同步辐射技术检测干细胞移植后大鼠后肢新生血管生成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分同步辐射成像技术检测大鼠后肢微血管的实验研究
     目的:目前临床应用的血管成像技术无法检测直径在200微米以下的微小血管。同步辐射(Synchrotron Radiation, SR)成像技术的发展为检测更细的微血管提供了新的手段。本实验旨在利用同步辐射微血管成像技术对大鼠后肢的微血管进行成像观察,并且和传统的X线成像对比,为进一步的实验提供必要的成像参数和基础。
     材料和方法:利用同步辐射单色光对F344近交系大鼠的左后肢微血管进行活体和离体成像观察。活体成像为吸收成像,从对侧髂动脉穿刺置管至腹主动脉分叉,注射含碘造影剂同时造影成像,单色光能量设为33.4Kev。离体成像的标本制备采用硫酸钡和生理盐水作为对比剂注入大鼠后肢微循环,采用相位衬度成像,能量和物像距离分别为15Kev和800mm,同时进行微CT血管三维重建。活体成像和离体成像分别采用数字减影血管造影(Digital subtraction angiography,DSA)造影和普通x线摄片作为对照,比较血管的直径和造影评分的差异。同步辐射成像分别用分辨率为9μm/pixel和2.25μm/pixel的探测器进行检测。血管直径的计算和图像编辑用NIH Image-pro plus软件进行处理。
     结果:同步辐射微血管活体成像可清晰显示大鼠髂动脉的4级以上分支,最细血管直径约40μm;而普通DSA造影则无法显示如此清晰的微血管,只能显示髂动脉的3级分支。离体标本中,灌注生理盐水的标本可辨认血管,但衬度和“边缘增强”效应不明显。灌注硫酸钡的样本血管清晰可见,高分辨率CCD(2.25μm)可测量的最小血管直径为9μm。而标本经普通X光成像,血管显影差。活体和离体同步辐射成像的血管造影评分明显高于普通X线成像。对灌注硫酸钡的整体肢体进行同步辐射微血管三维成像发现,肢体血管树的三维结构清晰显示,可以测量和定位大鼠后肢中微米级别的微血管。
     结论:应用同步辐射成像技术以及合适的对比剂可清晰显示大鼠后肢的微循环,和普通X线成像相比,同步辐射血管成像可显示更为细微的内容,最细可检测到直径10μm左右的大鼠后肢血管。同步辐射成像技术可为进一步检测干细胞移植后生成的新生血管提供有效手段。
     第二部分大鼠骨髓间充质干细胞的培养和定向分化能力的研究
     目的:骨髓来源的间充质干细胞(Mesenchymal stem cells, MSCs)移植为治疗下肢缺血性疾病开辟了一个新的思路,但是关于它的分离培养方法以及定向分化能力目前仍然缺乏统一的观点。本实验旨在从大鼠骨髓中获取间充质干细胞并进行原代培养和鉴定,研究培养方法和接种密度对细胞形态和定向分化能力的影响,为进一步的干细胞移植实验提供基础。
     材料和方法:取6-8周龄F344大鼠的骨髓以全骨髓贴壁法进行原代培养,并以不同的比例和接种密度(3×10,3×102,3×103 cells/cm2)进行传代,观察接种密度对细胞形态和生长特点的影响。按适宜的接种密度对细胞进行传代,取第3代对数生长期的rMSCs,对其表面标志物用流式细胞仪和免疫荧光进行鉴定。同时在传代的rMSCs培养液中分别添加不同的化学试剂和细胞因子,观察细胞的形态结构变化,诱导其向成骨细胞、脂肪细胞和内皮细胞分化,并对分化的细胞用碱性磷酸酶、油红O和DiI-Ac-LDL吞噬实验进行鉴定。
     结果:原代培养的rMSCs呈较强的贴壁生长特性,形态上呈纺锤形或扁平多角形。当细胞按接种密度3×10 cells/cm2进行传代时,细胞的倍增速度最快,并且形态较均一,纺锤形的细胞数量多,呈菌落样生长。对低密度接种培养的rMSCs进行流式细胞仪和免疫荧光鉴定,提示rMSCs的表面抗原为CD34(-)、CD45 (-)、CD90(+)、CD29 (+)、CD105 (+)。定向分化实验表明,在不同的诱导条件下,低密度接种培养的rMSCs可以向成骨细胞、脂肪细胞和内皮细胞定向分化,分化后的细胞用碱性磷酸酶、油红O和DiI-Ac-LDL吞噬实验鉴定为阳性反应。
     结论:全骨髓贴壁培养法和较低接种密度培养可获得数量较多的相对较纯的大鼠骨髓间充质干细胞,其表面标志物符合间充质干细胞标准,并且具有多能定向分化能力。
     第三部分同步辐射技术检测干细胞移植后大鼠后肢新生血管生成的实验研究
     目的:目前干细胞移植后新生血管的生成缺乏切实有效的评价方法。本研究应用同步辐射技术检测大鼠骨髓间充质细胞(Rat bone marrow-derived mesenchymal stem cells, rBMSC)移植到大鼠缺血肢体后新生血管(Neovascularization)的生成情况,观察分析干细胞移植后新生血管空间密度分布和形态结构的变化,为干细胞移植治疗缺血性疾病的效果评价提供新的思路和有效检测手段。
     材料和方法:取F344近交系大鼠24只,制作左后肢缺血模型后随机分为rBMSC移植组(A组)、PBS对照组(B组)和假手术组(C组)接受治疗。在细胞移植后第3天、14天和21天采用同步辐射微血管吸收成像技术对各组动物的左后肢新生血管进行活体成像观察,于细胞移植后第4周进行同步辐射离体成像分析和检测,评估各阶段新生血管形态和密度的变化。同时对各组动物用激光多普勒血流灌注成像(Laser-Doppler perfusion imaging, LDPI)检测缺血后肢血流情况和对缺血后肢损伤功能进行评分,并用免疫组化法检测毛细血管密度,比较分析各组血流灌注指数(Perfusion ratio, PR)和新生血管密度的差异。
     结果:同步辐射微血管活体成像提示,术后第14天和第21天,A组和B组的血管密度和造影评分均较第3天明显增高,且A组的血管造影评分明显高于B组(14天,0.54±0.036 vs 0.34±0.032;21天,0.64±0.037 vs 0.49±0.027,P<0.05)。比较第21天A、B两组的血管形态发现,A组的新生血管形态和排列较B组血管规则。C组的血管形态密度在术后的随访中基本保持一致。LDPI检测提示细胞移植第7天以后,A组动物缺血肢体的血流灌注指数明显高于B组。缺血后肢损伤评分的结果显示A组损伤评分明显低于B组。同步辐射离体成像分析提示A组的新生血管密度较B组高,和免疫组化检测的毛细血管密度结果一致。
     结论:同步辐射微血管成像技术是干细胞移植后肢体新生血管检测的有效手段,其检测结果提示干细胞移植后能促进新生血管密度和形态结构的发生发展。
Part One Detection of Microvasculature in Rat Hind Limb Using Synchrotron Radiation
     Objective:Conventional radiography cannot provide sufficiently clear images of vessels with diameters of 200μm or less. New X-ray microangiography and third-generation synchrotron radiation-based microcomputed tomography have opened new perspectives for microvascular imaging of extremity. Here we aimed to visualize deep-level microvascular structure in rat hind limb by microangiographic technique, and compare images with those by conventional method.
