基于造影图像的冠状动脉三维重建和定量分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠状动脉造影图像是临床诊治冠心病的主要依据之一,被称为诊断冠心病的“金标准”,但基于二维造影图像的传统诊治方法存在很大的局限性。本文在二维血管提取的基础上,主要研究冠状动脉树的三维重建方法,并进行主干血管三维定量分析方法的研究,对于提高冠心病诊治的准确程度具有很高的临床应用价值。本论文研究课题受高等学校博士学科点专项科研基金的资助(“心血管造影图像中血管网的提取与三维重建”,20030056018),主要研究工作包括以下几个方面:
    1.建立三维重建的理论模型
    根据造影系统的运动特征建立透视投影的简化模型,并采用几何变换矩阵描述两幅图像的空间几何关系。在此基础上提出了空间点三维坐标的两种计算方法,即最小二乘解和几何解。
    2.二维骨架树的分割和血管段的匹配
    在二维血管提取的基础上,采用有向图、有向树和二叉树描述骨架树的拓扑结构。同时提出结点权值和相似结点的概念,实现两幅图像中血管段的匹配。
    3.几何变换矩阵的优化
    将几何变换矩阵表示为七元数的形式,提出利用分支点坐标、分支血管方向矢量和分支夹角三类数据优化几何变换矩阵的方法。
    4.冠状动脉树骨架的三维重建
    提出一种以B样条曲线为基元重建三维骨架的方法,采用B样条曲线拟合二维骨架,在B样条曲线透视不变性的假设下对三维控制点进行优化。
    5.冠状动脉三维表面的重建
    在假设血管为广义圆柱体的前提下,建立血管横截面的椭圆模型,并提出顶点融合技术很好地解决了相邻横截面相交的问题。同时分别采用球包络方法、三角形拼接法和NURBS曲面拟合方法重构血管的三维表面。
    6.冠状动脉树的三维重建实验
    分别采用计算机模拟图像、临床造影图像和实物模型造影图像进行三维重建实验,并对重建误差进行统计分析,验证本文重建方法的正确性。
    7.冠状动脉的三维定量分析
    在冠状动脉树三维重建的基础上,研究冠状动脉的三维定量分析方法。提出血管三维直径、分支夹角、血管段长度和体积的三维测量方法,并利用冠状动脉树实物模型进行三维定量分析实验,验证该方法的有效性和准确性。
Coronary angiography is regarded as the “gold standard” for the assessment of coronary artery disease. We are now carrying out a research project supported by the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under the contract no. 20030056018. The project is entitled “2D extraction and 3D reconstruction of vessel net based on the angiograms”. The core of this dissertation is 3D reconstruction of coronary arterial tree and the 3D quantitative analysis of vessel. The main contents of this dissertation include seven parts as follows:
    1. Theoretical Model of 3D reconstruction
    We construct the simplified model of angiographic system according to its moving characters, and describe the transformation between the two angiograms using a rotation matrix and a translation vector. In addition, we present two methods to calculate 3D coordinate, which are Least Square Solution and Geometric Solution.
    2. Segmentation of 2D tree and vessel-matching
    After segmentation of 2D skeleton tree, we use Directed Graph, Directed Tree and Binary Tree to describe the topological structure of arterial tree. At the same time, Node Weight and Similar Node are defined, by which the vessels are matched successfully.
    3. Optimization of transformation
    Bifurcations, vessel vectors and branch angles are used to optimize the geometric transformation which is expressed as seven variables.
    4. 3D reconstruction of coronary arterial tree’s skeleton
    We propose a new method based on B-spline for reconstructing 3D skeleton. It mainly includes 2D B-spline curve fitting and optimization of 3D B-spline control points.
    5. 3D reconstruction of vessel surface
    On the assumption that vessel is generalized column, we establish the elliptical model of vessel’s cross-section and present vertex-merging method to solve the problem of neighboring cross-sections’ intersection. In addition, three methods are studied for 3D reconstruction of vessel surface, including Sphere Envelope, Triangularization and NURBS Surface Fitting.
