C反应蛋白、血管生成素2遗传变异及其血浆浓度在脑卒中发病风险及复发中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脑卒中是一种由环境因素及遗传因素共同作用造成的复杂性疾病,是国人重大的健康负担。脑卒中一旦发生,死亡率极高,而且存活后的残废率高达70%,脑卒中复发率也非常高,3年和5年的复发率分别为28%和51%。目前中国约有600万脑卒中残存者,每年新发病例150万,而且发病逐渐年轻化。
     脑卒中是一个症候群,包括缺血性脑卒中(动脉硬化血栓及栓塞)、出血性脑卒中(高血压动脉硬化性血管病变及血管畸形,动脉瘤)。脑卒中的发病机制十分复杂,动脉粥样硬化是其最主要的病理基础之一。目前认为动脉粥样硬化是复杂的血管性疾病,是血管对损伤的慢性炎症反应。C反应蛋白(C-reactive protein, CRP)作为系统性炎症的标志物,被认为在炎症反应中起着关键作用。血清CRP水平可以反映机体潜在的炎症活跃程度,并与脑卒中、冠心病等动脉硬化性疾病密切相关。
     无论是在机制研究还是观察性流行病学研究中,CRP在心脑血管发病中的作用,目前存在争议。一种观点倾向认为CRP直接参与、介导炎症反应并在心脑血管病的发生中起重要的作用。另一种观点认为CRP与心脑血管病的发生之间无直接的因果关系,CRP升高仅反映了动脉粥样硬化血管非特异性炎症反应的程度,CRP并未直接参与动脉硬化的发生、发展。
     本研究拟通过多中心病例对照关联研究探讨可影响血清CRP水平的CRP遗传变异和单体型与脑卒中易感性的关系;通过前瞻性研究探讨可影响血清CRP水平的CRP遗传变异和单体型与脑卒中复发的关系。
     研究目的:
     本研究拟揭示CRP遗传变异和单体型是否为脑卒中易感性和复发的遗传危险因素;
     研究方法:
     本研究采用病例对照研究,探讨可影响CRP水平的CRP的遗传变异与脑卒中易感性的关系;采用前瞻性研究,探讨可影响CRP水平的CRP的遗传变异与脑卒中复发的关系。研究对象包括1572例脑卒中病例(694例脑梗塞,437例腔隙性脑梗塞,441例脑出血)及1485例对照,来自中国的7个临床中心。与CRP水平相关的CRP遗传变异rs1205及rs2808630用限制性片段长度多态性法(RFLP)进行基因分型。血清CRP水平采用ELISA方法检测。对入选病例进行4.5年(中位数)随访,采用多元回归分析、Kaplan-Meier分析及Cox回归模型分析血清CRP水平及与CRP血清水平升高相关的CRP遗传变异与脑卒中的易感性和复发的关系。
     研究结果:
     1.无论是病例组总体还是脑卒中三个亚型中,血清CRP水平显著高于对照组。血清CRP水平分别为[中位数(全距)]:对照组0.7100(9.96)mg/L,脑卒中总体1.0113(9.97)mg/L(三个亚型分别为:脑梗0.9784(9.85)mg/L腔梗1.0094(9.97)mg/L、脑出血1.0381(9.95)mg/L),P<0.01。
     2.校正了年龄、性别、体重指数、收缩压、舒张压、总胆固醇、HDL-C、糖尿病及吸烟等传统心血管病危险因素后,无论是在病例组还是对照组,rs1205A及rs2808630G等位基因携带者,其血清CRP水平显著升高。rs1205基因型GG、GA及AA血清CRP水平[中位数(全距),mg/L]在病例组分别为:0.8106(7.76),1.0113(9.96),1.4400(9.84),P<0.001;对照组分别为:0.6294(9.95),0.7144(9.05),1.0100(9.28),P<0.001;rs2808630基因型AA、AG及GG血清CRP水平[中位数(全距),mg/L]在病例组分别为:0.9109(9.97),1.0769(9.71),1.8713(9.61),P<0.001;对照组分别为:0.6875(9.96),0.7119(9.39),3.6891(9.06),P=0.004。
     3.在校正了传统心血管病危险因素后,无论是显性模式、隐形模式还是加性模式下,CRP基因多态rs1205G/A、rs2808630A/G与脑卒中或脑卒中任一亚型无显著相关;rs1205(GA+AA vsGG)校正后的优势比(95%可信区间)分别为:脑卒中总体:0.97(0.81-1.15),脑梗组:1.01(0.81-1.26),腔梗组:1.00(0.78-1.27),脑出血组:1.01(0.77-1.34)。rs2808630(AG+GG vs AA)校正后的优势比(95%可信区间)分别为:脑卒中总体:0.96(0.80-1.15),脑梗组:0.85(0.67-1.07),腔梗组:1.14(0.89-1.47),脑出血组0.94(0.71-1.26)。
     4.在所有3个频率>5%的单体型(rs1205/rs2808630:GA、AA、AG)中,未发现单体型频率与脑卒中或脑卒中任一亚型显著相关,也未发现单体型频率与脑卒中复发相关。
     5.校正了年龄、性别、体重指数、收缩压、舒张压、总胆固醇、HDL-C、糖尿病及吸烟等传统心血管病危险因素后,rs1205G/A(相对危险度RR(95%CI)1.039(0.816-1.324)P=0.755)及rs2808630A/G(相对危险度RR(95%CI)1.094(0.853-1.403)P=0.479)与脑卒中复发仍为无显著相关。
     结论:
     CRP基因变异与CRP血清水平显著相关。CRP基因变异及单体型不是脑卒中发生及复发的遗传危险因素;CRP水平在脑卒中病例组显著升高,是脑卒中的标志物,但我们推测CRP不是脑卒中的致病因素。以CRP作为脑卒中发病及复发的预警指标应慎重考虑。
     研究背景:
     脑卒中是一种由环境因素及遗传因素共同作用造成的复杂性疾病,是国人重大的健康负担。脑卒中的病理过程包括动脉粥样硬化、血管炎症、血管渗透性改变等,其发病机制远未阐明。许多报道表明血管生成素(Angiopoeitin, Ang)及其受体酪氨酸激酶Tie2信号系统参与了许多与脑卒中密切相关的病理过程,不仅调控血管发生,而且参与调控内皮细胞炎症反应。血管生成素1(Angiopoietin1, Ang1)与血管生成素2(Angiopoietin2, Ang2)均为受体酪氨酸激酶Tie2(tyrosine kinase with immunoglobulin and epidermal growth factor homology domain2)的天然配体,与Tie2相互作用。Ang2和Ang1互为天然拮抗剂,Ang2特异结合于血管内皮Tie2受体后,并不引起受体的磷酸化,通过竞争性地抑制Ang1与Tie2受体结合,从而抑制Tie2磷酸化,起到破坏血管稳定,促使血管结构松解,解除血管周围细胞、细胞外基质对内皮的抑制作用。因此,Ang2被认为是Ang-Tie2系统的动态调节者,维持血管生长、退化的动态平衡。
     Ang2还参与调控炎症反应,在血管快速应答过程中与TNFa协同作用,促进TNFa诱导的炎症相关因子的表达,如ICAM1, VCAM1等。临床研究表明,Ang2在急性冠脉综合征及高血压患者中表达上调,而急性冠脉综合征及高血压均为脑卒中的危险因素。尽管目前尚不能明确Ang2水平增加是急性冠脉综合征及高血压的原因还是结果,但Ang2已被认为是高血压患者心血管病(心肌梗死、脑卒中和死亡)风险的生物标志物。
     考虑到Ang2在动脉粥样硬化、血管炎症反应及血管渗透性改变等病理、生理过程中发挥作用,这些过程与脑卒中的发生发展密切相关,我们提出假设:血浆Ang2水平及/或ANGPT2(编码Ang2的基因)的遗传变异与脑卒中的易感性和复发相关联。
     研究目的:
     本研究拟揭示ANGPT2遗传变异和单体型是否为脑卒中易感性和复发的遗传危险因素;血浆Ang2水平是否可以作为脑卒中易感性和复发的独立预测因子。
     研究方法:
