SM22α调节AngⅡ诱导的血管生理及病理学效应的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管紧张素II(angiotensinII,AngII)是肾素-血管紧张素-醛固酮系统的主要效应因子,是一种多功能的血管活性肽。通过活化多条信号通路,参与心血管系统生理功能的调节,并介导多种心血管疾病发生发展的病理过程。AngII急性刺激可诱导血管收缩,升高血压;而长时间慢性刺激可促进血管平滑肌细胞(vascular smooth muscle cells, VSMCs)增殖、肥大及衰老。
     SM22α又被称为transgelin,是一种平滑肌分化标志物,高表达于哺乳动物平滑肌中,被广泛用于平滑肌细胞的鉴定。SM22α的主要功能是与actin结合,促进actin细丝聚合及捆绑。我室以往的研究证实,SM22α通过促进actin纤维聚合成束,进而增强VSMC收缩性;此外,SM22α还参与调节细胞增殖、氧化应激和炎症相关信号转导分子的活性。然而,SM22α是否参与收缩信号分子活性的调节以及分子机制尚不清楚。细胞内SM22α蛋白水平与VSMC的表型状态密切相关,丝裂原和炎性因子可诱导该蛋白表达下调。然而,在多种衰老细胞中,发现SM22α表达上调,该蛋白已成为非肌细胞衰老的新标志物。但是,SM22α是否参与VSMC衰老的调节,尚缺乏深入的研究。本研究主要探讨SM22α在AngII诱导的VSMC收缩及衰老中的作用。
     方法:
     本研究利用SM22α基因敲除小鼠经背皮下植入AngII微渗透泵复制高血压模型,用智能无创血压计检测小鼠血压,在整体水平探讨病理情况下SM22α与血压的关系;用微血管张力测定仪检测血管环等长张力;用细胞长度测量和胶原胶收缩分析分别检测细胞收缩性;通过敲低SM22α及特异性信号通路阻断剂,确定受其调节的信号途径及靶分子;用RT-PCR、Western blot检测mRNA及蛋白质表达变化;用免疫共沉淀分析和免疫双荧光染色确定蛋白质相互作用;用免疫沉淀分析蛋白质泛素化修饰;用AngII慢性刺激建立VSMC衰老模型,探讨SM22α在AngII诱导的VSMC衰老中的作用。
     结果:
     1SM22α通过调节ERK1/2活性参与AngII诱导的VSMC收缩
     1.1SM22α促进AngⅡ诱导的血管平滑肌收缩
     选雄性Sm22α+/+及Sm22α-/-小鼠复制高血压小鼠模型。植泵前,Sm22α+/+小鼠的收缩压和舒张压分别为(118.8±2.2)和(76.4±2.7)mmHg,Sm22α-/-小鼠的收缩压和舒张压分别为(111.7±1.9)和(72.5±2.4)mm Hg,二者的基础血压无显著差异。植泵后,两种基因型小鼠的收缩压和舒张压均随着时间逐步升高,至21天时,Sm22α+/+小鼠的收缩压和舒张压分别为(179.5±2.3)和(130.5±2.8)mm Hg,Sm22α-/-小鼠的收缩压和舒张压分别为(158.3±1.8)和(109.3±3.1)mm Hg。Sm22α-/-小鼠的血压显著低于Sm22α+/+小鼠(P <0.05)。
     取小鼠主动脉进行血管环张力测定,绘制主动脉血管环对AngII的浓度-收缩曲线,结果表明,AngII可诱发两种基因型小鼠的主动脉环产生明显的收缩应答。但是,Sm22α-/-小鼠主动脉环的收缩反应性较Sm22α+/+小鼠明显减弱,表现为浓度-收缩曲线明显右移,半数有效浓度(EC50)由5.57nmol/L右移至12.13nmol/L(P <0.05);收缩峰值降低,在Sm22α+/+小鼠的主动脉环中,AngII引起的收缩峰值为45.5±4.3%,而Sm22α-/-小鼠的主动脉环的收缩峰值为28.4±4.0%(P <0.05)。敲低SM22α后,AngII诱导的VSMC长度变化百分比及胶原胶面积变化百分比均显著降低(P <0.05)。并且Sm22α-/-小鼠VSMC对AngII的收缩性显著降低。
     1.2ERK1/2通路介导AngⅡ诱导的血管平滑肌收缩
     AngII刺激2min时,ERK1/2的磷酸化水平即有显著升高,5min时达高峰;其下游靶蛋白caldesmon磷酸化时程与ERK1/2基本一致。细胞长度变化百分比于AngII刺激5min后达峰值,时程与ERK1/2磷酸化基本一致。PD98059预孵育2h后,AngII诱导的ERK1/2磷酸化受到显著抑制,伴随caldesmon的磷酸化水平显著降低。用PD98059预处理小鼠主动脉环30min后,AngII诱导的收缩反应显著降低。浓度-收缩曲线明显右移(EC50为8.90nmol/L);收缩峰值由43.4±4.1%降至32.5±4.2%。在细胞水平,PD98059预处理后,AngII诱导的VSMC长度变化百分比及胶原胶面积变化百分比均显著降低。
     1.3SM22α调节AngII诱导的ERK1/2激活
     用小干扰RNA敲低内源性SM22α后,观察AngII短时间(5min)刺激,ERK1/2的活化情况。结果表明,AngII刺激后,对照组及SM22α敲低组ERK1/2磷酸化水平均有升高,但SM22α敲低组的上升幅度显著低于对照组(P <0.05)。AngII刺激5min后,原代培养的Sm22α-/-组VSMC的ERK1/2磷酸化水平较Sm22α+/+组显著降低。
     2SM22α通过促进MKP3降解调节AngII-ERK1/2通路信号转导
     2.1SM22α通过MKP3调节AngII诱导的ERK1/2通路活化
     AngII刺激5min后,SM22α敲低组及对照组MEK磷酸化水平均有显著升高,但两组的升高幅度并无显著差异。而在敲低SM22α后,其磷酸酶MKP3的表达明显上调,同时伴有AngII诱导的ERK1/2磷酸化减弱。Sm22α-/-小鼠血管组织中MKP3的表达水平较Sm22α+/+小鼠显著升高。用MKP3抑制剂BC(I10μmol/L)预孵育30min可逆转敲低SM22α对ERK1/2通路活化的抑制作用。
     2.2MKP3通过抑制ERK1/2参与AngII诱导的血管平滑肌收缩
     BCI预处理后,小鼠主动脉对AngII的收缩应答显著增强,浓度-收缩曲线明显左移(EC50为3.83nmol/L);收缩峰值由46.1±3.8%升至61.1±5.1%。在细胞水平,BCI (10μmol/L)预孵育2h后,AngII诱导的VSMC长度变化百分比及胶原胶面积变化百分比均显著增加(P <0.05)。与GFP空质粒对照组相比,过表达GFP-MKP3后,AngII诱导的VSMC长度变化百分比及胶原胶面积变化百分比均显著降低。BCI (10μmol/L)预孵育2h后,ERK1/2及caldesmon的磷酸化水平显著升高;而过表达GFP-MKP3融合蛋白后,与转染GFP空质粒的VSMC相比,ERK1/2及caldesmon的磷酸化水平显著降低。
     2.3SM22α抑制MKP3与ERK1/2的相互作用
