.2007,34: 315-324.
    [53]Sun S.-S., Li, H., Hou, X.-R., et al. Automatic Segmentation of Pulmonary Nodules in CT Images[C].1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE).2007:790-793.
    [54]Jia T., Zhao D.-Z., Yang J.-Z., et al. Automated Detection of Pulmonary Nodules in HRCT Images[C].1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE),2007:833-836.
    [55]Li Q., Sone S., Doi K. Selective Enhancement Filters for Nodules, Vessels, and Airway Walls in Two-and Three-Dimensional CT Scans [J]. Med Phys,2003, 8:2040-2051.
    [56]Oda T., Kubo M., Kawata Y., et al. A Detection Algorithm of Lung Cancer Candidate Nodules on Multi-Slice CT Images[C]. Proc. of SPIE,2002,4684:1354-1361.
    [57]Zhao J., Chang S., Metaxas D. N., et al. An Automatic Method for Ground Glass Opacity Nodule Detection and Segmentation from CT Studies[C]. Proceedings of 28th IEEE EMBS Conference.2006:3062-3065.
    [58]Chang S., Emoto H., Metaxas D. N, et al. Pulmonary Micronodule Detection from 3-D Chest CT[C]. Medical image Computing and Computer-assisted Intervention, 2004,3217:821-828.
    [59]Cohen L. D. Note on Active Contour Models and Balloons[J]. GVGIP:Image Understanding.1991,53(2):211-218.
    [60]Xu C., Prince J. L. Snake, Shapes and Gradient Vector Flow [J]. IEEE Transactions on Imageing Processing,1998,7(3):359-369.
    [61]Amini A. A., Weymouth T. E., Jain T. G. Using Dynamic Programming for Solving Variational Problems in Vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1990,12(9):855-867.
    [62]Liu J. H., Zhan G, Wang J. W. Contour Correction Liver CT Image segmentation Method Based on snake Model[C].2009 2nd International Congress on Image and Signal Processing.2009:1-4.
    [63]Raja S. A., Suryaprakash K., Vipin C. Segmentation of the Liver form Abdominal CT Using Markov Random Field Model and GVF Snakes[C]. International Conference on Complex, Intelligent and Software Intensive Systems.2008:293-298.
    [64]McCulloch C. C, Kaucic R. A., Mendonca P.R., et al. Modelbased Detection of Lung Nodules in Computed Tomography Exams [J]. Thoracic Computer-aided Diagnosis. Acad. Radiol.2004,11:258-266.
    [65]Aoyama M., Li Q., Katsuragawa S., et al. Computerized Scheme for Determination of the Likelihood Measure of Malignancy for Pulmonary Nodules on Low-dose CT Images[J]. Med. Phys.2003,30:387-394.
    [66]Takizawa H., Yamamoto S., Shiina T. Accuracy Improvement of Pulmonary Nodule Detection based on Spatial Statistical Analysis of Thoracic CT Scans[C]. IEICE Trans. Inf. Syst.90-D,2007:1168-1174.
    [67]Matsumoto S., Kundel H. L., Gee J. C, et al. Pulmonary Nodule Detection in CT Images with Quantized Convergence Index Filter [J]. Medi. Image Anal.2006,10: 343-352.
    [68]Aoyama M., Li Q., Katsuragawa S., et al. Computerized Scheme for Determination of the Likelihood Measure of Malignancy for Pulmonary Nodules on Low-dose CT Images[J]. Med. Phys.2003,30:387-394.
    [69]Armato S. G., Altman M. B., Wilkie J. Automated Lung Nodule Classification Following Automated Nodule Detection on CT:A Serial Approach[J]. Med Phys. 2003,30:1188-1197.
    [70]Gurcan M. N., Sahiner B., Petrick N., et al. Lung Nodule Detection on Thoracic Computed Tomography Images:Preliminary Evaluation of a Computer-aided Diagnosis System [J]. Med Phys,2002,29(11):2552-2558.
    [71]Kim H., Nakashima T., Itai Y., et al. Automatic Detection of Ground Glass Opacity from the Thoracic MDCT Images by Using Density Features[C]. International Conference on Control, Automation and Systems.2007:1274-1277.
    [72]Lin J.-S., Lo S.C.B., Hasegawa A., et al. Reduction of False Positives in Lung Nodule Detection Using a Two-level Neural Classification[J]. IEEE Trans. Med. Imaging. 1996,15:206-216.
    [73]Armin E., Mohamad F. Hamid A. M., et al. Block-wise 2D kernel PCA/LDA for Face Recognition[J]. Information Processing Letters.2010,110:761-766.