     本研究采用病例对照研究,探讨血浆Ang2水平及ANGPT2的遗传变异与脑卒中的易感性的关系;采用前瞻性研究,探讨血浆Ang2水平及ANGPT2的遗传变异与脑卒中复发的关系。研究对象包括1513例脑卒中病例(674例脑梗塞,419例腔隙性脑梗塞,420例脑出血)及1582例对照,来自中国的7个临床中心。采用限制性片段长度多态性法(RFLP)对ANGPT2启动子区所有tagSNP(rs3739390,rs2515507及rs3739391)进行基因分型。前瞻性研究中,1735例脑卒中患者(794例脑梗塞,475例腔隙性脑梗塞,466例脑出血)采用ELISA方法检测血浆Ang2水平并进行4.5年(中位数)随访,采用多元回归分析、Kaplan-Meier分析及Cox回归模型分析血浆Ang2水平及ANGPT2的遗传变异与脑卒中的易感性和复发的关系。Haploview软件来计算遗传标记之间的连锁不平衡程度。为了研究其潜在的机制,本研究进一步运用荧光素酶报告系统研究ANGPT2基因启动子区变异对转录活性的影响。
     研究结果:
     1.校正了年龄、性别、体重指数、吸烟、饮酒等传统危险因素后,ANGPT2+442C等位基因携带者与野生型G等位基因携带者相比,腔梗易感性增加(显性模式:优势比(OR)1.42,95%可信区间(95%CI)(1.08-1.87)。在Bonferroni correction校正后,ANGPT2+442C仍与腔梗易感性相关(P=0.012);荧光素酶报告系统显示,ANGPT2+442C基因型转录活性为+442G转录活性2.10倍(P=0.014)。
     2.血浆Ang2水平与腔梗复发相关联,校正了传统危险因素后,与Ang2水平最低四分位相比,第二四分位危险比(hazard ratio, HR)(95%CI)为1.48(0.74-2.95),第三四分位危险比(95%CI)2.56(1.35-4.86),第四四分位(危险比(95%CI)为2.15(1.11-4.17)。进一步校正ANGPT2启动子区多态(+442G/C、-220G/A、+398C/T),仍显示血浆Ang2水平增加与腔梗复发相关。
     3. ANGPT2基因启动子区+398C/T变异与血浆Ang2水平相关联,校正了年龄、性别、体重指数、吸烟、饮酒等传统危险因素后,+398T等位基因携带者(n=126),其血浆Ang2水平(平均浓度为4.26ng/m1,浓度范围:0.13-59.44ng/m1)高于+398C等位基因携带者(n=234,平均浓度为3.95ng/ml,浓度范围:0.12-49.41ng/ml,P=0.033)。
     4. ANGPT2启动子区+398C/T变异与腔梗复发相关,与脑梗及脑出血复发无关。与+398C相比,+398T腔梗复发危险比(95%CI)为1.67(1.06-2.63);进一步校正血浆Ang2水平后,仍有显著关联。
     5. ANGPT2基因单体型G-G-T(-220/+442/+398)可增加脑梗(OR=1.54,95%CI1.15-2.08)和脑出血(OR=1.64,95%CI1.17-2.32)的发病风险;而携带+442C等位基因的单体型G-C-C(-220/+442/+398),与脑梗(OR=1.84,95%CI1.18-2.87)、腔梗(OR=2.16,95%CI1.30-3.57)和脑出血(OR=2.10,95%CI1.27-3.46)发病风险显著相关。
     结论:
     本研究提示ANGPT2启动子区变异及单体型与脑卒中发病风险相关;血浆Ang2水平及其启动子区基因多态可能是预测脑卒中(特别是腔隙性脑梗塞)复发的新的生物标志物;Ang2可能在脑血管疾病的发生发展中起到重要的调节作用,并可成为脑血管病新的诊治靶点。
Background:Stroke is a complex disease caused by synergy between genetic and environmental factors. It is a major health burden in China. Mortality rate is high for stroke victims. The disability rate after stroke is up to70%in stroke survivors with very high recurrence rates (3and5-year recurrence rates were28%and51%, respectively). In China, there are about6-million stroke remnants and1.5-million of the new cases per year. This incidence gradually increases with younger age. Stroke is not one disease but rather a heterogeneous group of disorders, three subtypes of stroke were included:atherothrombotic, intracerebral hemorrhage and lacunar infarct. The mechanisms underlying stroke are multifactorial. One of the most important pathological basis of stroke is atherosclerosis. Currently, atherosclerosisis is a complex vascular disease with chronic inflammatory responses due to vascular injury. C-reactive protein (CRP), as one of systemic inflammation markers, plays a key role in the inflammatory responses. CRP levels in serum may reflect the potentially inflammatory activity in the body, and is closely related to stroke and other arteriosclerosis diseases, such as coronary heart disease. However, there are disputes concerning CRP in the pathogenesis of cerebrovascular diseases, from both the mechanism and epidemiological studies. Some believed that CRP directly mediates inflammatory responses and plays an important role in the occurrence of cardiovascular and cerebrovascular diseases. Others supported that no direct relationship was found between CRP levels and the occurrence of cardiovascular and cerebrovascular diseases. The increase of CRP levels just reflects the extent of non-specific inflammatory responses in atherosclerotic lesions. CRP is not directly involved in the development of atherosclerosis.