    6. Experiment of 3D reconstruction
    The computer-simulated images, clinical angiograms and vessel phantom’s angiograms are respectively used for the experiment of 3D reconstruction. The performance of the method is validated by the statistic of reconstruction errors.
    7. 3D quantitative analysis of coronary artery On the basis of 3D reconstruction, we study the 3D quantitative analysis of vessel, and propose a method to calculate the 3D values of diameter, length, and volume and branch angle. The method is validated by 3D quantitative analysis of vessel phantom.
引文
[1] 孔灵芝,慢性非传染性疾病流行现状、发展趋势及防治策略,中国慢性病预防与控制,2002,10(1):1~2
    [2] E. Wellnhofer, A. Wahle, I. Mugaragu, et al. Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections, International Journal of Cardiac Imaging, 1999, 15: 339~353
    [3] W.I. Meyering, M.A. Gutierrez, S.S. Furuie, et al. Spatiotemporal-frequency analysis applied to motion detection, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, 2000, 3: 1720~1723
    [4] 王贤才(译),简明希氏内科学,青岛:青岛出版社,1991.3~10
    [5] 陈在嘉,徐义枢,孔华宇,临床冠心病学,北京:人民卫生出版社,1994.121~125
    [6] P.J. Yim, G.B.C. Vasbinder, V.B. Ho, et al. Isosurfaces as deformable models for magnetic resonance angiography,IEEE Transactions on Medical Imaging,2003, 22(7): 875~881
    [7] H. Zhu, M.H. Friedman. Tracking 3-D coronary artery motion with biplane angiography, Biomedical Imaging 2002. Proceedings 2002 IEEE International Symposium 2002: 605~608
    [8] 沈卫峰, 实用介入性心脏病学,上海:上海科技教育出版社,1997.15~161
    [9] J.C. Messenger, S.Y. James Chen, J.D. Carroll, et al. 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients, The International Journal of Cardiac Imaging, 2000, 16: 413~427
    [10] J.L. Klein, J. G. Hoff, J.W. Peifer, et al. A quantitative evalution of the three dimensional reconstruction of patients’ coronary arteries, International Journal of Cardiac Imaging, 1998, 14: 75~87
    [11] J. Lengyel, D.P. Greenberg, R. Popp. Time-dependent three-dimensional intravascular ultrasound, Proceedings ACM SIGGRAPH Computer Graphics, 1995:457~464
    [12] R. Shekhar, R.M. Cothren, D.G. Vince, et al. Fusion of intravascular ultrasound and biplane angiography for three-dimensional reconstruction of coronary arteries. IEEE Proceeding, Computers in Cardiology. 1996: 8-11
    [13] C. Bourantas, D.I. Fotiadis, I.C. Kourtis, et al. Three-dimensional coronary artery reconstruction using fusion of intravascular ultrasound and biplane angiography. International Congress Series 1256. 2003: 1133-1138
    [14] S.J. Chen, J.D. Carroll. 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Transaction on Medical Imaging, 2000, 19(4): 318~336
    [15] S.J. Chen, K.R. Hoffmann, J.D. Carroll. Computer assisted coronary intervention: 3D reconstruction and determination of optimal views, IEEE Computer in Cardiology, 1996, 23: 117~120
    [16] Y. Sato, T. Araki and M. Hanayama. A viewpoint determination for stenosis diagnosis and quantification in coronary angiographic image acquisition, IEEE Transaction on Medical Imaging, 1998, 17(1): 121~137
    [17] C. Adrie, M. Dumay, H. Hohan, et al. Determination of optimal angiographic viewing angles: basic principles and evaluation study,IEEE Transaction on Medical Imaging, 1994, 13(1): 13~24