     免疫共沉淀结果显示,在未刺激时,MKP3与ERK1/2即有较弱的相互作用;敲低SM22α后,MKP3与ERK1/2的结合量显著增加。与Sm22α+/+小鼠相比,Sm22α-/-小鼠VSMC中二者的相互作用增强。细胞免疫荧光染色分析结果显示,敲低SM22α后,细胞内MKP3荧光强度及其与ERK1/2的共定位均显著增加。
     2.4SM22α促进MKP3的泛素-蛋白酶体降解过程
     敲低SM22α后,VSMC中MKP3的mRNA水平并无显著改变,并且Sm22α+/+与Sm22α-/-两种基因型小鼠主动脉组织中MKP3的mRNA水平也无显著差异。用放线菌酮阻断新生蛋白质合成,测定蛋白质半寿期。结果表明,MKP3半寿期很短,约为30min左右;90min时,蛋白降解明显。敲低SM22α后,MKP3的半寿期延长至90min以上。用蛋白酶体抑制剂MG132处理细胞,观察对MKP3半寿期的影响。结果显示,MG132(10μmol/L)预处理2h可显著延长MKP3的半寿期。泛素化分析结果显示,敲低SM22α后,MKP3的泛素化水平显著降低。
     3SM22α促进AngII诱导的VSMC衰老
     3.1SM22α在AngII诱导的VSMC衰老中表达上调
     AngII刺激3天后VSMC中SA-β-gal阳性染色细胞百分比为5.4±1.4%,与对照组(6.5±1.6%)相比,无显著差异;刺激5天,SA-β-gal阳性细胞百分比为43.9±5.3%,显著高于对照组(22.1±4.1%,P <0.05),刺激7天和10天,SA-β-gal阳性细胞数大幅度增加,阳性细胞百分比高达78.9±5.2%及92.3±4.4%。AngII刺激7天及10天,p21和p53的表达显著高于对照组(P <0.05),并且表达量随刺激时间延长而升高;相反,PCNA的表达随刺激时间逐渐降低。AngII刺激5天后,SM22α的表达表达显著高于对照组(P <0.05),并随AngII刺激时间延长而增加。
     3.2AngII上调SM22α基因转录活性
     AngII刺激3天,SM22α的mRNA水平开始升高,与刺激前相比,约升高3.8倍;至10天时达到峰值,约为刺激前的12.1倍,与其蛋白水平变化一致。而AngII刺激不同时间,SM22α的泛素化水平没有显著改变。
     3.3SM22α促进AngII诱导的VSMC衰老
     在VSMC中敲低SM22α,观察对细胞衰老的影响。敲低SM22α后,AngII诱导的SA-β-gal阳性细胞百分比分别为25.3±4.3%和32.3±4.6%较对照组(79.2±4.2%及89.2±5.2%)显著降低(P <0.05)。并且,衰老标志蛋白p21及p53的表达显著减少,而增殖标志PCNA表达上调(P <0.05)。
     结论:
     1. SM22α通过调节ERK1/2通路活化参与AngII诱导的血管平滑肌收缩。
     2. SM22α通过促进MKP3的泛素-蛋白酶体降解和抑制MKP3与ERK1/2的相互作用,进而调节AngII诱导的ERK1/2通路活化。
     3. SM22α促进AngII诱导的VSMC衰老。
     4. SM22α是一种新的血管收缩信号转导分子的调节因子,参与调节AngII诱导的血管生理及病理学过程。
AngiotensinII (AngII), is a multifunctional vasoconstrictor peptide,which regulates both the cardiovascular physiology and pathology viatriggering a series of signal transduction cascades. Acute stimulation withAngII regulates vasoconstriction, and modulating blood pressure, whilechronic stimulation promotes hyperplasia, hypertrophy and senescence ofvascular smooth muscle cells (VSMCs).
     SM22α, also known as transgelin is one of the widely used markers toidentify SMCs. The basic molecular function of SM22α is to bind actin, and tofacilitate actin filament assembly and cytoskeletal rearrangements. Ourprevious study showed that SM22α enhanced contractility of VSMCs bymodulating the reorganization of actin filaments. SM22α acts as an adapter orscaffold protein to assemble signaling complexes and regulate signaling.However, the roles of SM22α in regulation of VSMC contraction are far fromclear. Recently, increased SM22α is considered to be a marker of cellularsenescence. However, it is unknown whether SM22α is involved in VSMCsenescence.
     In this study, we investigated the effect of SM22α on AngII-inducedvasoconstriction using SM22α gene knock out mouse model, measured theVSMC contraction and isometric tension of the aortic rings to clarify the roleof SM22α in VSMC contraction, and used SM22α siRNA and specificsignaling inhibitor to identify the signal transduction pathway involved in thisprocess. We also explored the relationship between SM22α expression andAngII-induced VSMC senescence using the indicators including SA-β-gal,p21and p53as well as the proliferation marker PCNA.