     In this study, the relationships between stroke susceptibility and stroke recurrence with serum CRP levels due to CRP genetic variations and haplotypes were investigated by multi-center case-control sdudy and prospective study, respectively.
     Objectives:This study intended to reveal whether CRP genetic variatnts and haplotypes are genetic risk factors for stroke susceptibility and recurrence, and whether CRP can be causal factor for stroke.
     Methods:A multi-center case-control study was used to investigate the association of serum levels of CRP (determined by using ELISA) and CRP variants with stroke susceptibility. A prospective study was used to explore the causal relation of CRP level and the CRP variants with stroke recurrence. Total1735patients with stroke (lacunar infarct (n=475), atherothrombotic (n=794) and intracerebral hemorrhage (n=466)) were followed-up for a period of4.5years (mean), the correlation was evaluated by using Kaplan-Meier analysis and the Cox regression models. The degree of linkage disequilibrium between genetic markers was calculated using Haploview software.
     Results:
     1. Serum CRP levels were significantly higher in patients and three stroke subtypes than in control. CRP levels were (median (range)):0.7100(9.96)mg/L for control group,1.0113(9.97)mg/L for overall stroke group,(for three subtypes:0.9784(9.85)mg/L for atherothrombotic stroke,1.0094(9.97)mg/L for lacunar infarct,1.0381(9.95)mg/L for intracerebral hemorrhage), P<0.01.
     2. After adjustment for traditional cardiovascular risk factors including age, sex, body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, HDL-C, diabetes and smoking, serum CRP levels in patients with rs1205A and rs2808630G alleles were significantly increased in both case and control group. CRP levels (median (range),mg/L) with rs1205allele were0.8106(7.76) for GG,1.0113(9.96) for GA,1.4400(9.84) for AA, respectively(P<0.001) in case and0.6294(9.95) for GG,0.7144(9.05) for GA,1.0100(9.28) for AA, respectively(P<0.001) in control. CRP levels (median (range),mg/L) with rs2808630allele were:0.9109(9.97)for AA,1.0769(9.71) for AG,1.8713(9.61) for GG in case group(P<0.001) and0.6875(9.96) for AA,0.7119(9.39) for AG,3.6891(9.06) for GG (P=0.004) in the control.
     3. After adjustment for traditional cardiovascular risk factors, whether it is in the dominant model, recessive model or additive model, there was no significant association of CRP polymorphisms rs1205G/A and rs2808630A/G with any one of the subtypes of stroke; the adjusted odds ratio of rs1205(GA+AA vs.GG)(95%confidence interval, CI) were:0.97(0.81-1.15) for overall stroke group,1.01(0.81-1.26) for atherothrombotic,1.00(0.78-1.27) for lacunar infarct,1.01(0.77-1.34) for intracerebral hemorrhage. The adjusted odds ratio of rs2808630(AG+GG vs. AA)(95%CI) were0.96(0.80-1.15) for stroke overall,0.85(0.67-1.07) for patients with atherothrombotic,1.14(0.89-1.47) for patients with lacunar infarct,0.94(0.71-1.26) for patients with intracerebral hemorrhage. There was no significant association between stroke and any subtypes of stroke with haplotype frequency in all three haplotypes with frequency>5%(rs1205/rs2808630:GA, AA and AG).
     4. After adjustment for traditional cardiovascular risk factors, including age, sex, body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, HDL-C, diabetes and smoking, there is still no significant correlations of stoke recurrence with rs1205G/A (relative risk (95%CI)1.039(0.816-1.324), P=0.755) and rs2808630A/G (relative risk(95%CI)1.094(0.853-1.403), P=0.479).
     Conclusions:Although these variants and corresponding hyplotypes in the CRP gene are associated with serum CRP concentrations, our study does not support that variants and corresponding hyplotypes studied here have a major influence on risk of stroke and stroke recurrence.Therefore, we speculate that CRP is not a causal factor for stroke.
     Backgroud Stroke is a complex disease caused by synergy between environmental and genetic factors. It is a major health burden in China. Although the pathological processes of stroke included atherosclerosis, vascular inflammation, vascular permeability changes, its underlying pathogenesis is not clear.
     Previous reports indicated that angiogenic factors and its receptor involve in a number of closely related pathological process of stroke. This signal system regulates not only angiogenesis, but also endothelial cell inflammatory responses. Both angiopoietin1(Angl) and angiopoietin2(Ang2) are natural ligands of tyrosine kinase receptor Tie2(tyrosine kinase with immunoglobulin and EGFR growth factor homology domain2). They can interact with Tie2. Ang2and Angl is natural antagonist each other. Ang2can bind to the vascular endothelial Tie2receptor, prevent the binding of Ang1to Tie2and inhibit phosphorylation of Tie2. It can destabilize the blood vessels, loose the vascular structure, and release the inhibition of the perivascular cells and endothelial extracellular matrix to endothelial cells. Therefore, Ang2is the dynamic regulater of Ang-Tie2system and maintain the dynamic equilibrium of blood vessel growth and degradation.
     Ang2also involved in the regulation of inflammation responses. It, with the synergized with TNFα during vascular rapid response, can promote TNFa-induced expression of inflammation-related factors, such as ICAM1and VCAM1. Clinical studies have shown that Ang2is upregulated in patients with acute coronary syndrome and hypertension. Both acute coronary syndrome and hypertension are risk factors for stroke. Althought it is not clear that increased serum levels of Ang2are the cause or result of the acute coronary syndrome and hypertension, Ang2has been considered as the risk biomarker for high blood pressure in patients with cardiovascular disease (myocardial infarction, stroke and death).