    [18] 孙正,基于冠状动脉造影图像序列的心脏及血管运动估计的研究:[博士学位论文],天津:天津大学,2003
    [19] A. Wahle, J.J. Lopez, E.C. Pennington, et al. Effects of vessel geometry and catheter position on dose delivery in intracoronary branchytherapy, IEEE Transactions on Biomedical Engineering, 2003, 50(11): 1286~1295
    [20] A. Sarwal, A. P. Dhawan. Three dimensional of coronary arteries from two views, Computer Methods and Programs in Biomedicines, 2001, 65: 25~43
    [21] F. Cherieta, Self-calibration of a biplane X-ray imaging system for an optimal three dimensional reconstruction, Computerized Medical Imaging and Graphics, 1999, 23: 133~141
    [22] B. Movassaghi, V. Rasche, R. Florent, et al. 3D Coronary reconstruction from calibrated motion-compensated 2d projections, International Congress Series, 2003, 1256: 1079~1084
    [23] G. Kristiansen, W. Wunderlich, F. Fischer, et al. Accuracy and precision of the analytic calibration method in quantitative coronary arteriography, IEEE Computers in Cardiology, 1996, 23: 401~404
    [24] A. Hashemi, N. Navab, M. Nadar, et al. Interventional 3D-angiography: calibration, reconstruction and visualization system, IEEE, Computer in cardiology, 1998: 246-247
    [25] 徐智,心血管造影图像的二维信息处理及其三维重建研究:[博士学位论文],天津:天津大学,2003
    [26] A. Wahle, et al. “Image preprocessing for 3D reconstruction from biplane angiograms”. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, 3.1.3: 3D Cardiovascular Imaging: 654-655
    [27] K. Temel, G. Ali, T. Mehmet, et al. A surface-based method for diction of coronary vessel boundaries in poor quality X-ray angiogram images, Pattern Recognition Letters, 2002, 23: 783~802
    [28] Y. Qian, S. Eiho, N. Sugimoto, et al. Automatic extraction of coronary artery tree on coronary angiograms by morphological operators, IEEE Computer in Cardiology, 1998, 25: 765~768
    [29] Z. Ding, M.H. Friedman. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms, International Journal of Cardiac Imaging, 2000,16(00):331~346
    [30] R.W. Curwen, A.A. Amini, J.S. Duncan, et al. Tracking vascular motion in x-ray image sequences with kalman snakes, Proceedings IEEE Computers in Cardiology,1994: 109~112
    [31] J. Puentes, C. Roux, M. Garreau, et al. Dynamic feature extraction of coronary artery motion using DSA image sequences, IEEE Transactions on Medical Imaging, 1998, 17(6): 857~871
    [32] 王平,牟轩沁,秦中元 等, 基于代数方法的二值图像重建研究,西安交通大学学报,2001, 35(6):649~651
    [33] 顾建平, 范春瑛, 段宝祥 等, 冠状动脉狭窄计算机辅助定量诊断,江苏医药杂志,2001, 27(4):267~269
    [34] 杨绍洲,李树祥,基于 2D 投影图像的血管三维重构与显示技术,北京生物医学工程,1996,15(4):247~251
    [35] A. Wahle, W. Ernst, M. Ignace, et al. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms, IEEE Transactions on Medical Imaging, 1995, 14(2): 203~241
    [36] A. Wahle, E. Wellnhofer, I. Mugaragu, et al. Quantitative volume analysis of coronary vessel systems by 3-d reconstruction from biplane angiograms, Nuclear Science Symposium and Medical Imaging Conference, 1993 IEEE Conference Record. 1993, 1217~1221
    [37] A. Wahle, S.C. Mitchell, M.E. Olszewski, et al. Accurate visualization and quantification of coronary vasculature by 3D/4D fusion from biplane angiography and intravascular ultrasound, EBiOS 2000: Biomonitoring and Endoscopy Technologies, EOS/SPIE 4158-31: 144~155