     1. SM22α facilitates AngII-induced VSMC contraction throughregulating the activity of ERK1/2
     1.1Disruption of SM22α attenuates AngII-induced vasoconstriction
     Sm22α+/+and Sm22α-/-mice that exhibit a similar baseline blood pressure(BP) were infused with AngII. The BP of Sm22α+/+mice infused with AngIIshowed steadily rising. However, both SBP and DBP were significantly lowerin Sm22α-/-mice in response to AngII. In response to AngII at indicatedconcentrations, the aortic rings of Sm22α+/+mice displayed strongcontractions with an EC50of5.57nmol/L. However, theconcentration-response curve for aortic rings from Sm22α-/-mice significantlyshifted to the right with an EC50of12.13nmol/L, and the maximal contractionwas significantly reduced. Knockdown of SM22α by specific siRNAsignificantly decreased the percentage of reduction in cell length. Moreover,the contractile response to AngII in the primary VSMCs from Sm22α-/-micewas remarkably reduced compared with that of the cells from the Sm22α+/+mice. Contraction of the gels was significantly attenuated followingknockdown of SM22α. VSMCs derived from Sm22α-/-mice showed a reducedgel contraction upon AngII stimulation.
     1.2Loss of SM22α inhibits AngII-induced activation of ERK1/2signaling inVSMCs.
     AngII treatment caused a rapid (2min) and significant elevation ofERK1/2phosphorylation that peaked at5min, accompanied by increasedphosphorylation of caldesmon. Maximal cell shortening occurred at5minutesafter AngII stimulation. Pretreatment of the aorta rings with PD98059resultedin a rightward shift of the concentration-response curve with an increasedEC50of8.90nmol/L, suggesting a decrease in contractile response to AngII.The percentage of reduction in cell length and collagen gel contraction of theVSMCs preincubated with PD98059was remarkably decreased comparedwith that of the DMSO controls. The results of western blot showed thatPD98059remarkably reduced the phosphorylation levels of ERK1/2andcaldesmon.
     1.3SM22α regulates AngII-induced ERK1/2signaling pathway
     Knockdown of SM22α by specific siRNA blocked AngII-inducedphosphorylation of ERK1/2and caldesmon in rat VSMCs. Primary VSMCsfrom Sm22α-/-mice displayed decreased phosphorylation of this two proteinscompared with Sm22α+/+mice.
     2SM22α regulates AngII-ERK1/2signaling cascades by promotingproteasome-mediated MKP3degradation
     2.1Depletion of SM22α upregulates MKP3and thereby facilitatesdephosphorylation of ERK1/2.Knockdown of SM22α did not significantly change AngII-inducedphosphorylation of MEK. SM22α silencing resulted in an increasedexpression of MKP3, accompanied by reduction of ERK1/2and caldesmonphosphorylation. Moreover, a consistent increase in MKP3protein levels wasalso observed in the aortas, femoral and carotid arteries of Sm22α-/-micecompared with the Sm22α+/+controls. Inhibition of MKP3activity with theinhibitor BCI rescued the reduced ERK1/2activity resulted from loss ofSM22α.
     2.2MKP3negatively regulates AngII-induced vasoconstriction and VSMCcontraction via inactivation of ERK1/2
     The maximal contractile response of aortic rings to AngII wassignificantly increased by pretreatment with the MKP3inhibitor BCI, showinga leftward shift of the concentration-response curve of AngII, with the EC50of3.83nmol/L. Preincubation of VSMCs with BCI resulted in a significantlyincrease in the percentage of reduction in cell length and the shrinkage ofcollagen gels in response to AngII. Furthermore, overexpression of MKP3markedly attenuated the contractile response to AngII, displaying a reducedpercentage of reduction in cell length and collagen gel contraction. BCIincreased the phosphorylation of ERK1/2and caldesmon, whereas an oppositeeffect was observed in VSMCs overexpressing MKP3.
     2.3SM22α inhibits the interaction of ERK1/2with MKP3.
     The results of co-immunoprecipitation showed a weak interaction of MKP3with ERK1/2in resting VSMCs, which did not change upon AngIItreatment. Knockdown of SM22α led to an enhanced interaction of MKP3with ERK1/2. Similar results were observed in VSMCs derived from Sm22α-/-mice. These findings were further confirmed by immunofluorescence staining.The MKP3expression was increased following knockdown of SM22α, andcolocalized with ERK1/2.
     2.4Loss of SM22α inhibits the proteasome-mediated MKP3degradation.
     MKP3expression at the mRNA level in aortas form Sm22α-/-mice wasnot significantly different from that in the Sm22α+/+controls. Similarly, theMKP3mRNA level was not significantly altered by knockdown of SM22α. Toexamine the effect of knockdown of SM22α on half-life of MKP3protein, weused cycloheximide (CHX) to inhibit the de novo protein synthesis. Theresults showed that MKP3had a short half-life (less than30min), anddecreased dramatically after90min of incubation with CHX. The delayeddecay of MKP3protein was observed following knockdown of SM22α, with alonger half-life of90min. In the presence of MG132(the proteasomeinhibitor), half-life of MKP3was extended to90min. The ubiquitinationassay showed that knockdown of SM22α inhibited the polyubiquitination ofMKP3.
     3SM22α promotes AngII-induced VSMC senescence
     3.1SM22α is upregulated in AngII-induced VSMC senescence
     The SA-β-gal-positive percentage in the VSMCs stimulated with AngIIfor3days was5.4±1.4%, which was not significantly changed comparedwith that in the control group (6.5±1.6%). After stimulation for5days, theSA-β-gal activity was elevated in a time-dependent manner, with theSA-β-gal-positive percentage of43.9±5.3%, significantly increasedcompared with those in the control group (22.1±4.1%, P <0.05). Afterstimulation for7and10days, the SA-β-gal activity was extremely high, witha SA-β-gal-positive percentage of78.9±5.2%and92.3±4.4%respectively.The expression of SM22α was elevated in VSMCs stimulated for7and10days compared with the control cells (P <0.05). The expressions of p21and p53displayed a similar fashion. However, the expression of PCNA wasreduced in the same conditions.
     3.2AngII upregulates the transcriptional activity of SM22α gene.
     To explore the mechanism by which SM22α protein was upregulated inAngII-induced senescence, the turnover of SM22α was detected. Treatmentwith AngII significantly increased the mRNA level of SM22α, which wasincreased by12.1folds after AngII stimulation for10days. However,ubiquitination of SM22α was not significantly varied by AngII stimulation.
     3.3SM22α facilitates AngII-induced senescence in VSMCs.
     Knockdown of SM22α using specific siRNA markedly attenuatedAngII-induced SA-β-gal activity. The percentage of SA-β-gal-positive cellswere25.3±4.3%and32.3±4.6%, respectively, after stimulation for7and10days, which was lower than those in the control group (79.2±4.2%and89.2±5.2%, P <0.05). The expression of p21and p53increased under the same
     conditions.