     In summary, we proposed a hypothesis: there is association of susceptibility and recurrence of stroke with the plasma Ang2levels and/or genetic variants of ANGPT2(gene coding Ang2).
     Objectives:The purpose of this study was to test the hypothesis that plasma levels of Ang2and variants of ANGPT2will confer susceptibility to stroke and stroke recurrence.
     Methods:Amulti-center case-control study was used to investigate the association of ANGPT2variants with stroke susceptibility. A prospective study was used to explore the the association of plasma Ang2and the variants in ANGPT2promoter with stroke recurrence.Total1513patients with stroke of three subtypes(lacunar infarct (n=419), atherothrombotic(n=674) and intracerebral hemorrhage (n=420))and1485control in case-control study were genotyped by restriction fragment length polymorphism(RFLP)); in the prospective study, the association of plasma Ang2(determined by using ELISA) and the variants in ANGPT2promoter with stroke recurrence was tested in1735patients with stroke (lacunar infarct (n=475), atherothrombotic (n=794) and hemorrhage (n=466)). The patients were followed-up for a period of4.5years (mean); the association was evaluated by using Kaplan-Meier analysis and the Cox regression models. The degree of linkage disequilibrium between genetic markers was calculated using Haploview software. To further probe the potential mechanism, a luciferase reporter system was used to evaluation the effect of the variation in the promoter region of ANGPT2gene on its transcriptional activity.
     Results:
     1. Allele C of rs3739390conferred a1.42-fold risk for lacunar infarction{adjusted odds ratio [OR],1.42(95%CI,1.08-1.87); P=0.012)and a2.10-fold higher transcriptional activity as compared with the corresponding G allele (P=0.014)
     2. Elevated Ang2levels were strongly associated with risk of stroke recurrence only in the patients with lacunar infarct and the association remained after adjustment for age, sex, hypertension, or diabetes, BMI, cigarette smoking, alcohol consuming, glucose, TG and TC. As compared with the lowest quartile (the first), the hazard ratio (HR)(95%CI) for recurrence of stroke was1.48(0.74-2.95) for the second quartile (middle level),2.56(1.35-4.86) for the third quartile,2.15(1.11-4.17) for the fourth quartile (the highest level). Additional adjustment for variants in the promoter of ANGPT2did not substantially change the results.
     3. Allele T of rs3739391was associated with elevated Ang2levels. After adjustment for traditional risk factors, plasma Ang2level in the+398T allele carriers (n=126, the average concentration was4.26ng/ml, range:0.13-59.44ng/ml) is higher than the+398C allele carriers(n=234, the average concentration of3.95ng/ml, range:0.12-49.41ng/ml,P=0.033).
     4. Allele T of rs3739391was associated with risk of stroke recurrence in the patients with lacunar infarct. Compared with+398C,+398T allele led a risk ratio of1.67(95%CI) (1.06-2.63) for lacunar infarction recurrence; After further adjustment for plasma Ang2levels, the result remains similar.
     5. The haplotype G-G-T conferred a1.54-fold risk for atherothrombotic stroke and a1.64-fold risk for hemorrhagic stroke, while the haplotype G-C-C conferred a1.84-fold risk for atherothrombotic stroke,2.10fold risk for hemorrhagic stroke and2.16fold risk for lacunar infarction. Our results indicate that haplotypes in the promoter of ANGPT2gene conferred high risk of stroke in a Chinese population.
     Conclusions:In this study, we found that haplotypes in the promoter of the ANGPT2conferred high risk of stroke in a Chinese population. The plasma levels of Ang2and genetic polymorphism in ANGPT2promoter region may be used as a new predicting maker for recurrence of stroke (especially lacunar stroke).
引文
1. Jiang B, Wang W-z, Chen H, Hong Z, Yang Q-d, Wu S-p, Du X-1, Bao Q-j. Incidence and Trends of Stroke and Its Subtypes in China:Results From Three Large Cities. Stroke 2006;37:63-68.
    2. Sacco, R.L., Ellenberg, J.H., Mohr, J.P., Tatemichi, T.K., Hier, D.B., Price, T.R. and Wolf, P.A. Infarcts of undetermined cause:the NINCDS Stroke Data Bank. Ann. Neurol.,1989;25,382-390.
    3. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med.1999;340:115-126.
    4. Emsley HC, Smith CJ, Gavin CM et al An early and sustained peripheral inflammatory response in acute ischaemic stroke:relationships with infection and atherosclerosis.J. Neuroimmunol 2003;139:93-101
    5. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med.1997;336:973-979.
    6. Volanakis JE. Human C-reactive protein:expression, structure, and function. Mol. Immunol. 2001;38(2-3),189-197.
    7. Ganter U, Arcone R, Toniatti C, Morrone G, Ciliberto G Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J.1989;8(12),3773-3779.
    8. Yap SH, Moshage HJ, Hazenberg BP et al. Tumor necrosis factor (TNF) inhibits interleukin (IL)-l and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes. Biochim. Biophys. Acta 1991;1091(3),405-408.
    9. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999;340(6),448-454.
    10. Ford ES, Giles WH, Myers GL, Rifai N, Ridker PM, Mannino DM. C-reactive protein concentration distribution among US children and young adults:findings from the National Health and Nutrition Examination Survey,1999-2000. Clin. Chem.2003;49(8),1353-1357.
    11. Hutchinson WL, Koenig W, Frohlich M, Sund M, Lowe GD, Pepys MB. Immunoradiometric assay of circulating C-reactive protein:age-related values in the adult general population. Clin. Chem.2000;46(7), 934-938.
    12. Davis EE, Huffman FG. Differences in coronary heart disease risk markers among apparently healthy individuals of African ancestry. J. Natl Med. Assoc.2007;99(6),658-664.
    13. Saito I, Sato S, Nakamura M et al. A low level of C-reactive protein in Japanese adults and its association with cardiovascular risk factors:the Japan NCVC-Collaborative Inflammation Cohort (JNIC) study. Atherosclerosis 2007;194(1),238-244.
    14. Wen J, Liang Y, Wang F et al. Association of C-reactive protein and metabolic syndrome in a rural Chinese population. Clin. Biochem.2009; 42(10-11),976-983.
    15. de Beer FC, Hind CR, Fox KM, Allan RM, Maseri A, Pepys MB.Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J.1982;47:239-243.
    16. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in "active" coronary artery disease. Am J Cardiol.1990;65:168-172.