    [38] E. Wellnhofer, A. Wahle, I. Mugaragu, et al. Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections, International Journal of Cardiac Imaging, 1999, 15: 339~353
    [39] E. Wellnhofer, A. Wahle, E. Fleck, Progression of coronary atherosclerosis quantified by analysis of 3-D reconstruction of left coronary arteries, Atherosclerosis, 2002, (16): 483~493
    [40] M.E. Olszewski, A. Wahle, R. Medina, et al. Integrated system for quantitative analysis of coronary plaque via data fusion of biplane angiography and intravascular ultrasound, International Congress Series, 2003, 1256: 1117~1122
    [41] 高上凯, 医学成像系统,北京:清华出版社,2000,10~41
    [42] A.B. Merle, G. Finet, J. Liénard, et al. 3D reconstruction of the deformable coronary tree skeleton from two X-ray angiographic views, Computers in Cardiology, 1998, 25: 757~760
    [43] H.K. Hahn, B. Preim, D. Selle, et al. Visualization and interaction techniques for the exploration of vascular structures, Visualization, VIS '01. Proceedings, Oct. 21-26, 2001: 395~402
    [44] P. Radeva, R. Toledo, C.V. Land, et al. 3D Vessel Reconstruction from Biplane Angiograms using Snakes, Computer in Cardiology, 1998, 25: 773~776
    [45] P. Radeva, R. Toledo, C.V. Land, et al. 3D vessel reconstruction from biplane angiograms using snakes. Computer in Cardiology, 1998, 25: 773~776
    [46] M.E. Olszewski, R.M. Long, S.C. Mitchell, et al. A quantitative study of coronary vasculature in four dimensions, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, 2000, 4: 2621~2624
    [47] C. Canero, F. Vilarino, J. Mauri, et al. Predictive (un)distortion model and 3-D reconstruction by biplane snakes, IEEE Transactions on Medical Imaging, VOL. 21, NO. 9, SEPTEMBER 2002, 21(9): 1188~1201
    [48] 吴福朝,王光辉,胡占义,由矩形确定摄像机内参数与位置的线性方法,软件学报, 2003,14(3):703~712
    [49] 贾云得,机器视觉,北京:科学出版社,2000:237~238
    [50] G. Shechter, G. Ozturk, J.R. Resar, et al. Respiratory motion of the heart: translation, rigid body, affine or more? SCMR 2004, 1
    [51] G. Kristiansen, W. Wunderlich, F. Fischer, et al. Accuracy and precision of the analytic calibration method in quantitative coronary arteriography, IEEE Computers in Cardiology, 1996, 23: 401~404
    [52] Z.H. Ding, H. Zhu, H.F. Morton. Coronary artery dynamics in vivo, Annals of Biomedical Engineering, 2002, 30: 419~429
    [53] S.E. Haris, N. Maglaveras. Automated coronary artery extraction using watersheds, IEEE Computers in Cardiology, 1997, 24: 741~744
    [54] 徐智,郁道银,谢洪波 等,造影图像中的心血管边缘提取,天津大学学报,2003,36(3):296~299
    [55] M. White, J.L. Roulean, C. Hall, et al. Changes in vasoconstrictive hormones, natriuretic peptides and left ventricular remodeling soon after anterior myocardial infarction. Am. Heart J., 2001, 142: 1056~1064
    [56] P.J. Yim, J.J. Cebral, R. Mulllick, et al. Vessel surface reconstruction with a tubular deformable model, IEEE Transaction on Medical Imaging, 2001, 20(12): 1411~1421
    [57] 陆建荣,心血管图像的处理及边缘特征提取:[硕士学位论文],天津:天津大学,2001