     Conclusions:
     1. SM22α facilitates AngII-induced VSMC contraction through regulatingthe activity of ERK1/2.
     2. SM22α regulates AngII-ERK1/2signaling cascades via promotingproteasome-mediated MKP3degradation and inhibiting the interaction ofERK1/2with MKP3.
     3. SM22α promotes AngII-induced VSMC senescence.
     4. SM22α is a novel regulator of vasoconstrictor signaling pathway, and amediator of vascular physiological and pathological processes
引文
1Alexander MR, Murgai M, Moehle CW, et al Interleukin-1β modulatessmooth muscle cell phenotype to a distinct inflammatory state relative toPDGF-DD via NF-κB-dependent mechanisms. Physiol Genomics,2012,44:417-429
    2Haeberle JR Calponin decreases the rate of cross-bridge cycling andincreases maximum force production by smooth muscle myosin in an invitro motility assay. J Biol Chem,1994,269:12424-12431
    3Morgan KG, Gangopadhyay SS Invited review: Cross-bridge regulation bythin filament-associated proteins. J Appl Physiol,2001,91:953-962
    4Han M, Dong L-H, Zheng B, et al Smooth muscle22alpha maintains thedifferentiated phenotype of vascular smooth muscle cells by inducingfilamentous actin bundling. Life Sci,2009,84:394-401
    5Appel S, Allen PG, Vetterkind S, et al H3/acidic calponin: Anactin-binding protein that controls extracellular signal-regulated kinase1/2activity in nonmuscle cells. Mol Biol Cell,2010,21:1409-1422
    6Je HD, Gangopadhyay SS, Ashworth TD, et al Calponin is required foragonist‐induced signal transduction‐evidence from an antisenseapproach in ferret smooth muscle. J Physiol,2001,537:567-577
    7Gao P, Xu T-T, Lu J, et al Overexpression of Sirt1in vascular smoothmuscle cells attenuates angiotensin II-induced vascular remodeling andhypertension in mice. J Mol Med,2013:1-11
    8Mehta PK, Griendling KK Angiotensin II cell signaling: Physiological andpathological effects in the cardiovascular system. Am J Physiol-cell Ph,2007,292:C82-C97
    9Xiao D, Pearce WJ, Longo LD, et al ERK-mediated uterine arterycontraction: Role of thick and thin filament regulatory pathways. Am JPhysiol-heart C,2004,286:H1615-H1622
    10Chin LC, Achike FI, Mustafa MR Hydrogen peroxide modulatesangiotensin II-induced contraction of mesenteric arteries fromstreptozotocin-induced diabetic rats. Vascul Pharmacol,2007,46:223-228
    11Guo Z, Su W, Allen S, et al Cox-2up-regulation and vascular smoothmuscle contractile hyperreactivity in spontaneous diabetic db/db mice.Cardiovasc Res,2005,67:723-735
    12Helle F, Hultstr m M, Skogstrand T, et al Angiotensin II-inducedcontraction is attenuated by nitric oxide in afferent arterioles from thenonclipped kidney in2K1C. Am J Physiol-renal,2009,296:F78-F86
    13Touyz RM, El Mabrouk M, He G, et al Mitogen-activatedprotein/extracellular signal regulated kinase inhibition attenuatesangiotensin II mediated signaling and contraction in spontaneouslyhypertensive rat vascular smooth muscle cells. Circ Res,1999,84:505-515
    14Stanke-Labesque F, Devillier P, Veitl S, et al Cysteinyl leukotrienes areinvolved in angiotensin II-induced contraction of aorta fromspontaneously hypertensive rats. Cardiovasc Res,2001,49:152-160
    15Zeidan A, Sw rd K, Nordstr m I, et al Ablation of SM22α decreasescontractility and actin contents of mouse vascular smooth muscle. FebsLett,2004,562:141-146
    16Je HD, Sohn UD SM22alpha is required for agonist-induced regulation ofcontractility: Evidence from SM22alpha knockout mice. Mol Cells,2007,23:175-181
    17Zhang JC, Kim S, Helmke BP, et al Analysis of SM22α-deficient micereveals unanticipated insights into smooth muscle cell differentiation andfunction. Mol Cell Biol,2001,21:1336-1344
    18Somara S, Bitar KN Phosphorylated HSP27modulates the association ofphosphorylated caldesmon with tropomyosin in colonic smooth muscle.Am J Physiol-gastr L,2006,291:G630-G639
    1Li Y, Reznichenko M, Tribe RM, et al Stretch activates humanmyometrium via ERK, caldesmon and focal adhesion signaling. PloS one,2009,4:e7489
    2Ziegler ME, Jin Y-P, Young SH, et al Hla class I-mediated stress fiberformation requires ERK1/2activation in the absence of an increase inintracellular Ca2+in human aortic endothelial cells. Am J Physiol-cell Ph,2012,303:C872-C882
    3Ding L, Chapman A, Boyd R, et al ERK activation contributes toregulation of spontaneous contractile tone via superoxide anion in isolatedrat aorta of angiotensin II-induced hypertension. Am J Physiol-heart C,2007,292:H2997-H3005
    4Touyz R, El Mabrouk M, He G, et al Mitogen-activatedprotein/extracellular signal–regulated kinase inhibition attenuatesangiotensin II-mediated signaling and contraction in spontaneouslyhypertensive rat vascular smooth muscle cells. Circ Res,1999,84:505-515
    5Degl'Innocenti D, Romeo P, Tarantino E, et al DUSP6/MKP3isoverexpressed in papillary and poorly differentiated thyroid carcinoma andcontributes to neoplastic properties of thyroid cancer cells. Endocr-relatCancer,2013,20:23-37
    6Xu B, Yang L, Lye RJ, et al P-MAPK1/3and dusp6regulate epididymalcell proliferation and survival in a region-specific manner in mice. BiolReprod,2010,83:807-817
    7Lefloch R, Pouysségur J, Lenormand P Total ERK1/2activity regulatescell proliferation. Cell Cycle,2009,8:705-711
    8Roskoski Jr R ERK1/2MAP kinases: Structure, function, and regulation.Pharmacol Res,2012,66:105-143
    9Dong L-H, Wen J-K, Liu G, et al Blockade of the ras–extracellularsignal–regulated kinase1/2pathway is involved in smooth muscle22α–mediated suppression of vascular smooth muscle cell proliferationand neointima hyperplasia. Arterioscl Throm Vas,2010,30:683-691