     Materials and Methods:Inbred strain rats (F344) were used for in vivo and ex vivo study. Microangiography in vivo and ex vivo was performed and images were compared with those by conventional method. In microangiography in vivo study, the catheter was connected to an automated angiographic injector, through which the nonionic contrast media was injected into blood vessels in rat hind limbs. A monochromatic 33.4 keV X-ray source just above the K-absorption edge of iodine was used for imaging. In vitro study, normal saline and barium sulfate solution was infused through catheter to the left iliac artery of rats, and the phase contrast imaging were performed with the energy of 15 Kev and the object-to-image distance of 800mm. Synchrotron radiation-based micro-computed tomography (SRmCT) was also performed to reveal three-dimensional (3D) morphology of the blood vessel in rat hind limb.
     Results:Using microangiographic technique in vivo and in vitro (with barium sulfate), blood vessels in the rat limb muscle could be visualized with high resolution and more detail compared with those by conventional technique, and the fifth to sixth branches of iliac artery in rat hind limb could be detected with the minimum visualized blood vessels about 40μm and 9μm in diameter, respectively. Accordingly, higher angiographic scores were achieved than those by conventional X-ray. In addition, the vascular network could be defined and analyzed at the micrometer scale from the 3D renderings of limb vessel as shown by SRmCT.
     Conclusions:Synchrotron radiation-based microangiography and SRmCT thus provided a practical and effective means to observe the microvasculature of rat hindlimb, which might be useful in assessment of angiogenesis in lower limbs.
     Part Two
     The study of culturing and multilineage potential of rat marrow-derived mesenchymal stem cells
     Objective:Bone marrow mesenchymal stem cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in limb ischemic disease. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of plating density and culturing method on proliferation, cell morphology, and differentiation potential of MSC, and to provide an effective approach of cell obtaining for stem cell transplantiation.
     Materials and Methods:Rat MSCs were isolated from rat bone marrow relying on their ability to adhere to plastic, and replated at appropriate seeding density (3x10, 3x102 and 3x103 cells/cm2) at each passage. Cell morphology and growth characteristic were evaluated and compared among different seeding density. Passage 3 MSCs from cultures seeded at optimal plated density were used for identification of their surface marker by flow cytometry and immunofluorescence. For differentiation assays, cells from passage 3 were cultured in induction medium supplemented with different chemical agents and cytokines. Differentiation of MSCs into adipogenic, osteogenic, and endothelial lineages were identified by Oil Red-O stain for lipid deposits, stained for kaline phosphatase by an indoxyltetrazolium method, and incubated in the endothelial differentiation medium containing Dil-Ac-LDL and stained with BS-1-lectin, respectively.
     Results:Primary cultur of rMSCs showed a spindle-like or flattened polygonal appearance with the characteristic of adherence to plastic. The low density culture consisted of a relatively homogenous monolayer of spindle-like cells while high density cultures appeared heterogeneous in which nonfibroblastic cells were present. Cell colonies were observed in low density culture with high population doubling speed. Flow cytometric analysis of the low density culture at passage 3 demonstrated to be positive for CD90, CD29, CD105, but negative for CD34, CD45. Under certain conditions, rMSCs of low density culture were capable of differentiating into multilineage cell types, including adipogenic cells which were positive for oil red-0 stain, osteogenic lineages with positive stain for kaline phosphatase by an indoxyltetrazolium method, and endothelial cells with positive result of both LDL-uptaking assay and BS-1-lectin stain.
     Conclusion:Based on the results, we concluded that adherent culturing method combined with the low density culture system is a more appropriate system to isolate and expand murine MSCs from marrow samples. With low density culture system, more purified mMSCs which express putative surface maker and have multiple differential potential could be produced. density (AMVD) was increased at 14 and 21 days in both group A and group B, and significant higher in group A compared with group B (0.54±0.036 vs 0.34±0.032 and 0.64±0.037 vs 0.49±0.027, P<0.05, for 14 days and 21 days, respectively). In addition, the microvascular pattern and arrangement was more regular in group A, when compare with group B at 21 days after transplantation. There were no significant changes of microvasculature in the sham operation group (group C). A significant improvement of blood flow perfusion and lower injury score was found in group A, when compared with group B since 7 days after cell transplantation. The results of microvascular density by microangiography ex vivo indicated there was a higher microvascular density in group A than in group B, which were consistent with the results of immunohistochemistry stain.
     Conclusion:SR based microangiography is an effective method for the detection of angiogenesis after stem cell transplantation in a rat model of hindlimb ischemia, which suggested a higher microvascular density and more regular branching pattern of neovascularization in rMSC transplantation group compared with PBS group.
引文
1. Miyamoto K, Nishigami K, Nagaya N, Akutsu K, Chiku M, Kamei M, Soma T, Miyata S, Higashi M, Tanaka R, Nakatani T, Nonogi H, Takeshita S. Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans. Circulation.2006;114(24):2679-84.
    2. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet.2002;360(9331):427-35.
    3. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, Lam FF, Kang S, Xia JC, Lai WH, Au KW, Chow YY, Siu CW, Lee CN, Tse HF. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113-23.
    4. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, Kangawa K, Kitamura S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res.2005;66(3):543-51.
    5. Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood.2009;113(21):5340-51.
    6. Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T.. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells.2008;26(10):2625-33.
    7. Mori H, Hyodo K, Tobita K, Chujo M, Shinozaki Y, Suqishita Y, Ando M. Visualization of penetrating transmural arteries in situ by monochromatic synchrotron radiation. Circulation. 1994;89(2):863-71.
    8. Mori H, Hyodo K, Tanaka E, Uddin-Mohammed M, Yamakawa A, Shinozaki Y, Nakazawa H, Tanaka Y, Sekka T, Iwata Y, Handa S, Umetani K, Ueki H, Yokoyama T, Tanioka K, Kubota M, Hosaka H, Ishikawa N, Ando M. Small-vessel radiography in situ with monochromatic synchrotron radiation. Radiology.1996;201(1):173-7.
    9. McDonald D M, Choyke P L. Imaging of angiogenesis:from microscope to clinic Nat. Med. 2003;9(6):713-25.
    10. Bert rand B, Esteve F, Elleaume H. Comparison of synchrotron radiation angiography wit h conventional angiography for t he diagnosis of in 2 stent restenosis after percutaneous transluminal coronary angioplasty. Eur Heart J.2005;26 (13):1284-91.
    11. Momose A, Takeda T, Itai Y. Blood vessels:depiction at phase cont rast X-ray imaging without cont rast agent s in t he mouse and rat-feasibility study. Radiology.2000; 217 (2):593-6.
    12. Dix WR, Kupper W, Dill T, Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography. J Synchrotron Radiat.2003;10(Pt 3):219-27.
    13. Yamashita T, Kawashima S, Ozaki M, Namiki M, Shinohara M, Inoue N, Hirata K, Umetani K, Yokoyama M. In vivo angiographic detection of vascular lesions in apolipoprotein E-knockout mice using a synchrotron radiation microangiography system. Circ J. 2002;66(11):1057-9.
    14. Yamashita T, Kawashima S, Ozaki M, Namiki M, Hirase T, Inoue N, Hirata K, Umetani K, Sugimura K, Yokoyama M. Images in cardiovascular medicine. Mouse coronary angiograph using synchrotron radiation microangiography.Circulation.2002;105(2):E3-4.