    17. Nilsson J. CRP:marker or maker of cardiovascular disease? Arterioscler Thromb Vase Biol. 2005;25:1527-1528.
    18. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A,Lowe GD, Pepys MB, Gudnason V. C-reactive protein and other circu-lating markers of inflammation in the prediction of coronary heart disease. N Engl J Med.2004;350:1387-1397.
    19. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd,Criqui M, adl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F. Markers of inflammation and cardiovascular disease:application to clinical and public health practice:a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation.2003; 107:499-511.
    20. Benjamin MS,David AM. C-reactive protein an innocent bystander or proatherogenic culprit? Circulation. 2006;2;113(17):2128-34.
    21. Subodh V, Sridevi D, Ishwarlal J.C-Reactive Protein Promotes Atherothrombosis Circulation. 2006;2;113(17):2135-51.
    22. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999;7(2),169-177.
    23. Lu J, Marnell LL, Marjon KD, Mold C, du Clos TW, Sun PD. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 2008;456(7224),989-992.
    24. Volanakis JE, Narkates AJ. Interaction of C-reactive protein with artifcial phosphatidylcholine bilayers and complement. J. Immunol.1981;126(5),1820-1825.
    25. Hack CE, Wolbink GJ, Schalkwijk C, Speijer H, Hermcns WT, Van Den Bosch H. A role for secretory phospholipase A2 and C-reactive protein in the removal of injured cells. Immunol. Today1997;18(3), 111-115.
    26. Chang MK, Binder CJ, Torzewski M, Witztum JL. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand:phosphorylcholine of oxidized phospholipids. Proc. Natl Acad. Sci.2002; 99(20),13043-13048.
    27. Gershov D, Kim S, Brot N, Elkon KB. C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinfammatory innate immune response:implications for systemic autoimmunity. J. Exp. Med.2000; 192(9),1353-1364.
    28. Pepys MB, Rowe IF, Baltz ML. C-reactive protein:binding to lipids and lipoproteins. Int. Rev. Exp. Pathol.1985;27,83-111.
    29. Mcgrath FD, Brouwer MC, Arlaud GJ, Daha MR, Hack CE, Roos A. Evidence that complement protein Clq interacts with C-reactive protein through its globular head region. J. Immunol.2006;176(5), 2950-2957.
    30. Mold C, Gewurz H, Du Clos TW. Regulation of complement activation by C-reactive protein. Immunopharmacology 1999;42(1-3),23-30.
    31. Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE. C-reactive protein:structural biology and host defense function. Clin. Chem. Lab. Med.1999; 37(3),265-270.
    32. Volanakis JE, Narkates AJ. Binding of human C4 to C-reactive protein-pneumococcal C-polysaccharide complexes during activation of the classical complement pathway. Mol. Immunol.1983;20(11), 1201-1207.
    33. Hakobyan S, Harris CL, Van Den Berg CW et al. Complement factor H binds to denatured rather than to native pentameric C-reactive protein. J. Biol. Chem.2008;283(45),30451-30460.
    34. Boncler M, Luzak B, Rozalski M, Golanski J, Rychlik B, Watala C. Acetylsalicylic acid is compounding to antiplatelet effect of C-reactive protein. Thromb. Res.2007; 119(2),209-216.
    35. Kindmark CO. In vitro binding of human C-reactive protein by some pathogenic bacteria and zymosan. Clin. Exp. Immunol.1972;11(2),283-289.
    36. Diaz Padilla N, Bleeker WK, Lubbers Y et al. Rat C-reactive protein activates the autologous complement system. Immunology 2003;109(4),564-571.
    37. Singh U, Devaraj S, Jialal I. C-reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells:evidence that C-reactive protein is a procoagulant. Arterioscler. Thromb. Vase. Biol.2005;25(10),2216-2221.
    38. Devaraj S, Du Clos TW, Jialal I. Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vase Biol. 2005;25:1359-1363.
    39. Devaraj S, Kumaresan PR, Jialal I. Effect of C-reactive protein on chemokine expression in human aortic endothelial cells. J Mol Cell Cardiol.2004;36:405-410.
    40. Venugopal SK, Devaraj S, Jialal I. C-reactive protein decreases prostacyclin release from human aortic endothelial cells. Circulation.2003; 108:1676-1678.
    41. Lim MY, Wang H, Kapoun AM, O'connell M, O'Young G, Brauer HA,Luedtke GR, Chakravarty S, Dugar S, Schreiner GS, Protter AA, Higgins LS.p38 inhibition attenuates the pro-inflammatory response to C-reactive protein by human peripheral blood mononuclear cells. J Mol Cell Cardiol 2004;37:1111-1114.
    42. Devaraj S, Davis B, Simon SI, Jialal I. CRP promotes monocyte-endothelial cell adhesion via Fcg receptors in human aortic endothelial cells under static and shear flow conditions. Am J Physiol Heart Circ Physiol 2006;291:H1170-H1176.
    43. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165-2168.
    44. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002;106:1439-1441.
    45. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B,Weisel RD, Li RK, Mickle DA, Stewart DJ. A self-fulfilling prophecy:C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106:913-919.
    46. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993;82:513-520.
    47. Paffen E, Vos HL, Bertina RM. C-reactive protein does not directly induce tissue factor in human monocytes. Arterioscler Thromb Vase Biol 2004;24:975-981.
    48. Paul A, Ko KW, Li L, Yechoor V, McCrory MA, Szalai AJ, Chan L. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004;109:647-655.
    49. Tennent GA, Hutchinson WL, Kahan MC, Hirschfield GM, Gallimore JR, Lewin J,Sabin CA, Dhillon AP, Pepys MB. Transgenic human CRP is not pro-atherogenic,pro-atherothrombotic or pro-inflammatory in apoE-/-mice. Atherosclerosis 2008; 196:248-255.
    50. Pepys MB, Hawkins PN, KahanMC, Tennent GA, Gallimore JR, Graham D, Sabin CA, Zychlinsky A, de Diego J. Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res.2005;97:e97-e103.
    51. rion A, de Maat MP, Jukema JW, van der Laarse A, Maas MC,Offerman EH, Havekes LM, Szalai AJ, Princen HM, Emeis JJ. No effect of C-reactive protein on early atherosclerosis development in apolipoprotein E*3-Leiden/human C-reactive protein transgenic mice. Arterioscler Thromb Vasc Biol. 2005;25:1635-1640.