    [58] Zhi Xu, Hongbo Xie, Xiaodong Chen, et al. Detection of vessel boundary in coronary angiogram. SPIE, Shanghai: 2002 Asia-Pacific Photonics and Optical/Wireless communication conference and exhibition, 2002: 558~562
    [59] 徐智,郁道银,谢洪波 等,造影图像中的心血管边缘提取,天津大学学报,2003,36(3):296~299
    [60] R.T. Detre, E. Wright, M.L. Murphu, et al. Detection of abnormalities on carotid angiograms, Patter Recongnization, 1986, 4: 367~374
    [61] I. Liu, Y. Sun. Recursive tracing of vascular trees in angiograms using a detection-deletion scheme, Engineering in Medicine and Biology Society, 1990, Proceedings of the twelfth annual international conference of the IEEE, 1990: 169~170
    [62] D.J. Stevenson, L.D.R. Smith, G. Robison, et al. Working towards the automatic detection of blood vessels in X-ray angiograms, Patter Recognization Letter, 1994, 16: 295~301
    [63] 徐智,郁道银,谢洪波 等,心血管造影图像中的心血管提取,中国生物医学学报,2003,22(1):6~11
    [64] D.J. Stevenson, L.D.R. Smith, G.. Robinson. Working towards the automatic detection of blood vessels in X-ray angiograms, Pattern Recognition Letters, 1987, 6:107~112
    [65] 章毓晋,图象工程(上册),北京:清华大学出版社,2000:163~189
    [66] 徐光佑,计算机视觉,北京:清华大学出版社,1999.131~143
    [67] 王健,张树生,王广,基于节点的线状图骨架提取算法研究,计算机研究与发展,1999,36(6):725~731
    [68] 谭兆信,丁国芳,张仁礼,一种图像细化算法及其在医学图像中的应用,中山大学学报(自然科学版),2000,39(5):23~26
    [69] H. Wollschl?ger, A.M. Zeiher, P. Lee, et al. Computed triple orthogonal projections for optimal radiological imaging with biplane isocentric multidirectional X-ray systems”. IEEE Proceeding, Computers in Cardiology, 1987: 185~188
    [70] 鲍永坚,心血管三维重建,中国医疗器械杂志,1992,16(3):161~167
    [71] B. Bascle and R. Deriche. Stereo matching, reconstruction and refinement of 3D curves using deformable contours. IEEE, 1993: 421~430
    [72] 章毓晋,图象工程(下册),图象理解与计算机视觉,北京:清华大学出版社,2000:163~189
    [73] 江苏师范学院数学系《解析几何》编写组,解析几何(第二版),重庆:人民教育出版社,1983:121~138
    [74] 郁道银,黄家祥,谢洪波 等. 冠状动脉树三维重建理论模型的研究,工程图学学报,2003,24(4):386~391
    [75] 黄家祥,郁道银,陈晓冬 等. 冠状动脉树结构的三维重建,中国生物医学 工程学报,2004,23(2):109~115
    [76] 黄家祥,郁道银,陈晓冬 等. 冠状动脉树三维重建方法,天津大学学报,2004,37(5):386~391
    [77] 董玉久,潘秀英,杨欣欣,两异面直线公垂线垂足位置的计算方法,哈尔滨:哈尔滨科学技术大学学报,1990,14(1):84~88
    [78] 黄家祥,冠状动脉树三维骨架重建方法的研究:[硕士学位论文],天津:天津大学,2003
    [79] 黄家祥,郁道银,孙正 等,冠脉树三维重建中血管段的匹配,光电子激光,2003, 14(10):1113~1117
    [80] 王同胜,张连芳,王平 等人,计算机技术及应用基础,天津:天津大学出版社,1999:45~78
    [81] 黄浴,袁保宗,一种基于旋转矩阵单位四元数分解的运动估计算法,电子科学学刊,1996,18(4):337~343
    [82] 张宗华,彭翔,胡小唐,ICP 方法匹配深度图像的实现,天津大学学报,2002,35(5):571~576
    [83] J.X. Huang, D.Y. Yu, X.D. Chen, et al. Optimization of transformation for 3D reconstruction of coronary arterial tree, Proceedings of SPIE, the International Society for Optical Engineering, 2004, 5444: 547~552
    [84] 薛嘉庆,最优化原理与方法,北京:冶金工业出版,1983:178~182
    [85] 王德人,非线性方程组解法与最优化方法,北京:人民教育出版社,1979.236~259
    [86] F.S. Cohen, J.Y. Wang, Part I: Modeling image curves using invariant 3d object curve models. a path to 3d recognition and shape estimation from image contours, IEEE Transactions on Pattern Analysis And Machine Intelligence, 1994, 16(1): 1~11
    [87] C. Sbert, A. F. Solé, 3D curves reconstruction based on deformable models, Journal of Mathematical Imaging and Vision, 2003, 18: 211~223
    [88] Y.J. Xiao, M.Y. Ding, J.X. Peng, B-spline based stereo for 3d reconstruction of line-like objects using affine camera model, International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(2): 347~358