    15. Iwasaki H, Fukushima K, Kawamoto A, Umetani K, Oyamada A, Hayashi S, Matsumoto T, Ishikawa M, Shibata T, Nishimura H, Hirai H, Mifune Y, Horii M, Sugimura K, Suehiro S, Asahara T. Synchrotron radiation coronary microangiography for morphometric and physiological evaluation of myocardial neovascularization induced by endothelial progenitor cell transplantation. Arterioscler Thromb Vasc Biol.2007;27(6):1326-33.
    16. Thomlinson W, Gmur N, Chapman D,Garrett R, Lazarz N, Morrison J, Reiser P, Padmanabhan V, OngL, Green S. Venous synchrotron coronary angiography. Lancet 1991; 337(8737):360.
    17. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M. Changes in macrovessel pulmonary blood flow distribution following chronic hypoxia:assessed using synchrotron radiation microangiography. J Appl Physiol.2008;104(1):88-96.
    18. Imazuru T, Matsushita S, Hyodo K, Tokunaga C, Kanemoto S, Enomoto Y, Watanabe Y, Hiramatsu Y, Sakakibara Y. Erythropoietin enhances arterioles more significantly than it does capillaries in an infarcted rat heart model. Int Heart J 2009;50(6):801-10.
    19. Shirai M, Schwenke DO, Eppel GA, Evans RG, Edgley AJ, Tsuchimochi H, Umetani K, Pearson JT. Synchrotron-based angiography for investigation of the regulation of vasomotor function in the microcirculation in vivo. Clin Exp Pharmacol Physiol.2009;36(1):107-16.
    20. Yoshino H, Sakurai T, Oizumi XS, Akisaki T, Wang X, Yokono K, Kondoh T, Kohmura E, Umentani K.. Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles:simultaneous visualization of perforating and cortical vessels by in-vivo microangiography. Microvasc Res.2009;77(2): 230-3.
    21. Eppel GA, Jacono DL, Shirai M, Umetani K, Evans RG, Pearson JT. Contrast angiography of the rat renal microcirculation in vivo using synchrotron radiation. Am J Physiol Renal Physiol.2009;296(5):F1023-31.
    22. Zehbe R, Haibel A, Riesemeier H, Gross U, Kirkpatrick CJ, Schubert H, Brochhausen C. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization:from tissue morphology to individual cells. Journal of the Royal Society Interface.2010;7(42):49-59.
    23. Takeda T, Momose A, Wu J, Yu Q, Zeniya T, Thet Thet L, Yoneyama A, Itai Y. Vessel imaging by interferometric phase-contrast X-ray technique. Circulation.2002; 105(14): 1708-12.
    24. Takeda T, Momose A, Itai Y, Wu J and Hirano K. Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad. Radiol.1995; 2(9):799-803.
    25. Momose A, Takeda T, Itai Y and Hirano K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat. Med.1996;2(4):473-5.
    26. Pisano ED, Johnston RE, Chapman D, Geradts J, Iacocca MV, Livasy CA, Washburn DB, Sayers DE, Zhong Z, Kiss MZ, Thomlinson WC. Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation-improved conspicuity of lesion detail compared with digital radiography. Radiology.2000;214(3):895-901.
    27. Arfelli F, Assante M, Bonvicini V, Bravin A, Cantatore G, Castelli E, Dalla Palma L, Di Michiel M, Longo R, Olivo A, Pani S, Pontoni D, Poropat P, Prest M, Rashevsky A, Tromba G, Vacchi A, Vallazza E, Zanconati F. Low-dose phase contrast x-ray medical imaging. Phys Med Biol.1998;43(10):2845-52.
    28. Lewis R A. Medical phase-contrast X-ray imaging:current status and future prospects. Phy. Me. Biol.2004;49(16):3573-83.
    29. Zhang X, Liu XS, Yang XR, Chen SL, Zhu PP and Yuan QX. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging. Phys Med Biol.2008; 53(20):5735-43.
    30. Chapman D, Thomlinson W, Johnston RE. Diffraction enhanced X-ray imaging. Physics in Medicine and Biology.1997;42 (11):2015-25.
    31. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281-90.
    32. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis:A single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93(2):662-70.
    33. Li W, Shen W, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang S, Chen Y, Zhai Y, Wang G, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J. High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb. Circulation 2006;113(20):2445-53.
    34. Pevec WC, Ndoye A, Brinsky JL, Wiltse S, Cheung AT. New blood vessels can be induced to invade ischemic skeletal muscle. J Vasc Surg 1996; 24(4):534-41.
    35. Deindl E, Buschmann Ⅰ, Hoefer IE, Podzuweit T, Boengler K, Vogel S, van Royen N, Fernandez B, Schaper W. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 2001;89(9):779-86.
    36. Kobayashi T, Hamano K, Li TS, Nishida M, Ikenaga S, Hirata K, Zempo N, Esato K. Angiogenesis induced by the injection of peripheral leukocytes and platelets. J Surg Res. 2002;103(2):279-86.
    37. Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, Schneider P, Miiller R. Hierarchical microimaging for multiscale analysis of large vascular networks. NeuroImage 2006;32(2):626-36.
    38. Wu X, Liu H. Clinical implementation of X-ray phase-contrast imaging:Theoretical foundations and design considerations. Med Phys.2003;30(8):2169-79.
    39. Takeda T, Momose A, Hirano K, Haraoka S, Watanabe T, Itai Y. Human carcinoma:early experience with phase contrast X-ray CT with synchrotron radiation comparative specimen study with optical microscopy. Radiology.2000;214 (1):298-301.
    40. Suortti P, Thomlinson W. Medical applications of synchrotron radiation.Phys Med Biol. 2003;48(13):R1-35.
    41. Zhou S A, Brahme A. Development of phase-contrast X-ray imaging techniques and potential medical applications Phys Med.2008;24(3):e129-48.
    42. Wu X, Liu H. Clarification of aspects in in-line phase-sensitive X-ray imaging Med Phys. 2007;34(2):737-43.
    43. Plouraboue F, Cloetens P, Fonta C, Steyer A, Lauwers F and Marc-Vergnes J P. X-ray high-resolution vascular network imaging. J Microsc.2004;215(Pt2):139-48.
    44. O'Neill AC, Barbe L, Randolph MA, Berthiaume F. Isolated perfusion of a tubed superficial epigastric flap in a rodent model. J Surg Res 2006;135(1):164-9.
    45. Machens HG, Grzybowski S, Bucsky B, Spanholtz T, Niedworok C, Maichle A, Stockelhuber B, Condurache A, Liu F, Egana JT, Kaun M, Mailander P, Aach T. A technique to detect and to quantify fasciocutaneous blood vessels in small laboratory animals ex vivo. J Surg Res. 2006;131(1):91-6.
    46. Muller B, Fischer J, Dietz U Thurner P J and Beckmann F. Blood vessel staining in the myocardium for 3D visualization down to the smallest capillaries. Nuclear Instruments and Methods in Physics Research B.2006;246(8):254-61.
    47. Risser L, Plouraboue F, Steyer A, Cloetens P, Le Du G and Fonta C. From homogeneous to fractal normal and tumorous micro vascular networks in the brain. J Cereb Blood Flow Metab. 2007;27(2):293-303.
    48. Yamashita T. Evaluation of the microangioarchitecture of tumors by use of monochromatic X-rays. Invest. Radiol.2001;36(12):713-20.