    10Cervantes D, Crosby C, Xiang Y Arrestin orchestrates crosstalk between Gprotein-coupled receptors to modulate the spatiotemporal activation ofERK MAPK. Circ Res,2010,106:79-88
    11Appel S, Morgan KG Scaffolding proteins and non-proliferative functionsof ERK1/2. Com Int Biol,2010,3:354
    12DeFea K, Zalevsky J, Thoma M, et al Β-arrestin-dependent endocytosis ofproteinase-activated receptor2is required for intracellular targeting ofactivated ERK1/2. The J Cell Biol,2000,148:1267-1282
    13Karlsson M, Mathers J, Dickinson RJ, et al Both nuclear-cytoplasmicshuttling of the dual specificity phosphatase MKP3and its ability toanchor MAP kinase in the cytoplasm are mediated by a conserved nuclearexport signal. J Biol Chem,2004,279:41882-41891
    14Brunet A, Roux D, Lenormand P, et al Nuclear translocation of p42/p44mitogen-activated protein kinase is required for growth factor-inducedgene expression and cell cycle entry. EMBO J,1999,18:664-674
    15Lv P, Miao S-B, Shu Y-N, et al Phosphorylation of smooth muscle22αfacilitates angiotensin II-induced ros production via activation of thePKCδp47phox axis through release of PKCδ and actin dynamics and isassociated with hypertrophy and hyperplasia of vascular smooth musclecells in vitro and in vivonovelty and significance. Circ Res,2012,111:697-707
    16Lyle AN, Griendling KK Modulation of vascular smooth muscle signalingby reactive oxygen species. Physiology,2006,21:269-280
    17Tsang M, Maegawa S, Kiang A, et al A role for MKP3in axial patterningof the zebrafish embryo. Development,2004,131:2769-2779
    18Gómez AR, López-Varea A, Molnar C, et al Conserved cross-interactionsin drosophila and xenopus between ras/MAPK signaling and thedual-specificity phosphatase MKP3. Dev Dynam,2005,232:695-708
    19Kim M, Cha G-H, Kim S, et al MKP3has essential roles as a negativeregulator of the ras/mitogen-activated protein kinase pathway duringdrosophila development. Mol Cell Biol,2004,24:573-583
    20Xu S, Furukawa T, Kanai N, et al Abrogation of DUSP6byhypermethylation in human pancreatic cancer. J Hum Genet,2005,50:159-167
    21Okudela K, Yazawa T, Woo T, et al Down-regulation of DUSP6expression in lung cancer: Its mechanism and potential role incarcinogenesis. Am J Pathol,2009,175:867-881
    22Tanoue T, Adachi M, Moriguchi T, et al A conserved docking motif inMAP kinases common to substrates, activators and regulators. Nat CellBiol,2000,2:110-116
    23Camps M, Nichols A, Gillieron C, et al Catalytic activation of thephosphatase MKP3by ERK2mitogen-activated protein kinase. Science,1998,280:1262-1265
    24Luo H, Wong J, Wong B Protein degradation systems in viral myocarditisleading to dilated cardiomyopathy. Cardiovasc Res,2010,85:347-356
    25Klionsky DJ Autophagy: From phenomenology to molecularunderstanding in less than a decade. Nat Rev Mol Cell Bio,2007,8:931-937
    26Marchetti S, Gimond C, Chambard J-C, et al Extracellular signal-regulatedkinases phosphorylate mitogen-activated protein kinase phosphatase3/DUSP6at serines159and197, two sites critical for its proteasomaldegradation. Mol Cell Biol,2005,25:854-864
    1Ben-Porath I, Weinberg RA When cells get stressed: An integrative viewof cellular senescence. J Clin Invest,2004,113:8-13
    2Minamino T, Miyauchi H, Yoshida T, et al Vascular cell senescence andvascular aging. J Mol Cell Cardiol,2004,36:175-183
    3Minamino T, Yoshida T, Tateno K, et al Ras induces vascular smoothmuscle cell senescence and inflammation in human atherosclerosis.Circulation,2003,108:2264-2269
    4Matthews C, Gorenne I, Scott S, et al Vascular smooth muscle cellsundergo telomere-based senescence in human atherosclerosis effects oftelomerase and oxidative stress. Circ Res,2006,99:156-164
    5Min L-J, Mogi M, Iwai M, et al Signaling mechanisms of angiotensin II inregulating vascular senescence. Ageing Res Rev,2009,8:113-121
    6Kunieda T, Minamino T, Nishi J-i, et al Angiotensin II induces prematuresenescence of vascular smooth muscle cells and accelerates thedevelopment of atherosclerosis via a p21-dependent pathway. Circulation,2006,114:953-960
    7Matthaei M, Meng H, Meeker AK, et al Endothelial Cdkn1a (p21)overexpression and accelerated senescence in a mouse model of fuchsendothelial corneal dystrophy. Invest Ophth Vis Sci,2012,53:6718-6727
    8Alice LY, Birke K, Moriniere J, et al TGF-β2inducessenescence-associated changes in human trabecular meshwork cells.Invest Ophth Vis Sci,2010,51:5718-5723
    9Frippiat C, Chen QM, Zdanov S, et al Subcytotoxic H2O2stress triggers arelease of transforming growth factor-β1, which induces biomarkers ofcellular senescence of human diploid fibroblasts. J Biol Chem,2001,276:2531-2537
    10Hayflick L, Moorhead PS The serial cultivation of human diploid cellstrains. Exp Cell Res,1961,25:585-621
    11Lloyd AC Limits to lifespan. Nat Cell Biol,2002,4:E25-E27
    12Sherr CJ, DePinho RA Cellular senescence: Minireview mitotic clock orculture shock? Cell,2000,102:407-410
    13Liao S, Curci JA, Kelley BJ, et al Accelerated replicative senescence ofmedial smooth muscle cells derived from abdominal aortic aneurysmscompared to the adjacent inferior mesenteric artery. J Surg Res,2000,92:85-95
    14Vasile E, Tomita Y, Brown LF, et al Differential expression of thymosinβ-10by early passage and senescent vascular endothelium is modulated byVPF/VEGF: Evidence for senescent endothelial cells in vivo at sites ofatherosclerosis. FASEB J,2001,15:458-466