    [89] 施法中,计算机辅助几何设计与非均匀有理 B 样条(CAGD&NURBS),北京:北京航空航天大学出版社,1994,27~280
    [90] 孙家广,计算机图形学,北京:清华大学出版社,1998:365~377; 301~314
    [91] 倪明田,吴良芝,计算机图形学,北京:北京大学出版社,1999:225~228
    [92] 苏金明,阮沈勇,MATLAB6.1 实用指南(下册),北京:电子工业出版社,2002:82,308
    [93] Y.J. Xiao, M.Y. Ding, P.J. Peng, B-Spline based steeo for 3D reconstruction of line-like objects using affine camera model,International Journal of Pattern Reconition and Artificial Intelligence, 2001, 15(2): 347~358
    [94] 肖轶军,丁明跃,等,一种自由曲线三维重建的新方法研究,华中理工大学学报,2000,28(2):90~92
    [95] 肖轶军,丁明跃,等,基于 B 样条曲线的空间自由曲线三维重建,自动化学报, 2000,26(4):572~576
    [96] 肖轶军,丁明跃,等,基于 B 样条模型的曲线特征点检测法,数据采集与处理,2000,15 (4):422~425
    [97] 黄文钧, 迭代线性最近点参数非均匀 B 样条曲线拟合[J],广西科学院学报 2002,18(4):165~170
    [98] 曲军,孙烨,B 样条曲线参数重载的非线性整体逼近拟合法[J],机械设计与制造,2001 Oct.,5:36~37
    [99] N. Gugenheim, P.A. Doriot, P.A. Dorsaz, et al. Spatial reconstruction of coronary arteries from angiographic images, Phys. Med. Biol, 1991, 36(1): 99~110
    [100] R. Wang, J. Sklansky. Multiresolution method for reconstructing the cross sections of coronary arteries from biplane angiograms, Proceedings, Pattern Recognition, 1992. Conference C: Image, Speech and Signal Analysis, 1992, 3: 667~670
    [101] 洪伟,牟轩沁,王勇, 基于三维分叉模型的血管轴重建方法,西安交通大学学报,2002,36(6):659~660
    [102] L. van Tran, R.C. Bahn, J. Sklansky. Reconstructing the cross sections of coronary arteries from biplane angiograms. IEEE Transactions on Medical Imaging, 1992, 11(4): 517 – 529.
    [103] 舒先红,沈学东,施纯敏,等,血管腔内超声显像三维重建实验研究,中华超声影像学杂志,1996,5(5):224~226.
    [104] Q. Bernhard, M. Hannes, Generation of CFD meshes from biplane angiograms: an example of image-based mesh generation and simulation, Applied Numerical Mathematics, 2003, (46): 379~397
    [105] D. Meyers, Reconstruction of Surfaces From Planar Contours, PhD Thesis, University of Washington, 1994: 94~109
    [106] A.F. Frangi, W.J. niessen, R.M. Hoogeveen, et al. Model-based quantitation of 3d magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 1999, 18(10): 946~956
    [107] 郭红晖,李捷,管状组织的中轴—元球造型方法,软件学报,1999,10(5):455~461
    [108] 吴斌, 毕丽蕴,OpenGL 编程实例与技巧,北京:人民邮电出版社,1999:353~415
    [109] 李颖,薛海斌,朱伯立 等,OpenGL 技术应用实例精粹,北京:国防工业出版社,2001:1~52,101~139
    [110] K.R. Castleman,数字图像处理,北京:电子工业出版社,1998:487~518
    [111] 唐泽圣,三维数据场可视化,北京:清华大学出版社,2000:168~255
    [112] 李燕,谭欧,段会龙,三维医学图像可视化技术综述,中国图像图形学报, 2001,6A(2):103~109
    [113] P. Hall, M. Ngan, P. Andreae, Reconstruction of vascular networks using three-dimensional models, IEEE Transaction on Medical Imaging, 1997, 16(6): 919~929
    [114] http://www.simutec.com/Shelley/models/ezus.html
    [115] S.R. Fleagle, M.R. Johnson, C.J. Wilbricht, et al. Automated analysis of coronary arterial morphology in cineangiograms: geometric and physiologic validation in humans, IEEE Transactions on Medical Imaging, 1989, 8(4): 387~400
    [116] P.J. Feyter, P.W. Serruys, M.J. Davies, et al. Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis, Circulation, 1991, 84: 412~423
    [117] 王春晖,定量冠状动脉造影分析,心血管病学进展,1998,19(2):99~101