    49. Yamashita T, Kawashima S, Ozaki M, Namiki M, Satomi-Kobayashi S, Seno T, Matsuda Y, Inoue N, Hirata K, Akita H, Umetani K, Tanaka E, Mori H, Yokoyama M. Role of endogenous nitric oxide generation in the regulation of vascular tone and reactivity in small vessels as investigated in transgenic mice using synchrotron radiation microangiography. Nitric.Oxide.2001;5(5):494-503.
    50. Myojin K, Taguchi A, Umetani K, Fukushima K, Nishiura N, Matsuyama T, Kimura H, Stern DM, Imai Y and Mori H. Visualization of intracerebral arteries by synchrotron radiation microangiography. AJNR Am J Neuroradiol.2007;28(5):953-7.
    51. Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, Schmidt A, Scheinert D, Biamino G, Emmrich F, Schuler G, Hambrecht R. Therapeutical potential of blood derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J.2005;26(18):1903-9.
    52. De Nigris F, Williams-Ignarro S, Sica V, D'Armiento FP, Lerman LO, Byrns RE, Sica G, Fiorito C, Ignarro LJ, Napoli C. Therapeutic effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Int J Cardiol.2007; 117(2):238-43.
    53. Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation. Nippon Rinsho.2006; 64(11):2126-34.
    54. Yamamoto K, Kondo T, Suzuki S, Izawa H, Kobayashi M, Emi N, Komori K, Naoe T, Takamatsu J, Murohara T. Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs:therapeutic effect by stem cell transplantation. Arteriosclera Thromb Vase Biol.2004;24(12):e192-6.
    55. Padilla L, Krotzsch E, De La Garza AS, Figueroa S, Rodriguez-Trejo J, Avila G, Schalch P, Escotto I, Glennie G, Villegas F, Di Silvio M. Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels:Results from a canine ischemic hindlimb model. Microsurgery.2007; 27(2):91-7.
    56.黄平平,李尚珠,韩明哲.自体外周血干细胞移植治疗下肢动脉硬化性闭塞症.中华血液学杂志.2003;24(6):308-11.
    57. Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Qiu LG, Han ZC. Autologous transplantaion of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thromb Haemost.2004; 91(3):606-9.
    58.郭连瑞,谷涌泉,张建.不同途径移植骨髓单个核细胞治疗大鼠后肢缺血.中国临床康复,2005,9(10):57-59.
    59. Cao Y, Hong A, Schulten H, Post MJ. Update on therapeutic neovascularization. Cardiovasc Res.2005;65(3):639-48.
    60.杨晓凤,吴雁翔,王红梅,等.自体外周血干细胞移植治疗62例缺血性下肢血管病的临床研究.中华内科杂志,2005,44(2):95-98.
    61.吴雁翔,杨晓凤,王红梅,等.干细胞治疗下肢缺血性疾病疗效观察.中国修复重建外科杂志,2005,19(12):1019-1021.
    62. Zhao S, Wehner R, Bornhauser M, Wassmuth R, Bachmann M, Schmitz M. Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev.2010;19(5):607-14.
    63. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini Q Egeler RM, Bacigalupo A, Fibbe W, Ringden O; Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease:a phase Ⅱ study. Lancet.2008;371(9624):1579-86.
    64. Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP, Anegon I, Cuturi MC. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood.2007;110(10):3691-4.
    65. Keating A. How do mesenchymal stromal cells suppress T cells? Cell Stem Cell. 2008;2(2):106-8.
    66. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells:a potential therapeutic strategy for type 1 diabetes. Diabetes.2008;57(7):1759-67.
    67. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells.2001;19(3):219-25.
    68. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, Kangawa K, Kitamura S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res.2005;66(3):543-51.
    69. Shahdadfar A, FrΦnsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells:choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells.2005;23(9):1357-66.
    70. Zhang SJ, Zhang H, Hou M, Zheng Z, Zhou J, Su W, Wei Y, Hu S. Is it possible to obtain "true endothelial progenitor cells" by in vitro culture of bone marrow mononuclear cells? Stem Cells Dev.2007;16(4):683-90.
    71. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-84.
    72. Fridenstein AJ, Piatetzky-shapiro Ⅱ, Petrakova KV. Osteogenesis in transplants of bone marrow cells J Embryol Exp Morphol.1966;16 (3):381-90.
    73. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers.Cell Tissue Kinet.1987; 20(3):263-72.
    74. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science.1999;284(5411):143-7.
    75. Tsai RY, Kittappa R, McKay RD. Plasticity, niches, and the use of stem cells. Dev Cell. 2002;2(6):707-12.
    76. Emmerich J, Fiessinger JN. Medical treatment of critical leg ischemia:current status and future perspectives of gene and cell therapy. Bull Acad Natl Med.2006; 190(3):667-80.
    77. Bianco P,Gehron RP. Marrow stromal stem cell.Clin Invest.2000; 105(12):1663-8.
    78. Paunescu V, Deak E, Herman D. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med.2007; 11(3):502-8.
    79. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.J Cell Sci.2000;113 (Pt 7):1161-6.
    80. Liu W,Cui L,Cao Y. Bone reconstruction with bone marrow stromal cells. Methods Enzymol. 2006;420(6):362-80.
    81. Azizi SA,Stokes D,Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. ProcNatl Acad Science USA 1998;95(7):3908-13.
    82. Dormady SP,Bashayan O,Dougherty R, Zhang XM, Basch RS. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J hematother Stem Cell Res 2001;10(1):115-9.
    83. Kincade PW,Lee G,Pietrangeli CE. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annu Rev Lmmunol 1989;7:111-43.
    84.刘耀,张曦,陈幸华,等.骨髓基质细胞与人脐血基质细胞表达造血生长因子的实验研究[J].重庆医学,2005,34(9):1321-1323.
    85. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet.2004;363(9419):1439-41.
    86. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.2005; 105(4):1815-22.
    87. Di Niccola M, Carlo-Stella C, Magni M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood.2002;99(10):3838-43.
    88. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood.2003;101(9):3722-9.
    89. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol.2000;18(2):307-16.
    90. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science.1997; 276(5309):71-4.
    91. Awad HA, Butle DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5(3):267-77.
    92. Kopen GC. Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Cell Biology.1999;96(19):10711-6.
    93. Serviee RF. Tissue engineering build new bone. Science 2000;289(5484):1498-500.
    94. Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, Grassi F, Piacentini A, Facchini A. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res. 2001;42(1):49-58.
    95. Phinney DG, Kopen G ,Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice:variations in yield, growth, and differentiation.J Cell Biochem.1999;72(4):570-85.
    96. Haynesworth SE, Baber MA, Caplan Al. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone.1992;13(1):69-80.
    97. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, stro-1. Blood.1991;78(1):55-62.
    98. Kawasaki-Oyama RS, Braile DM, Caldas HC, Leal JC, Goloni-Bertollo EM, Pavarino-Bertelli EC, Abbud Filho M, Santos ID. Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method. Rev Bras Cir Cardiovasc.2008;23(1):29-34.
    99. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells.2001;19(3):219-25.
    100. Burder SP, Jaisw al N, Haynesw orth SE. Grow th Kinetics, selfrene al, and the osteogenic potential of purified humanm esenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem.1997; 64(2):278-94.
    101. Eslaminejad MB, Nadri S. Murine mesenchymal stem cell isolated and expanded in low and high density culture system:surface antigen expression and osteogenic culture mineralization. In Vitro Cell Dev Biol Anim.2009;45(8):451-9.