    [74]Arimura H., Katsuragawa S., Suzuki K., et al. Computerized Scheme for Automated Detection of Lung Nodules in Low-dose Computed Tomography Images for Lung Cancer Screening[J]. Acad. Radiol.2004,11:617-629.
    [75]Suzuki K., Li. F., Sone S., et al. Computer-aided Diagnostic Scheme for Distinction Between Benign and Malignant Nodules in Thoracic Low-dose CT by Use of Massive Training Artificial Neural Network[J]. IEEE Trans. Med. Imaging. 2005,24:1138-1150.
    [76]Suzuki K., Li F., Li Q., et al. Comparison Between 2D and 3D Massive-training ANNs (MTANNs) in CAD for Lung Nodule Detection on MDCT[C]. Int. J. Comput. Assist. Radiol. Surg.2006,1:354-355.
    [77]Suzuki K. A Supervised'lesion-enhancement'Filter by Use of a Massive-training Artificial Neural Network (MTANN) in Computer-aided Diagnosis (CAD)[J]. Phys. Med. Biol.2005,54:S31-S45.
    [78]Arimura H., Katsuragawa S., Suzuki K.,et al. Computerized Scheme for Automated Detection of Lung Nodules in Low-dose CT Images for Lung Cancer Screening. Academic Radiology[J].2004,11:617-629.
    [79]Li F., Aoyama M., Shiraishi J., et al. Radiologists'Performance for Differentiating Small Benign from Malignant Lung Nodules on High-resolution CT by Using Computer-estimated Likelihood of Malignancy [J]. American Journal of Roentgenology 2004,183:1209-1215.
    [80]Suzuki K., Shiraishi J., Abe H., et al. False-positive Reduction in Computer-aided Diagnostic Scheme for Detecting Nodules in Chest Radiographs by Means of Massive Training Artificial Neural Network[J]. Academic Radiology.2005,12: 191-201.
    [81]Muramatsu C, Li Q., Suzuki K., et al. Investigation of Psychophysical Measures for Evaluation of Similar Images for Mammographic Masses:Preliminary Results[J]. Medical Physics.2005,32:2295-2304.
    [82]Yuan Y, Giger M. L., Li H, Suzuki K., and Sennett C. A Dual-stage Method for Lesion Segmentation on Digital Mammograms. Medical Physics.2007,34: 4180-4193.
    [83]Li F., Arimura H., Suzuki K., et al. Computer-aided Detection of Peripheral Lung Cancers Missed at CT:ROC Analyses Without and with Localization [J]. Radiology. 2005,237:684-690.
    [84]Suzuki K., Abe H., MacMahon H., et al. Image-processing Technique for Suppressing Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Network (MTANN)[J]. IEEE Transactions on Medical Imaging.2006,25:406-416.
    [85]Shiraishi J., Li Q., Suzuki K., Engelmann R., and Doi K. Computer-aided Diagnostic Scheme for the Detection of Lung Nodules on Chest Radiographs:Localized Search Method based on Anatomical Classification [J]. Medical Physics.2006,33: 2642-2653.
    [86]Suzuki K. Supervised'lesion-enhancement'Filter by Use of a Massive-training Artificial Neural Network (MTANN) in Computer-aided Diagnosis (CAD)[J]. Physics in Medicine and Biology.2009,54:S31-S45.
    [87]Oda S., Awai K., Suzuki K., et al. Detection of Small Pulmonary Nodules on Chest Radiographs:Effect of Rib Suppression by the Massive Training Artificial Neural Network (MTANN) Technique on the Performance of Radiologists [J]. American Journal of Roentgenology.2009,193:W397-W402.
    [88]Suzuki K., Zhang J. and Xu J. Massive-training Artificial Neural Network Coupled with Laplacian-eigenfunction-based Dimensionality Reduction for Computer-aided Detection of Polyps in CT Colonography. IEEE Transactions on Medical Imaging. 2010,29:1907-1917.
    [89]Ginneken B.v. Supervised Probabilistic Segmentation of Pulmonary Nodules in CT Scans[C]. In:9th Medical Image Computing and Computer-assisted Intervention-MICCAI Conference.2006:912-919.
    [90]Dehmeshki J., Chen J., Casique M. V., et al. Classification of Lung Data by Sampling and Support Vector Machine[C].26th In:Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS'04),2004, vol.2: 3194-3197.
    [91]Zhao L., Boroczky L., Lee K. P. False Positive Reduction for Lung Nodule CAD Using Support Vector Machines and Genetic Algorithms[C]. Int. Congress Ser.2005, 1281:109-1114.