    15Zhou Z, Peng J, Wang C-J, et al Accelerated senescence of endothelialprogenitor cells in hypertension is related to the reduction of calcitoningene-related peptide. J Hypertens,2010,28:931-939
    16Herbert KE, Mistry Y, Hastings R, et al Angiotensin II-mediated oxidativeDNA damage accelerates cellular senescence in cultured human vascularsmooth muscle cells via telomere-dependent and independent pathways.Circ Res,2008,102:201-208
    17Min L-J, Mogi M, Iwanami J, et al Cross-talk between aldosterone andangiotensin II in vascular smooth muscle cell senescence. Cardiovasc Res,2007,76:506-516
    18Xiong S, Salazar G, Patrushev N, et al Peroxisome proliferator-activatedreceptor γ coactivator-1α is a central negative regulator of vascularsenescence. Arterioscl Throm Vas,2013,33:988-998
    19Dumont P, Burton M, Chen QM, et al Induction of replicative senescencebiomarkers by sublethal oxidative stresses in normal human fibroblast.Free Radical Bio Med,2000,28:361-373
    20Alice LY, Fuchshofer R, Kook D, et al Subtoxic oxidative stress inducessenescence in retinal pigment epithelial cells via TGF-β release. InvestOphth Vis Sci,2009,50:926-935
    21Blackburn EH Switching and signaling at the telomere. Cell,2001,106:661-673
    1Pawson T, Nash P Protein–protein interactions define specificity in signaltransduction. Gene Dev,2000,14:1027-1047
    2Camps M, Nichols A, Arkinistall S Dual specificity phosphatases: A genefamily for control of MAP kinase function. FASEB J,2000,14:6-16
    3Dong C, Yang DD, Wysk M, et al Defectivet cell differentiation in theabsence of JNK1. Science,1998,282:2092-2095
    4Robbins DJ, Zhen E, Owaki H, et al Regulation and properties ofextracellular signal-regulated protein kinases1and2in vitro. J Biol Chem,1993,268:5097-5106
    5Farooq A, Zhou M-M Structure and regulation of MAPK phosphatases.Cell Signal,2004,16:769-779
    6Pulido R, Zú iga á, Ullrich A PTP-SL and step protein tyrosinephosphatases regulate the activation of the extracellular signal‐regulatedkinases ERK1and ERK2by association through a kinase interaction motif.EMBO J,1998,17:7337-7350
    7Denu JM, Dixon JE Protein tyrosine phosphatases: Mechanisms ofcatalysis and regulation. Curr Opin Chem Biol,1998,2:633-641
    8Zhao Y, Zhang Z-Y The mechanism of dephosphorylation of extracellularsignal-regulated kinase2by mitogen-activated protein kinase phosphatase3. J Biol Chem,2001,276:32382-32391
    9Tanoue T, Moriguchi T, Nishida E Molecular cloning and characterizationof a novel dual specificity phosphatase, MKP5. J Biol Chem,1999,274:19949-19956
    10Kinney CM, Chandrasekharan UM, Yang L, et al Histone h3as a novelsubstrate for MAP kinase phosphatase-1. Am J Physiol-cell Ph,2009,296:C242
    11Maillet M, Purcell NH, Sargent MA, et al Dusp6(MKP3) null mice showenhanced ERK1/2phosphorylation at baseline and increased myocyteproliferation in the heart affecting disease susceptibility. J Biol Chem,2008,283:31246-31255
    12Karlsson M, Mathers J, Dickinson RJ, et al Both nuclear-cytoplasmicshuttling of the dual specificity phosphatase MKP3and its ability toanchor MAP kinase in the cytoplasm are mediated by a conserved nuclearexport signal. J Biol Chem,2004,279:41882-41891
    13Patterson K, Brummer T, O'brien P, et al Dual-specificity phosphatases:Critical regulators with diverse cellular targets. Biochem. J,2009,418:475-489
    14Ekerot M, Stavridis M, Delavaine L, et al Negative-feedback regulation offgf signalling by DUSP6/MKP-3is driven by ERK1/2and mediated by etsfactor binding to a conserved site within the DUSP6/MKP-3genepromoter. Biochem. J,2008,412:287-298
    15Eblaghie MC, Lunn JS, Dickinson RJ, et al Negative feedback regulationof FGF signaling levels by PYST1/MKP3in chick embryos. Curr Biol,2003,13:1009-1018
    16Kawakami Y, Rodríguez-León J, Koth CM, et al MKP3mediates thecellular response to FGF8signalling in the vertebrate limb. Nat Cell Biol,2003,5:513-519
    17Smith TG, Karlsson M, Lunn JS, et al Negative feedback predominatesover cross-regulation to control ERK MAPK activity in response to FGFsignalling in embryos. Febs Lett,2006,580:4242-4245
    18Tsang M, Maegawa S, Kiang A, et al A role for MKP3in axial patterningof the zebrafish embryo. Development,2004,131:2769-2779
    19Gómez AR, López‐Varea A, Molnar C, et al Conserved cross‐interactions in drosophila and xenopus between ras/MKP signaling and thedual‐specificity phosphatase mkp3. Dev Dynam,2005,232:695-708
    20Furukawa T, Tanji E, Xu S, et al Feedback regulation of dusp6transcription responding to MAPK1via ets2in human cells. BiochemBiophys Res Commun,2008,377:317-320
    21Zhang J, Nomura J, Maruyama M, et al Identification of an ES cellpluripotent state-specific DUSP6enhancer. Biochem Biophys ResCommun,2009,378:319-323
    22Jurek A, Amagasaki K, Gembarska A, et al Negative and positiveregulation of MAPK phosphatase3controls platelet-derived growthfactor-induced erk activation. J Biol Chem,2009,284:4626-4634
    23Li Z, Hassan MQ, Jafferji M, et al Biological functions of mir-29bcontribute to positive regulation of osteoblast differentiation. J Biol Chem,2009,284:15676-15684
    24Emmons J, Townley-Tilson WD, Deleault KM, et al Identification of TTPmRNA targets in human dendritic cells reveals TTP as a critical regulatorof dendritic cell maturation. Rna,2008,14:888-902
    25Lin NY, Lin CT, Chen YL, et al Regulation of tristetraprolin duringdifferentiation of3T3‐l1preadipocytes. FEBS J,2007,274:867-878