    102. Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol.2008;36(9):1176-85.
    103. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone.1992; 13(1):69-80.
    104. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood.1993;82(1):66-76.
    105. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol.1999;181(1):67-73.
    106. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood.2005;106(2):419-27.
    107. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol.2003;31(10):890-6.
    108. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D,Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
    109. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, OrtizGonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41-9.
    110. Matsuda C, Takagi M, Hattori T, Wakitani S, Yoshida T. Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue. Cytotechnology.2005;47(1-3):11-7.
    111. Ito T, Sawada R, Fujiwara Y, Tsuchiya T. FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology.2008;56(1):1-7.
    112. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472-7.
    113. Liu JW, Dunoyer-Geindre S, Serre-Beinier V, Mai G, Lambert JF, Fish RJ, Pernod G, Buehler L, Bounameaux H, Kruithof EK. Characterization of endothelial-like cells derived from human mesenchymal stem cells. J Thromb Haemost.2007;5(4):826-34.
    114. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:Differentiation-dependent gene expression of matrix components. Exp Cell Res.2001;268(2):189-200.
    115. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-84.
    116. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve.1995; 18(12):1417-26.
    117. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res.2000;61(4):364-70.
    118. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A. Brain from bone:Efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation. 2001;68(4-5):235-44.
    119. Cho SW, Moon SH, Lee SH, Kang SW, Kim J, Lim JM, Kim HS, Kim BS, Chung HM. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation. 2007 Nov 20;116(21):2409-19.
    120. Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, Miller JM, Shou M, Epstein SE, Fuchs S. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation,2003,108(2):205-10.
    121. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, Kitagawa Y, Murohara T. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol.2009;29(1):61-6.
    122. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005 Aug 23; 112(8):1128-35.
    123. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg.2010 Feb;24(2):287-94.
    124. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC Ⅱ Working Group. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg.2007;45(suppl 1):S5-S67.
    125. Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K, Villa M, Bucha JM, Milanetti F, Sheehan J, Rajamannan N, Pearce WH. Autologous peripheral blood CD133+cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant.2010 Jan;45(l):ll1-6.
    126. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg.2011 Feb;53(2):445-53.
    127. Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev.2009 May-Jun; 17(3):115-20.
    128. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest.1999;103(9):1231-6.
    129. Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, Schneider P, Muller R. Hierarchical microimaging for multiscale analysis of large vascular networks. Neurolmage. 2006;32(2):626-36.
    130. Li W, Shen W, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang S, Chen Y, Zhai Y, Wang G, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J. High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb. Circulation.2006; 113(20):2445-53.
    131. Pevec WC, Ndoye A, Brinsky JL, Wiltse S, Cheung AT. New blood vessels can be induced to invade ischemic skeletal muscle. J Vasc Surg.1996;24(2):534-41.
    132. Liu P, Sun J, Zhao J, Liu X, Gu X, Li J, Xiao T, Xu LX. Microvascular imaging using synchrotron radiation. J Synchrotron Radiat.2010 Jul;17(4):517-21.
    133. Schulz G, Weitkamp T, Zanette Ⅰ, Pfeiffer F, Beckmann F, David C, Rutishauser S, Reznikova E, Muller B. High-resolution tomographic imaging of a human cerebellum:comparison of absorption and grating-based phase contrast. J R Soc Interface.2010 Dec 6;7(53):1665-76.
    134. Schwenke DO, Pearson JT, Sonobe T, Ishibashi-Ueda H, Shimouchi A, Kangawa K, Umetani K, Shirai M. Role of Rho kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertention. J Appl Physiol.2011 Jan 6. [Epub ahead of print]
    135. Schwenke DO, Pearson JT, Shimochi A, Kangawa K, Tsuchimochi H, Umetani K, Shirai M, Cragg PA. Changes in pulmonary blood flow distribution in monocrotaline compared with hypoxia-induced models of pulmonary hypertension:assessed using synchrotron radiation. J Hypertens.2009 Jul;27(7):1410-9.
    136. Langheinrich AC, Kampschulte M, Crossmann C, Moritz R, Rau WS, Bohle RM, Ritman EL. Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens. J Comput Assist Tomogr. 2009;33(4):517-22.
    137. Matsumoto T, Yoshino M, Asano T, Uesugi K, Todoh M, Tanaka M. Monochromatic synchrotron radiation μCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae. J Appl Physiol.2006;100(1):274-80.
    138. Umetani K, Uesugi K, Kobatake M. Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing. Nuclear Instruments and Methods in Physics Research Section A 2009;609(2):38-49.
    139. Takeshita S, Isshiki T, Ochiai M, Eto K, Mori H, Tanaka E, Umetani K, Sato T. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation.1998;98(13):1261-3.
    140. Takeshita S, Isshiki T, Mori H, Tanaka E, Tanaka A, Umetani K, Eto K, Miyazawa Y, Ochiai M, Sato T. Microangiographic assessment of collateral vessel formation following direct gene transfer of vascular endothelial growth factor in rats. Cardiovasc Res.1997;35(3):547-52.
    141. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst.2002;94(12):883-93
    142. Ellis LM, Walker RA, Gasparini G. Current controversies in cancer:is determination of angiogenic activity in human clinically useful? Eur J Cancer.1998;34(5):609-18.
    143. Ruegg C, Meuwly JY, Driscoll R, Werffeli P, Zaman K, Stupp R. The quest for surrogate markers of angiogenesis:a paradigm for translational research in tumor angiogenesis and antiangiogenesis trials. Curr Mol Med.2003;3(8):673-91.
    144. Pathak AP, Hochfeld WE, Goodman SL, Pepper MS. Circulating and imaging markers for angiogenesis. Angiogenesis.2008;11(4):321-35.
    145. Di Ieva A, Grizzi F, Ceva-Grimaldi G, Aimar E, Serra S, Pisano P, Lorenzetti M, Tancioni F, Gaetani P, Crotti F, Tschabitscher M, Matula C, Rodriguez Y Baena R. The microvascular network of the pituitary gland:a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J Neurosurg Sci.2010 Jun;54(2):49-54.
    146. Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res. 2010Oct;107(8):943-52.
    147. Szekanecz Z, Besenyei T, Szentpetery A, Koch AE. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol.2010 May;22(3):299-306.
    148. Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Mechanisms in the loss of capillaries in systemic sclerosis:angiogenesis versus vasculogenesis. J Cell Mol Med.2010 Jun;14(6A):1241-54.
    149. Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C, Madeddu P. Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 2010;107(2):283-93.
    150. Jain RK. A New Target for Tumor Therapy. N Engl J Med.2009;360(25):2669-71.
    151. Dufourcq P, Descamps B, Tojais NF, Leroux L, Oses P, Daret D, Moreau C, Lamaziere JM, Couffinhal T, Duplaa C. Secreted frizzled-related protein-1 enhances mesenchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells. 2008;26(11):2991-3001.
    152. Staudacher DL, Sela Y, Itskovitz-Eldor J, Flugelman MY. Intra-arterial injection of human embryonic stem cells in athymic rat hind limb ischemia model leads to arteriogenesis. Cardiovasc Revasc Med.2011 Feb 28. [Epub ahead of print]
    153. Risau W. Mechanisms of angiogenesis. Nature.1997 Apr;386(6626):671-4.
    154. Tongers J, Roncalli JG, Losordo DW. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res.2010;79(3):200-6.
    155. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine. 2000;6(4):389-95.