    52. Rost NS, Wolf PA, Kase CS et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack:the Framingham study. Stroke 2001;32(11),2575-2579.
    53. Elkind MS, Luna JM, Moon YP et al. High-sensitivity C-reactive protein predicts mortality but not stroke: the Northern Manhattan Study. Neurology 2009;73(16),1300-1307.
    54. Kaptoge S, Di Angelantonio E, Lowe G et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality, an individual participant meta-analysis. Lancet 2010;375(9709),132-140.
    55. Pankow JS, Folsom AR, Cushman M, Borecki IB, Hopkins PN, Eckfeldt JH, Tracy RP. Familial and genetic determinants of systemic markers of inflammation:the NHLBI family heart study. Atherosclerosis. 2001;154:681-689.
    56. Dupuis J, Larson MG, Vasan RS, Massaro JM, Wilson PW, Lipinska I,Corey D, Vita JA, Keaney JF Jr, Benjamin EJ. Genome scan of systemic biomarkers of vascular inflammation in the Framingham Heart Study:evidence for susceptibility loci on 1q. Atherosclerosis.2005;182:307-314.
    57. Kathiresan S, Larson MG, Vasan RS, Guo CY, Gona P, Keaney JF Jr, Wilson PW,Newton-Cheh C, Musone SL, Camargo AL, Drake JA, Levy D, O'Donnell CJ,Hirschhorn JN, Benjamin EJ. Contribution of clinical correlates and 13 C-reactive protein gene polymorphisms to interindividual variability in serum C-reactive protein level. Circulation 2006;113:1415-1423.
    58. Lange LA, Carlson CS, Hindorff LA, Lange EM,Walston J, Durda JP, Cushman M,Bis JC, Zeng D, Lin D, Kuller LH, Nickerson DA, Psaty BM, Tracy RP, Reiner AP.Association of polymorphisms in the CRP gene with circulating C-reactive protein levels and cardiovascular events. JAMA 2006;296:2703-2711.
    59. Brull DJ, Serrano N, Zito F, Jones L, Montgomery HE, Rumley A, Sharma P,Lowe GD, World MJ, Humphries SE, Hingorani AD. Human CRP gene polymorphism influences CRP levels:implications for the prediction and pathogenesis of coronary heart disease. Arterioscler Thromb Vase Biol. 2003;23:2063-2069.
    60. Pai JK, Mukamal KJ, Rexrode KM, Rimm EB. C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PLoS ONE 2008;3:e1l395.
    61. Zee RY, Ridker PM. Polymorphism in the human C-reactive protein (CRP) gene,plasma concentrations of CRP, and the risk of future arterial thrombosis. Atherosclerosis 2002; 162:217-219.
    62. Suk HJ, Ridker PM, Cook NR, Zee RY. Relation of polymorphism within the C-reactive protein gene and plasma CRP levels. Atherosclerosis 2005;178:139-145.
    63. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 2008; 5:e177.
    64. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ,Koenig W, Libby P, Lorenzatti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J,Willerson JT, Glynn RJ, JUPITER Trial Study Group. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin:a prospective study of the JUPITER trial. Lancet 2009;373:1175-1182.
    65. Casas JP, Shah T, Cooper J, Hawe E, McMahon AD, Gaffney D, Packard CJ,O'Reilly DS, Juhan-Vague Ⅱ, Yudkin JS, Tremoli E, Margaglione M, Di Minno G,Hamsten A, Kooistra T, Stephens JW, Hurel SJ, Livingstone S, Colhoun HM,Miller GJ, Bautista LE, Meade T, Sattar N, Humphries SE, Hingorani AD.Insight into the nature of the CRP-coronary event association using Mendelian randomization. Int J Epidemiol 2006;35:922-931.
    66. Elliott P, Chambers JC, Zhang W, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA 2009; 302:37-48.
    67. Zhang W, Sun K, Zhen Y, Wang D, Wang Y, Chen J, Xu J, Hu FB, Hui R. Stroke. VEGF receptor-2 variants are associated with susceptibility to stroke and recurrence.2009;40:2720-6.
    68. Wang Y., Zhang W., Zhang Y., Yang Y., Sun L., Hu S., Chen J., Zhang C., Zheng Y., Zhen Y., Sun K., Fu C., Yang T., Wang J., J Sun., Wu H., Glasgow W. C., Hui R. VKORC1 Haplotypes Are Associated With Arterial Vascular Diseases (Stroke, Coronary Heart Disease, and Aortic Dissection). Circulation 2006; 113, 1615-1623.
    1. Jiang B, Wang W-z, Chen H, Hong Z, Yang Q-d, Wu S-p, Du X-1, Bao Q-j. Incidence and Trends of Stroke and Its Subtypes in China:Results From Three Large Cities. Stroke 2006;37:63-68.
    2. Sacco, R.L., Ellenberg, J.H., Mohr, J.P., Tatemichi, T.K., Hier, D.B., Price, T.R. and Wolf, P.A. Infarcts of undetermined cause:the NINCDS Stroke Data Bank. Ann. Neurol.,1989;25,382-390.
    3. Shi, F. L., Hart, R. G, Sherman, D. G. and Tegeler, C. H. Stroke in the People's Republic of China. Stroke, 1989;20:1581-1585
    4. He, J., Klag, M. J., Wu, Z. and Whelton, P. K. Stroke in the People's Republic of China. I. Geographic variations in incidence and risk factors. Stroke,1995,26:2222-2227
    5. Zhang, W., Sun, K., Zhen, Y., Wang, D., Wang, Y., Chen, J., Xu, J., Hu, F.B. and Hui, R. VEGF receptor-2 variants are associated with susceptibility to stroke and recurrence. Stroke,2009;40,2720-2726.
    6. Kubo, M., Hata, J., Ninomiya, T., Matsuda, K., Yonemoto, K., Nakano, T., Matsushita, T., Yamazaki, K., Ohnishi, Y., Saito, S. et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat. Genet.,2007;39,212-217.
    7. Gretarsdottir, S., Thorleifsson, G., Manolescu, A., Styrkarsdottir, U., Helgadottir, A., Gschwendtner, A., Kostulas, K., Kuhlenbaumer, G., Bevan, S., Jonsdottir, T. et al. (2008) Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann. Neurol.,2008;64,402-409.