    [92]Boroczky L., Zhao L., Lee K. P. Feature Subset Selection for Improving the Performance of False Positive Reduction in Lung Nodule CAD[J]. IEEE Trans. Inf. Technol. Biomed.2006,10:504-511.
    [93]Youngjoo L., Joon B. S., June G. L., et al. Performance Testing of Several Classifiers for Differentiating Obstructive Lung Diseases based on Texture Analysis at High-Resolution Computerized Tomography [J]. Computer Method and Programs in Biomedicine.2009,93:206-215.
    [94]Namkug K., Joon B. S., Youngjoo L., et al. Development of an Automatic Classification System for Differentiation of Obstructive Lung Disease Using HRCT[J]. Journal of Digital Imaging.2009,22(2):136-148.
    [95]Mehrdad J., Gangeh, Lauge S., et al. A Texton-based Approach for the Classification of Lung Parenchyma in CT Images[C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI.2010:595-602.
    [96]Hu S., Huffman E. A., Reinhardt J. M. Automatic Lung Segmentation for Accurate Quantitiation of Volumetric X-Ray CT Images [J]. IEEE Trans Med Imaging.2001, 20(6):490-498.
    [97]Lee S. L. A., Kouzani A. Z., Hu E. J. Automatic Detection of Lung Nodules in Computed Tomography Images:a Review[J]. Machine Vision and Applications.2010. 5.4, Online First.
    [98]Yang J., Zhang D., Frangi A. F., et al. Two-dimensional PCA:a New Approach to Appearance based Face Representation and Recognition [J]. IEEE Trans PAMI,2004, 26(1):131-137.
    [99]Yang J., Yang J. Y. From Image Vector to Matrix:a Straightforward Image Projection Technique—MPCA vs. PCA [C]. Pattern Recognition.2002,35 (9):1997-1999.
    [100]Lieven D. L., Bart D. M., Joos V. A Multilinear Singular Value Decomposition [J]. Siam J. Matrixanal.2000,21 (4):1253-1278.
    [101]Roland B., Remy. Multilinear Singular Value Decomposition for Structured Tensors [C]. IEEE ICASSP Conference.2006:1-14.
    [102]Jussi S., Andreas R., Visa K. J. S. Sequential Unfolding SVD for Tensors with Applications in Array Signal Processing [C]. IEEE Transactions on Signal Processing. 2009,57(12):4719-4733.
    [103]Liu J. H., Zhangrui, Wang J. W. Contour Correction Liver CT Image segmentation Method Based on snake Model[C].2009 2nd International Congress on Image and Signal Processing.2009:1-4.
    [104]Raja S. A., Suryaprakash K., Vipin C. Segmentation of the Liver form Abdominal CT Using Markov Random Field Model and GVF Snakes[C]. International Conference on Complex, Intelligent and Software Intensive Systems.2008:293-298.
    [105]Wang Z., Chen S. New Least Squares Support Vector Machines based on Matrix patterns [J]. Neural Processing Letters.2007(26):41-56.
    [106]Vapnik V. Statistical Learning Theory[M]. New York:Wiley.1998.
    [107]Krebel., U. H.-G. Pairwise Classification and Support Vector Machines[J]. Advances in Kernel Methods:Support Vector Learning.1999:255-268.
    [108]Kai B. D., Jagath C. R., Minh N. N. One-Versus One and One-Versus All Multiclass SVM-RFE for Gene Selection in Cancer Classification[J]. Lecture Notes in Computer Science.2007,4447:47-56.
    [109]Duan K.B., Rajapakse J. C. Multiclass SVM-RFE for Gene Selection in Cancer Classification with Expression Data[J]. IEEE Trans Nanobioscience.2005,4(3): 228-234.
    [110]Daisuke T., Shigeo A. Fuzzy Least Squares Support Vector Machines for Multiclass Problems[J]. Neural Networks.2003,16:785-792.
    [111]Jung-Hsien C., Tsung-Lu M. L. In Silico Prediction of Human Protein Interactions Using Fuzzy-SVM Mixture Models and Its Application to Cancer Research[J]. IEEE Transactions on Fuzzy Systems.2008,16(4):1087-1095.
    [112]Suykens J. A. K. and Vandewalle J. Multiclass Least Squares Support Vector Machines[J]. Neural Networks.1999:900-903.
    [113]Abdulkadir S. Multiclass Least-squares Support Vector Machines for Analog Mdulation Cassification[J]. Expert Systems with Applications.2009,36:6681-6685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700