    26Brondello J-M, Pouysségur J, McKenzie FR Reduced MAP kinasephosphatase-1degradation after p42/p44MAPK-dependentphosphorylation. Science,1999,286:2514-2517
    27Lin Y-W, Chuang S-M, Yang J-L ERK1/2achieves sustained activation bystimulating MAPK phosphatase-1degradation via theubiquitin-proteasome pathway. J Biol Chem,2003,278:21534-21541
    28Marchetti S, Gimond C, Chambard J-C, et al Extracellular signal-regulatedkinases phosphorylate mitogen-activated protein kinase phosphatase3/DUSP6at serines159and197, two sites critical for its proteasomaldegradation. Mol Cell Biol,2005,25:854-864
    29Bermudez O, Marchetti S, Pages G, et al Post-translational regulation ofthe erk phosphatase DUSP6/MKP3by the mTOR pathway. Oncogene,2008,27:3685-3691
    30Castelli M, Camps M, Gillieron C, et al MAP kinase phosphatase3(MKP3) interacts with and is phosphorylated by protein kinase CK2α. JBiol Chem,2004,279:44731-44739
    31Tanoue T, Adachi M, Moriguchi T, et al A conserved docking motif inMAP kinases common to substrates, activators and regulators. Nat CellBiol,2000,2:110-116
    32Slack DN, Seternes O-M, Gabrielsen M, et al Distinct bindingdeterminants for ERK2/p38α and JNK MAP kinases mediate catalyticactivation and substrate selectivity of MAP kinase phosphatase-1. J BiolChem,2001,276:16491-16500
    33Farooq A, Chaturvedi G, Mujtaba S, et al Solution structure of ERK2binding domain of MAPK phosphatase MKP3: Structural insights intoMKP3activation byERK2. Mol Cell,2001,7:387-399
    34Nichols A, Camps M, Gillieron C, et al Substrate recognition domainswithin extracellular signal-regulated kinase mediate binding and catalyticactivation of mitogen-activated protein kinase phosphatase-3. J Biol Chem,2000,275:24613-24621
    35Wu JJ, Roth RJ, Anderson EJ, et al Mice lacking MAP kinasephosphatase-1have enhanced MAP kinase activity and resistance todiet-induced obesity. Cell metabolism,2006,4:61-73
    36Kim M, Cha G-H, Kim S, et al MKP3has essential roles as a negativeregulator of the ras/mitogen-activated protein kinase pathway duringdrosophila development. Mol Cell Biol,2004,24:573-583
    37Li C, Scott DA, Hatch E, et al DUSP6/MKP3is a negative feedbackregulator of FGF-stimulated ERK signaling during mouse development.Development,2007,134:167-176
    38Urness LD, Li C, Wang X, et al Expression of ERK signaling inhibitorsDUSP6, DUSP7, and DUSP9during mouse ear development. Dev Dynam,2008,237:163-169
    39Wilkie AO Bad bones, absent smell, selfish testes: The pleiotropicconsequences of human fgf receptor mutations. Cytokine Growth F R,2005,16:187-203
    40Zhou Y-X, Xu X, Chen L, et al A pro250arg substitution in mouse FGFR1causes increased expression of FGFR1and premature fusion of calvarialsutures. Hum Mol Genet,2000,9:2001-2008
    41Brodie SG, Deng C-X Mouse models orthologous to FGFR3-relatedskeletal dysplasias. Fetal pediatr pedictr Pathol,2003,22:87-103
    42Echevarria D, Belo JA, Martinez S Modulation of FGF8activity duringvertebrate brain development. Brain Res Rev,2005,49:150-157
    43Smith TG, Sweetman D, Patterson M, et al Feedback interactions betweenMKP3and ERK map kinase control scleraxis expression and thespecification of rib progenitors in the developing chick somite.Development,2005,132:1305-1314
    44Molina G, Vogt A, Bakan A, et al Zebrafish chemical screening reveals aninhibitor of DUSP6that expands cardiac cell lineages. Nature chemicalbiology,2009,5:680-687
    45Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al Germline mutations ingenes within the MAPK pathway cause cardio-facio-cutaneous syndrome.Science,2006,311:1287-1290
    46MacKeigan JP, Murphy LO, Blenis J Sensitized RNAi screen of humankinases and phosphatases identifies new regulators of apoptosis andchemoresistance. Nat Cell Biol,2005,7:591-600
    47Purcell NH, Wilkins BJ, York A, et al Genetic inhibition of cardiacERK1/2promotes stress-induced apoptosis and heart failure but has noeffect on hypertrophy in vivo. P Natl Cad Sci USA,2007,104:14074-14079
    48Lips DJ, Bueno OF, Wilkins BJ, et al MEK1-ERK2signaling pathwayprotects myocardium from ischemic injury in vivo. Circulation,2004,109:1938-1941
    49Bueno OF, Molkentin JD Involvement of extracellular signal-regulatedkinases1/2in cardiac hypertrophy and cell death. Circ Res,2002,91:776-781
    50Juhaszova M, Zorov DB, Kim S-H, et al Glycogen synthase kinase-3βmediates convergence of protection signaling to inhibit the mitochondrialpermeability transition pore. J Clin Invest,2004,113:1535-1549
    51Monick MM, Powers LS, Barrett CW, et al Constitutive ERK MAPKactivity regulates macrophage ATP production and mitochondrial integrity.J Immunal,2008,180:7485-7496
    52Kao S-c, Jaiswal RK, Kolch W, et al Identification of the mechanismsregulating the differential activation of the MAPK cascade by epidermalgrowth factor and nerve growth factor in pc12cells. J Biol Chem,2001,276:18169-18177
    53Caunt CJ, Rivers CA, Conway-Campbell BL, et al Epidermal growthfactor receptor and protein kinase c signaling to ERK2spatiotemporalregulation of ERK2by dual specificity phosphatases. J Biol Chem,2008,283:6241-6252
    54Kolch W Coordinating ERK/MAPK signalling through scaffolds andinhibitors. Nat Rev Mol Cell Bio,2005,6:827-837
    55Meloche S, Pouyssegur J The ERK1/2mitogen-activated protein kinasepathway as a master regulator of the G1-to S-phase transition. Oncogene,2007,26:3227-3239
    56Dailey L, Ambrosetti D, Mansukhani A, et al Mechanisms underlyingdifferential responses to FGF signaling. Cytokine Growth F R,2005,16:233-247