    8. Yamada, Y., Fuku, N., Tanaka, M., Aoyagi, Y., Sawabe, M., Metoki, N., Yoshida, H., Satoh, K., Kato, K., Watanabe, S. et al. Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis,2009; 207,144-149.
    9. Ikram, M.A., Seshadri, S., Bis, J.C., Fornage, M., DeStefano, A.L., Aulchenko, Y.S., Debette, S., Lumley, T., Folsom, A.R., van den Herik, E.G. et al. Genomewide association studies of stroke. N. Engl. J. Med., 2009;360,1718-1728.
    10. Leys D., Deplanque D., Mounier-Vehier C., Mackowiak-Cordoliani M. A., Lucas C,. Bordet R. Stroke prevention:Management of modifiable vascular risk factors. J Neurol.2002;249,507-517
    11. Krupinski J., Kaluza J., Kumar P., Kumar S., Wang J. M. Role of angiogenesis in patients with cerebral ischaemic stroke. Stroke 1994;25,1794-1798.
    12. Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Wiegand S. J., Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407,242-248.
    13. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8:464-78
    14. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669-76
    15. Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors:new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2001; 2:257-67
    16. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J.The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 1995; 14:5884-91
    17. Yuan, H. T., Khankin, E. V., Karumanchi, S. A. and Parikh, S. M. Angiopoietin 2 is a partial agonist/antagonist of tie2 signaling in endothelium. Mol. Cell. Biol.2009;29,2011-2022
    18. Nourhaghighi N, Teichert-Kuliszewska K, Davis J,Stewart DJ, Nag S. Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 2003; 83:1211-22
    19. Fujikawa K, Scherpenseel ID, Jain SK, Presman E, Varticovski L. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 1999; 253:663-72
    20. Maisonpierre P. C., Suri C., Jones P. F., Bartunkova S., Wiegand S. J., Radziejewski C., Compton D., McClain J., Aldrich T. H., Papadopoulos N., Daly T. J., Davis S., Sato T. N., Yancopoulos G. D. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277,55-60.
    21. Holash J., Maisonpierre P. C., Compton,D. Boland P., Alexander C. R., Zagzag D., Yancopoulos G. D., Wiegand S. J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284,1994-1998.
    22. Gale N. W., Thurston G., S. Hackett F., Renard R., Wang Q., McClain J., Martin C., Witte C., Witte M. Jackson H., D., Suri C., Campochiaro P. A., Wiegand S. J., Yancopoulos G. D. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 2002;3,411-423.
    23. Daly C., Pasnikowski E., E Burova., Wong V., Aldrich T. H., Griffiths J., loffe E., Daly T. J., Fandl J. P., Papadopoulos N., McDonald D. M., Thurston G., Yancopoulos G. D., Rudge J. S. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc. Natl. Acad. Sci. 2006;103,15491-15496.
    24. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57:178-201
    25. Nag S, Papneja T, Venugopalan R, Stewart DJ. Increased Ang2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown. Lab Invest 2005; 85:1189-98
    26. Croll SD, Wiegand SJ. Vascular growth factors in cerebral ischemia. Mol Neurobiol 2001; 23:121-35
    27. Hansen TM, Moss AJ, Brindle NP. Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Curr Neurovasc Res 2008; 5:236-45
    28. Fiedler U, Augustin HG. Angiopoietins:a link between angiogenesis and inflammation. Trends Immunol 2006;27:552-8.
    29. Lee K. W., Lip G. Y., Blann A. D. Plasma angiopoietin-1, angiopoietin-2, angiopoietin receptor tie-2, and vascular endothelial growth factor levels in acute coronary syndromes, Circulation 2004;110,2355-2360.
    30. Nadar S. K., Blann A., Beevers D. G, Lip G. Y. Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension:relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. J. Intern. Med.2005;258, 336-343.
    31. Patel, J. V, Lim, H. S., Varughese, G. I., Hughes, E. A.and Lip, G. Y. Angiopoietin-2 levels as a biomarker of cardiovascular risk in patients with hypertension. Ann.Med.2008;40,215-222
    32. Zhang W, Sun K, Zhen Y, Wang D, Wang Y, Chen J, Xu J, Hu FB, Hui R. Stroke. VEGF receptor-2 variants are associated with susceptibility to stroke and recurrence.2009;40:2720-6.
    33. Wang Y., Zhang W., Zhang Y., Yang Y., Sun L., Hu S., Chen J., Zhang C., Zheng Y., Zhen Y., Sun K., Fu C., Yang T., Wang J., J Sun., Wu H., Glasgow W. C., Hui R. VKORC1 Haplotypes Are Associated With Arterial Vascular Diseases (Stroke, Coronary Heart Disease, and Aortic Dissection). Circulation 2006; 113, 1615-1623.
    34. Jackson C, Sudlow C. Are lacunar strokes really different? A systematic review of differences in risk factor profiles between lacunar and nonlacunar infarcts. Stroke 2005;36:891-901.
    35. Williams J. K., Armstrong M. L., Heistad D. D. Vasa vasorum in atherosclerotic coronary arteries: response to vasoactive stimuli and regression of atherosclerosis. Circ. Res.1988;62,515-523.
    36. Patterson J. C. Capillary rupture with intimal hemorrhage as a causative factor in coronary thrombosis. Arch. Pathol.1938;25,474-487.
    37. Kim I., J. Kim H., Moon S. O., Kwak H. J., Kim N. G., Koh G Y Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Oncogene 2000; 19,4549-4552.
    38. Teichert-Kuliszewska K., Maisonpierre P. C., Jones N., Campbell A. I., Master Z., Bendeck M. P., Alitalo K., Dumont D. J., Yancopoulos G. D., Stewart D. J. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc. Res.2001; 49,659-670.
    39. Mochizuki Y., Nakamura T., Kanetake H., Kanda S. Angiopoietin 2 stimulates migration and tube-like structure formation of murine brain capillary endothelial cells through c-Fes and c-Fyn. J. Cell Sci. 2002;115,175-183.
    40. Post, S., Peeters, W., Busser, E., Lamers, D.,Sluijter, J. P., Goumans, M. J., de Weger, R. A.,Moll, F. L., Doevendans, P. A., Pasterkamp, G. and Vink, A. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density.J. Vase. Res. 2008;45,244-250
    41. Wang M. M., J. Klaus A., Joh H. D., Traystman R. J., Hurn P. D. Postischemic angiogenic factor expression in stroke-prone rats. Exp. Neurol.2002;173,283-288.