    156. Semenza GL. Vasculogenesis, Angiogenesis, and Arteriogenesis:Mechanisms of Blood Vessel Formation and Remodeling. J Cell Biochem.2007;102(4):840-7.
    157. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell Ⅰ, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12(10):943-53.
    158. Gouw AS, Zeng W, Buiskool M, Platteel I, van den Heuvel MC, Poppema S, de Jong KP, Molema G. Molecular characterization of the vascular features of focal nodular hyperplasia and hepatocellular adenoma:a role for angiopoietin-1. Hepatology.2010;52(2):540-9.
    159. Peters BA, Diaz LA, Polyak K, Meszler L, Romans H, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C:Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005;11(3):261-2.
    1. Mori H, Hyodo K, Tobita K, Chujo M, Shinozaki Y, Suqishita Y, Ando M. Visualization of penetrating transmural arteries in situ by monochromatic synchrotron radiation. Circulation. 1994;89(2):863-71.
    2. Mori H, Hyodo K, Tanaka E, Uddin-Mohammed M, Yamakawa A, Shinozaki Y, Nakazawa H, Tanaka Y, Sekka T, Iwata Y, Handa S, Umetani K, Ueki H, Yokoyama T, Tanioka K, Kubota M, Hosaka H, Ishikawa N, Ando M. Small-vessel radiography in situ with monochromatic synchrotron radiation. Radiology.1996;201(1):173-7.
    3. McDonald D M, Choyke P L. Imaging of angiogenesis:from microscope to clinic Nat. Med. 2003;9(6):713-25.
    4. Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, Schneider P, Muller R. Hierarchical microimaging for multiscale analysis of large vascular networks. Neurolmage. 2006;32(2):626-36.
    5. Li W, Shen W, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang S, Chen Y, Zhai Y, Wang G, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J. High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb. Circulation.2006;113(20):2445-53.
    6. Pevec WC, Ndoye A, Brinsky JL, Wiltse S, Cheung AT. New blood vessels can be induced to invade ischemic skeletal muscle. J Vasc Surg.1996;24(2):534-41.
    7. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst.2002;94(12):883-93
    8.Ellis LM, Walker RA, Gasparini G. Current controversies in cancer:is determination of angiogenic activity in human clinically useful? Eur J Cancer.1998;34(5):609-18.
    9. Ruegg C, Meuwly JY, Driscoll R, Werffeli P, Zaman K, Stupp R. The quest for surrogate markers of angiogenesis:a paradigm for translational research in tumor angiogenesis and antiangiogenesis trials. CurrMol Med.2003;3(8):673-91.
    10. Pathak AP, Hochfeld WE, Goodman SL, Pepper MS. Circulating and imaging markers for angiogenesis. Angiogenesis.2008;11(4):321-35.
    11. Di leva A, Grizzi F, Ceva-Grimaldi G, Aimar E, Serra S, Pisano P, Lorenzetti M, Tancioni F, Gaetani P, Crotti F, Tschabitscher M, Matula C, Rodriguez Y Baena R. The microvascular network of the pituitary gland:a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J Neurosurg Sci.2010 Jun;54(2):49-54.
    12. Bert rand B, Esteve F, Elleaume H. Comparison of synchrotron radiation angiography wit h conventional angiography for t he diagnosis of in 2 stent restenosis after percutaneous transluminal coronary angioplasty. Eur Heart J.2005;26 (13):1284-91.
    13. Momose A, Takeda T, Itai Y. Blood vessels:depiction at phase cont rast X-ray imaging without cont rast agent s in t he mouse and rat-feasibility study. Radiology.2000; 217 (2):593-6.
    14. Dix WR, Kupper W, Dill T, Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography. J Synchrotron Radiat.2003;10(Pt 3):219-27.
    15. Yamashita T, Kawashima S, Ozaki M, Namiki M, Shinohara M, Inoue N, Hirata K, Umetani K, Yokoyama M. In vivo angiographic detection of vascular lesions in apolipoprotein E-knockout mice using a synchrotron radiation microangiography system. Circ J. 2002;66(11):1057-9.
    16. Yamashita T, Kawashima S, Ozaki M, Namiki M, Hirase T, Inoue N, Hirata K, Umetani K, Sugimura K, Yokoyama M. Images in cardiovascular medicine. Mouse coronary angiograph using synchrotron radiation microangiography.Circulation.2002;105(2):E3-4.
    17. Iwasaki H, Fukushima K, Kawamoto A, Umetani K, Oyamada A, Hayashi S, Matsumoto T, Ishikawa M, Shibata T, Nishimura H, Hirai H, Mifune Y, Horii M, Sugimura K, Suehiro S, Asahara T. Synchrotron radiation coronary microangiography for morphometric and physiological evaluation of myocardial neovascularization induced by endothelial progenitor cell transplantation. Arterioscler Thromb Vasc Biol.2007;27(6):1326-33.
    18. Thomlinson W, Gmur N, Chapman D,Garrett R, Lazarz N, Morrison J, Reiser P, Padmanabhan V, Ong L, Green S. Venous synchrotron coronary angiography. Lancet 1991; 337(8737):360.
    19. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M. Changes in macrovessel pulmonary blood flow distribution following chronic hypoxia:assessed using synchrotron radiation microangiography. J Appl Physiol.2008;104(1):88-96.
    20. Imazuru T, Matsushita S, Hyodo K, Tokunaga C, Kanemoto S, Enomoto Y, Watanabe Y, Hiramatsu Y, Sakakibara Y. Erythropoietin enhances arterioles more significantly than it does capillaries in an infarcted rat heart model. Int Heart J 2009;50(6):801-10.
    21. Shirai M, Schwenke DO, Eppel GA, Evans RG, Edgley A J, Tsuchimochi H, Umetani K, Pearson JT. Synchrotron-based angiography for investigation of the regulation of vasomotor function in the microcirculation in vivo. Clin Exp Pharmacol Physiol.2009;36(1):107-16.
    22. Yoshino H, Sakurai T, Oizumi XS, Akisaki T, Wang X, Yokono K, Kondoh T, Kohmura E, Umentani K.. Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles:simultaneous visualization of perforating and cortical vessels by in-vivo microangiography. Microvasc Res.2009;77(2): 230-3.
    23. Eppel GA, Jacono DL, Shirai M, Umetani K, Evans RG, Pearson JT. Contrast angiography of the rat renal microcirculation in vivo using synchrotron radiation. Am J Physiol Renal Physiol.2009;296(5):F1023-31.
    24. Zehbe R, Haibel A, Riesemeier H, Gross U, Kirkpatrick CJ, Schubert H, Brochhausen C. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization:from tissue morphology to individual cells. Journal of the Royal Society Interface.2010;7(42):49-59.
    25. Takeda T, Momose A, Wu J, Yu Q, Zeniya T, Thet Thet L, Yoneyama A, Itai Y. Vessel imaging by interferometric phase-contrast X-ray technique. Circulation.2002; 105(14): 1708-12.
    26. Matsuda H, Hayashi K, Wakino S, Kubota E, Honda M, Tokuyama H, Takamatsu Ⅰ, Tatematsu S, Saruta T. Role of endothelium-derived hyperpolarizing factor in ACE inhibitor-induced renal vasodilation in vivo. Hypertension.2004; 43(3):603-9.