    57Pursiheimo J-P, Saari J, Jalkanen M, et al Cooperation of protein kinase aand ras/ERK signaling pathways is required for AP-1-mediated activationof fibroblast growth factor-inducible response element. J Biol Chem,2002,277:25344-25355
    58Mortensen OV, Larsen MB, Prasad BM, et al Genetic complementationscreen identifies a mitogen-activated protein kinase phosphatase, MKP3,as a regulator of dopamine transporter trafficking. Mol Biol Cell,2008,19:2818-2829
    59Christie GR, Williams DJ, MacIsaac F, et al The dual-specificity proteinphosphatase DUSP9/MKP-4is essential for placental function but is notrequired for normal embryonic development. Mol Cell Biol,2005,25:8323-8333
    60Adams RH, Porras A, Alonso G, et al Essential role of p38α MAP kinasein placental but not embryonic cardiovascular development. Mol Cell,2000,6:109-116
    61Wu JJ, Bennett AM Essential role for mitogen-activated protein (MAP)kinase phosphatase-1in stress-responsive MAP kinase and cell survivalsignaling. J Biol Chem,2005,280:16461-16466
    62Zhao Q, Shepherd EG, Manson ME, et al The role of mitogen-activatedprotein kinase phosphatase-1in the response of alveolar macrophages tolipopolysaccharide attenuation of proinflammatory cytokine biosynthesisvia feedback control of p38. J Biol Chem,2005,280:8101-8108
    63Zhou J-Y, Liu Y, Wu GS The role of mitogen-activated protein kinasephosphatase-1in oxidative damage-induced cell death. Cancer Res,2006,66:4888-4894
    64Chi H, Barry SP, Roth RJ, et al Dynamic regulation of pro-andanti-inflammatory cytokines by MAPK phosphatase1(MKP1) in innateimmune responses. Proc Natl Acad Sci,2006,103:2274-2279
    65Hammer M, Mages J, Dietrich H, et al Dual specificity phosphatase1(DUSP1) regulates a subset of LPS-induced genes and protects mice fromlethal endotoxin shock. The Journal of experimental medicine,2006,203:15-20
    66Zhang Y, Blattman JN, Kennedy NJ, et al Regulation of innate andadaptive immune responses by MAP kinase phosphatase5. Nature,2004,430:793-797
    67Jeffrey KL, Brummer T, Rolph MS, et al Positive regulation of immunecell function and inflammatory responses by phosphatase PAC-1. NatImmunol,2006,7:274-283
    68Hirosumi J, Tuncman G, Chang L, et al A central role for JNK in obesityand insulin resistance. Nature,2002,420:333-336
    69Fan M, Rhee J, St-Pierre J, et al Suppression of mitochondrial respirationthrough recruitment of p160Myb binding protein to PGC-1α: Modulationby p38MAPK. Genes&development,2004,18:278-289
    70Price DM, Chik CL, Terriff D, et al Mitogen-activated protein kinasephosphatase-1(MKP1):>100-fold nocturnal and norepinephrine-inducedchanges in the rat pineal gland. FEBS letters,2004,577:220-226
    71Aoki K, Taketo MM Adenomatous polyposis coli (APC): Amulti-functional tumor suppressor gene. J Cell Sci,2007,120:3327-3335
    72Willert K, Jones KA Wnt signaling: Is the party in the nucleus? Gene Dev,2006,20:1394-1404
    73Yun M-S, Kim S-E, Jeon SH, et al Both ERK and Wnt/β-catenin pathwaysare involved in Wnt3a-induced proliferation. J Cell Sci,2005,118:313-322
    74Jeon SH, Yoon J-Y, Park Y-N, et al Axin inhibits extracellularsignal-regulated kinase pathway by ras degradation via β-catenin. J BiolChem,2007,282:14482-14492
    75Liu C, Li Y, Semenov M, et al Control of β-cateninphosphorylation/degradation by a dual-kinase mechanism. Cell,2002,108:837-847
    76Thornton TM, Pedraza-Alva G, Deng B, et al Phosphorylation by p38MAPK as an alternative pathway for GSK3β inactivation. Science,2008,320:667-670
    77Lin S-C, Li Q Axin bridges daxx to p53. Cell Res,2007,17:301-302
    78Liu Y-X, Wang J, Guo J, et al Dusp1is controlled by p53during thecellular response to oxidative stress. Molecular Cancer Research,2008,6:624-633
    79Bang Y-J, Kwon JH, Kang SH, et al Increased MAPK activity and MKP1overexpression in human gastric adenocarcinoma. Biochem Biophys ResCommun,1998,250:43-47
    80Marinissen MJ, Chiariello M, Pallante M, et al A network ofmitogen-activated protein kinases links G protein-coupled receptors to thec-Jun promoter: A role for c-Jun NH2-terminal kinase, p38s, andextracellular signal-regulated kinase5. Mol Cell Biol,1999,19:4289-4301
    81Hui L, Bakiri L, Mairhorfer A, et al P38α suppresses normal and cancercell proliferation by antagonizing the JNK–c-jun pathway. Nat Genet,2007,39:741-749
    82Eferl R, Ricci R, Kenner L, et al Liver tumor development: C-junantagonizes the proapoptotic activity of p53. Cell,2003,112:181-192
    83Lee H-Y, Sueoka N, Hong W-K, et al All-trans-retinoic acid inhibits junn-terminal kinase by increasing dual-specificity phosphatase activity. MolCell Biol,1999,19:1973-1980
    84Vicent S, Garayoa M, López-Picazo JM, et al Mitogen-activated proteinkinase phosphatase-1is overexpressed in non-small cell lung cancer and isan independent predictor of outcome in patients. Clin Cancer Res,2004,10:3639-3649
    85Mizuno R, Oya M, Shiomi T, et al Inhibition of MKP1expressionpotentiates JNK related apoptosis in renal cancer cells. J Urology,2004,172:723-727
    86Loda M, Capodieci P, Mishra R, et al Expression of mitogen-activatedprotein kinase phosphatase-1in the early phases of human epithelialcarcinogenesis. The American journal of pathology,1996,149:1553
    87Shimada K, Nakamura M, Ishida E, et al C-jun N-terminal kinaseactivation and decreased expression of mitogen-activated protein kinasephosphatase-1play important roles in invasion and angiogenesis ofurothelial carcinomas. The American journal of pathology,2007,171:1003-1012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700