    [118] Y. Sato, T. Araki, M. Hanayama. A viewpoint determination for stenosis diagnosis and quantification in coronary angiographic image acquisition, IEEE Transaction on Medical Imaging, 1998, 17(1): 121~137
    [119] M.E. Olszewski, R.M. Long, S.C. Mitchell, et al. A quantitative study of coronary vasculature in four dimensions, Proceedings of the 22nd Annual EMBS International Conference, July, 2000, Chicago IL, 2621~2624
    [120] A.K. Klein, F. Lee, A.A. Amini, Quantitative coronary angiography with deformable spline models, IEEE Transactions on Medical Imaging, 1997, 16(5): 468~482
    [121] 吴恩惠,医学影像学(第四版),北京:人民卫生出版社,2001.1~9,172~176
    [122] C. Chalopoin, G. Finet, I.E. Magnin. Modeling the 3D coronary tree for labeling purposes, Medical Image Analysis, 2001, 5: 301~315
    [123] Y. Zhang, J. Paik, A. Koschan, M.A. Abidi. 3-D object representation from multi-view range data applying deformable superquadrics, Pattern Recognition, 2002. Proceedings 16th International Conference, 2002,3: 611~614
    [124] P.A. Wielopolski, R.J.M. van Geuns, P.J. de Feyter, et al. Coronary arteries, European Radiology, 2000,10(1):12~35
    [125] S.Y.J. Chen, J.D. Carroll. Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms. Medical Imaging, IEEE Transactions, 2003,22(6): 710~721
    [126] E. Bardinet, L.D. Cohen, N. Ayache. Tracking medical 3D data with a parametric deformable model, Computer Vision, 1995. Proceedings, International Symposium, 21-23 Nov. 1995: 299~304
    [127] 孙正,郁道银,徐智等,基于弹性匹配的冠状动脉造影图像序列中血管的运动估计,计算机应用,2003,23 supple:185~186
    [128] 孙正,郁道银,陈晓冬等,冠状动脉造影图像序列中血管运动特征的提取,天津大学学报,2003,39(6)
    [129] M. Karamanoglu, S.J. Kovacs. The influence of vascular function on left ventricular contraction/relaxation coupling, Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society. EMBS/BMES Conference, 2002. Proceedings of the Second Joint , 23-26 Oct. 2002,2: 1215~1217
    [130] Z. Hui, J.J. Warner, T.R. Gehrig et al. Effects of stenting on coronary artery dynamics, Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 23-26 Oct. 2002,2:1285~1286
    [131] Y. Qian, S. Eiho, N Sugimoto, et al. Automatic extraction of coronary artery tree on coronary angiograms by morphological operators, IEEE Computer in Cardiology, 1998, 25: 765~768
    [132] L. Bill, Z. Karel, S. Vikram, et al. Volume rendering in medical applications: We’ve got pretty images, what’s left to do? IEEE Visualization, 2002, Oct.27 – Nov.1, Boston, MA, 575~578
    [133] C. Adrie, M. Dumay, H.H.C. Reiber, et al. Determination of optimal angiographic viewing angles: basic principles and evaluation study. IEEE Transaction on Medical Imaging, 1994, 13(1): 13~24
    [134] R.M. Cothren, R. Shekhar, E.M. Tuzcu, et al. Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography, International Jounral of Cardiac Imaging, 2000, 16: 69~85
    [135] D. Rotger, P. Radeva, C. Canero, et al. Corresponding IVUS and angiogram image data, IEEE Computers in Cardiology, 2001, 28: 273~276
    [136] D.L. Parker, J. Wu, R.E. van Bree, Three-dimensional vascular reconstruction from projections: a theoretical review, IEEE Engineering in Medicine& Biology Society 10th Annual International Conference, 1988: 399~400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700