    27. Denton KM, Shweta A, Finkelstein L, Flower RL, Evans RG. Effect of endothelin-1 on regional kidney blood flow and renal arteriole caliber in rabbits. Clin. Exp. Pharmacol. Physiol.2004; 31(8):494-501.
    28. Bentley MD, Jorgensen SM, Lerman LO, Ritman EL, Romero JC. Visualization of three-dimensional nephron structure with microcomputed tomography. Anat. Rec. Adv. Integr. Anat. Evol. Biol.2007;290(3):277-83.
    29. Bentley MD, Ortiz MC, Ritman EL, Romero JC. The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol.2002; 282(5):R1267-79.
    30. Wu X, Liu H. Clinical implementation of X-ray phase-contrast imaging:Theoretical foundations and design considerations. MedPhys.2003;30(8):2169-79.
    31. Momose A, Takeda T, Itai Y and Hirano K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat. Med.1996;2(4):473-5.
    32. Chapman D, Thomlinson W, Johnston RE. Diffraction enhanced X-ray imaging. Physics in Medicine and Biology.1997;42 (11):2015-25.
    33. Wilkins SW, Gureyev TE, Gao D, et al. Phase-contast imaging using polychromatic hard X-ray. Nature,1996,384:335—338.
    34. Suortti P, Thomlinson W. Medical applications of synchrotron radiation.Phys Med Biol. 2003;48 (13):R1-35.
    35. Zhou S A, Brahme A. Development of phase-contrast X-ray imaging techniques and potential medical applications Phys Med.2008;24(3):e129-48.
    36. Wu X, Liu H. Clarification of aspects in in-line phase-sensitive X-ray imaging Med Phys. 2007;34(2):737-43.
    37. Schwenke DO, Pearson JT, Umetani K, Kangawa K, Shirai M. Imaging of the pulmonary circulation in the closed-chest rat using synchrotron radiation microangiography. J Appl Physiol.2007;102(2):787-93.
    38. Schwenke DO, Pearson JT, Kangawa K, Umetani K, Shirai M. Changes in macrovessel pulmonary blood flow distribution following chronic hypoxia:assessed using synchrotron radiation microangiography. J Appl Physiol.2008;104(1):88-96.
    39. Schwenke DO, Pearson JT, Sonobe T, Ishibashi-Ueda H, Shimouchi A, Kangawa K, Umetani K, Shirai M. Role of Rho kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertention. J Appl Physiol.2011 Jan 6. [Epub ahead of print]
    40. Suhonen H, Porra L, Bayat S, Sovijarvi AR, Suortti P. Simultaneous in vivo synchrotron radiation computed tomography of regional ventilation and blood volume in rabbit lung using combined K-edge and temporal subtraction. Phys Med Biol.2008;53(3):775-91.
    41. Schittny JC, Mund SI, Stampanoni M. Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol.2008; 294(2):L246-54.
    42. Hyodo K, Ando M, Oku Y, Yamamoto S, Takeda T, Itai Y, Ohtsuka S, Sugishita Y, Tada J. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler. J. Synchrotron Rad.1998; 5(Pt3):1123-6.
    43. Rubenstein E, Hofstadter R, Zeman HD, Thompson AC, Otis JN, Brown GS, Giacomini JC, Gordon HJ, Kernoff RS, Harrison DC, et al. Transvenous coronary angiography in humans using synchrotron radiation. Proc Natl Acad Sci USA.1986;83(24):9724-8.
    44. Thomlinson W, Gmur N, Chapman D,Garrett R, Lazarz N, Morrison J, Reiser P, Padmanabhan V, Ong L, Green S. Venous synchrotron coronary angiography. Lancet 1991; 337(8737):360.
    45. Dill T, Job H, Dix WR, Ventura R, Kupper W, Hamm CW, Meinertz T. Intravenous coronary angiography with synchrotron radiation. Z Kardiol.2000;89 (Suppl 1):27-33.
    46. Ohtsuka S, Sugishita Y, Takeda T, Itai Y, Tada J, Hyodo K, Ando M. Dynamic intravenous coronary angiography using 2D monochromatic synchrotron radiation. Br J Radiol. 1999;72(853):24-8.
    47. Elleaume H, Fiedler S, Esteve F, Bertrand B, Charvet AM, Berkvens P, Berruyer G, Brochard T, Le Duc G, Nemoz C, Renier M, Suortti P, Thomlinson W, Le Bas JF. First human transvenous coronary angiography at the European Synchrotron Radiation Facility. Phys Med Biol.2000 Sep;45(9):L39-43.
    48. Dix WR, Kupper W, Dill T, Hamm CW, Job H, Lohmann M, Reime B, Ventura R. Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography. J Synchrotron Radiat.2003;10(Pt 3):219-27.
    49. Tanaka A, Mori H, Tanaka E, Mohammed MU, Tanaka Y, Sekka T, Ito K, Shinozaki Y, Hyodo K, Ando M, Umetani K, Tanioka K, Kubota M, Abe S, Handa S, Nakazawa H. Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation. Am J Physiol.1999;276(6 Pt 2):H2262-7.
    50. Bertrand B, Esteve F, Elleaume H, Nemoz C, Fiedler S, Bravin A, Berruyer G, Brochard T, Renier M, Machecourt J, Thomlinson W, Le Bas JF. Comparison of synchrotron radiation angiography with conventional angiography for the diagnosis of in-stent restenosis after percutaneous transluminal coronary angioplasty. Eur Heart J.2005;26(13):1284-91.
    51. Yamashita T, Kawashima S, Ozaki M, Namiki M, Hirase T, Inoue N, Hirata K, Umetani K, Sugimura K, Yokoyama M. Images in cardiovascular medicine. Mouse coronary angiograph using synchrotron radiation microangiography.Circulation.2002;105(2):E3-4.
    52. Iwasaki H, Fukushima K, Kawamoto A, Umetani K, Oyamada A, Hayashi S, Matsumoto T, Ishikawa M, Shibata T, Nishimura H, Hirai H, Mifune Y, Horii M, Sugimura K, Suehiro S, Asahara T. Synchrotron radiation coronary microangiography for morphometric and physiological evaluation of myocardial neovascularization induced by endothelial progenitor cell transplantation. Arterioscler Thromb Vasc Biol.2007;27(6):1326-33.
    53. Mori H, Tanaka E, Hyodo K, Uddin Mohammed M, Sekka T, Ito K, Shinozaki Y, Tanaka A, Nakazawa H, Abe S, Handa S, Kubota M, Tanioka K, Umetani K, Ando M. Synchrotron microangiography reveals configurational changes and to-and-fro flow in intramyocardial vessels. Am J Physiol.1999;276(2 Pt 2):H429-37.
    54. Umetani K, Ueki H, Takeda T, Itai Y, Mori H, Tanaka E, Uddin-Mohammed M, Shinozaki Y, Akisada M, Sasaki Y. High-spatial-resolution and real-time medical imaging using a high-sensitivity HARPICON camera. J Synchrotron Radiat.1998;5(Pt 3):1130-2.
    55. Imazuru T, Matsushita S, Hyodo K, Tokunaga C, Kanemoto S, Enomoto Y, Watanabe Y, Hiramatsu Y, Sakakibara Y. Erythropoietin enhances arterioles more significantly than it does capillaries in an infarcted rat heart model. Int Heart J 2009;50(6):801-10.
    56. Shinohara M, Yamashita T, Tawa H, Takeda M, Sasaki N, Takaya T, Toh R, Takeuchi A, Ohigashi T, Shinohara K, Kawashima S, Yokoyama M, Hirata K, Momose A. Atherosclerotic plaque imaging using phase-contrast X-ray computed tomography. Am J Physiol Heart Circ Physiol.2008;294(2):H 1094-100.
    57. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol.2004; 91(4):1908-12.
    58. Pantoni L, Garcia JH, Gutierrez JA, Rosenblum WI. Cerebral white matter is highly vulnerable to ischemia. Stroke 1996; 27:1641-7.
    59. Tagami M, Nara Y, Kubota A, Sunaga T, Maezawa H, Fujino H, Yamori Y. Ultrastructural characteristics of occluded perforating arteries in stroke-prone spontaneously hypertensive rats. Stroke 1987; 18(4):733-40.
    60. Morishita A, Kondoh T, Sakurai T, Ikeda M, Bhattacharjee AK, Nakajima S, Kohmura E, Yokono K, Umetani K. Quantification of distension in rat cerebral perforating arteries. Neuroreport 2006; 17(14):1549-53.
    61. Morita M, Ohkawa M, Miyazaki S, Ishimaru T, Umetani K, Suzuki K. Simultaneous observation of superficial cortical and intracerebral micro vessels in vivo during reperfusion after transient forebrain ischemia in rats using synchrotron radiation. Brain Res.2007; 1158: 116-22.
    62. Myojin K, Taguchi A, Umetani K, Fukushima K, Nishiura N, Matsuyama T, Kimura H, Stern DM, Imai Y and Mori H. Visualization of intracerebral arteries by synchrotron radiation microangiography. AJNR Am J Neuroradiol.2007;28(5):953-7.
    63. Tamaki M, Kidoguchi K, Mizobe T, Koyama J, Kondoh T, Sakurai T, Kohmura E, Yokono K, Umetani K.. Carotid artery occlusion and collateral circulation in C57Black/6J mice detected by synchrotron radiation microangiography. Kobe J. Med. Sci.2006; 52(5):111-18.
    64. Kelly ME, Schultke E, Fiedler S, Kelly ME, Schultke E, Fiedler S, Nemoz C, Guzman R, Corde S, Esteve F, LeDuc G, Juurlink BH, Meguro K. Synchrotron-based intravenous cerebral angiography in a small animal model. Phys. Med. Biol.2007; 52(4):1001-12.
    65. Kidoguchi K, Tamaki M, Mizobe T, Kidoguchi K, Tamaki M, Mizobe T, Koyama J, Kondoh T, Kohmura E, Sakurai T, Yokono K, Umetani K. In vivo X-ray angiography in the mouse brain using synchrotron radiation. Stroke 2006; 37(7):1856-61.
    66. Tanaka E, Tanaka A, Sekka T, Shinozaki Y, Hyodo K, Umetani K, Mori H. Digitized cerebral synchrotron radiation angiography:Quantitative evaluation of the canine circle of Willis and its large and small branches. Am. J. Neuroradiol.1999; 20(5):801-6.
    67. Schulz G, Weitkamp T, Zanette I, Pfeiffer F, Beckmann F, David C, Rutishauser S, Reznikova E, Miiller B. High-resolution tomographic imaging of a human cerebellum:comparison of absorption and grating-based phase contrast. J R Soc Interface.2010 Dec 6;7(53):1665-76.
    68. Umetani K, Kidoguchi K, Morishita A, Oizumi XS, Tamaki M, Yamashita H, Sakurai T, Kondoh T. In vivo cerebral artery microangiography in rat and mouse using synchrotron radiation imaging system. Conf Proc IEEE Eng Med Biol Soc 2007;2007:3926-9.
    69. Ditrich H. Renal Structure and Function in Vertebrates. Science Publishers, Enfield.2005.
    70. Evans RG, Eppel GA, Anderson WP, Denton KM. Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J. Hypertens.2004; 22(8):1439-51.
    71. Kett MM, Bertram JF. Nephron endowment and blood pressure:What do we really know? Curr. Hypertens. Rep.2004; 6(2):133-9.
    72. Cowley Jr AW. Long-term control of arterial blood pressure. Physiol. Rev.1992; 72: 231-300.
    73. Cowley Jr AW, Mori T, Mattson D, Zou A-P. Role of renal NO production in the regulation of medullary blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol.2003; 284(6): R1355-69.
    74. Evans RG, Gardiner BS, Smith DW, O'Connor PM. Intrarenal oxygenation:Unique challenges and the biophysical basis of homeostasis. Am. J. Physiol. Renal. Physiol.2008; 295(5):Epub 11 June 2008; doi:10.1152/ajprenal.90230.2008
    75. Langheinrich AC, Kampschulte M, Crossmann C, Moritz R, Rau WS, Bohle RM, Ritman EL. Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens. J Comput Assist Tomogr. 2009;33(4):517-22.
    76. Takeshi M, Masayuki Y, Takahisa A, et al. Monochromatic synchrotron radiation μCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae J Appl Physiol 2006; 100:274-80.
    77. Umetani K, Uesugi K, Kobatake M. Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing. Nuclear Instruments and Methods in Physics Research Section A 2009;609(2):38-49.
    78. Takeshita S, Isshiki T, Ochiai M, Eto K, Mori H, Tanaka E, Umetani K, Sato T. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation.1998;98(13):1261-3.
    79. Takeshita S, Isshiki T, Mori H, Tanaka E, Tanaka A, Umetani K, Eto K, Miyazawa Y, Ochiai M, Sato T. Microangiographic assessment of collateral vessel formation following direct gene transfer of vascular endothelial growth factor in rats. Cardiovasc Res.1997;35(3):547-52.
    80. Tokiya R, Umetani K, Imai S, Yamashita T, Hiratsuka J, Imajo Y. Observation of microvasculatures in athymic nude rat transplanted tumor using synchrotron radiation microangiography system. Acad Radiol.2004; 11(9):1039-46
    81. Zhang X, Liu XS, Yang XR, Chen SL, Zhu PP and Yuan QX. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging. Phys Med Biol.2008; 53(20):5735-43.
    82. Takeshita S, Isshiki T, Mori H, Tanaka E, Eto K, Miyazawa Y, Tanaka A, Shinozaki Y, Hyodo K, Ando M, Kubota M, Tanioka K, Umetani K, Ochiai M, Sato T, Miyashita H. Use of synchrotron radiation microangiography to assess development of small collateral arteries in a rat model of hindlimb ischemia. Circulation.1997;95(4):805-8.
    83. Peterzol A, Bravin A, Coan P, Elleaume H. Performance of the K-edge digital subtraction angiography imaging system at the European synchrotron radiation facility. Radiat. Prot. Dosimetry 2005; 117(1-3):44-9.
    84. Wong TY, Klein R, Sharrett AR, Schmidt MI, Pankow JS, Couper DJ, Klein BE, Hubbard LD, Duncan BB; ARIC Investigators. Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. JAMA 2002; 287(19):2528-33.
    85. Wong TY, Duncan BB, Golden SH, Klein R, Couper DJ, Klein BE, Hubbard LD, Sharrett AR, Schmidt MI. Associations between the metabolic syndrome and retinal microvascular signs:The atherosclerosis risk in communities study. Invest. Opthalmol. Vis. Sci.2004; 45(9):2949-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700