    42. Wardlaw J. M., Sandercock P. A., Dennis M. S., Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34,806-812.
    43. Roviezzo F., Tsigkos S., Kotanidou A., Bucci M., Brancaleone V., Cirino G., Papapetropoulos A. (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J. Pharmacol. Exp. Ther. 314, 738-744.
    44. Zhu Y., Lee C., Shen F., Du R., Young W. L., Yang G. Y. Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 2005;36,1533-1537.
    45. T. Nakase, T. Yamazaki, N. Ogura, A. Suzuki, K. Nagata, The impact of inflammation on the pathogenesis and prognosis of ischemic stroke, J.Neurol. Sci.2008;271:104-109.
    46. T. Liu, R.K. Clark, P.C. McDonnell, P.R. Young, R.F. White, F.C. Barone,.Z.Feuerstein, Tumor necrosis factor-alpha expression in ischemic neurons,Stroke 1994; 25:1481-1488.
    47. S.E. Orfanos, A. Kotanidou, C. Glynos, C. Athanasiou, S. Tsigkos, I. Dimopoulou,C. Sotiropoulou, S. Zakynthinos, A. Armaganidis, A. Papapetropoulos, C.Roussos, Angiopoietin-2 is increased in severe sepsis:correlation with inflammatory mediators, Crit. Care Med.2007;35:199-206.
    48. M. Hangai, S. He, S. Hoffmann, J.I. Lim, S.J. Ryan, D.R. Hinton, Sequential induction of angiogenic growth factors by TNF-alpha in choroidal endothelial cells, J. Neuroimmunol.2006; 171:45-56.
    49. I. Kim, J.H. Kim, Y.S. Ryu, M. Liu, G.Y. Koh, Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells,Biochem. Biophys. Res. Commun.2000;269:361-365.
    50. A.J. Grau, A.W. Boddy, D.A. Dukovic, F. Buggle, C. Lichy, T. Brandt, W. Hacke,Leukocyte count as an independent predictor of recurrent ischemic events,Stroke 2004;35:1147-1152.
    51. C. Lemieux, R. Maliba, J. Favier, J.F. Theoret, Y. Merhi, M.G. Sirois, Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses, Blood 2005;105:1523-1530.
    52. D.H. Sturn, C. Feistritzer, B.A. Mosheimer, A. Djanani, K. Bijuklic, J.R. Patsch, C.J.Wiedermann, Angiopoietin affects neutrophil migration, Microcirculation 2005; 12:393-403.
    53. Samuelsson M, So derfelt B, Olsson GB. Functional outcome in patients with lacunar infarction. Stroke 1996;27:842-6.
    54. Norrving B. Long-term prognosis after lacunar infarction. Lancet Neurology 2003;2:238-45.
    55. Jackson C, Sudlow C. Comparing risks of death and recurrent vascular events between lacunar and non-lacunar infarction. Brain 2005;128:2507-17.
    1. Gibbons GH. Endothelial function as a determinant of vascular function and structure:a new therapeutic target. Am J Cardiol 1997; 79 (5A):3-8.
    2. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473:317-325.
    3. Thurston G Role of angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 2003; 314:61-68.
    4. Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7:425-429.
    5. Makinde T, Agrawal DK. Intra and extravascular transmembrane signalling of angiopoietin-l-Tie2 receptor in health and disease. J Cell Mol Med 2008;12:810-828.
    6. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009; 10:165-177.
    7. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87:1161-1169.
    8. Sundberg C, Kowanetz M, Brown LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes:phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 2002; 82:387-401.
    9. Oh H, Takagi H, Suzuma K, et al. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999; 274:15732-15739.
    10. Mandriota SJ, Pyke C, Di Sanza C, et al. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 2000; 156:2077-2089.
    11. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 2009;29:2011-2022.
    12. Valenzuela DM, Griffiths JA, Rojas J, et al. Angiopoietins 3 and 4:diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 1999;96:1904-1909.
    13. Lee HJ, Cho CH, Hwang SJ, et al. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J 2004; 18:1200-1208.
    14. Chan B, Yuan HT, Ananth Karumanchi S, Sukhatme VP. Receptor tyrosine kinase Tie-1 overexpression in endothelial cells upregulates adhesion molecules. Biochem Biophys Res Commun 2008; 371:475-479.
    15. Saharinen P, Kerkela K, Ekman N, et al. Multiple angiopoietin recombinant proteins activate the Tiel receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 2005; 169:239-243.
    16. Carlson TR, Feng Y, Maisonpierre PC, et al. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 2001; 276:26516-26525.
    17. Ahmad S, Cudmore MJ, Wang K, et al. Angiopoietin-1 induces migration of monocytes in a tie-2 and integrin-independent manner. Hypertension 2010;56:477-483.
    18. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87:1161-1169.
    19. Sundberg C, Kowanetz M, Brown LF, et al. Stable expression of angiopoietin-1 and other markers by cultured pericytes:phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 2002; 82:387-401.
    20. Oh H, Takagi H, Suzuma K, et al. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999; 274:15732-15739.
    21. Mandriota SJ, Pyke C, Di Sanza C, et al. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 2000; 156:2077-2089.
    22. Dumont DJ, Fong GH, Puri MC, et al. Vascularization of the mouse embryo:a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203:80-92.
    23. Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70-74.
    24. Feistritzer C, Mosheimer BA, Sturn DH, et al. Expression and function of the angiopoietin receptor Tie-2 in human eosinophils. J Allergy Clin Immunol 2004; 114:1077-1084.
    25. Lemieux C, Maliba R, Favier J, et al. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses.Blood 2005; 105:1523-1530.
    26. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8:211-226.
    27. Jones N, Voskas D, Master Z, et al. Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2001;2:438-445.
    28. DeBusk LM, Hallahan DE, Lin PC. Akt is a major angiogenic mediator downstream of the Angl/Tie2 signaling pathway. Exp Cell Res 2004;298:167-177.
    29. Kontos CD, Stauffer TP, Yang WP, et al. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 1998; 18:4131-4140.
    30. Kim I, Kim HG, So JN, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway.Circ Res 2000; 86:24-29.
    31. Kim I, Moon SO, Han CY, et al. The angiopoietin-Tie2 system in coronary artery endothelium prevents oxidized low-density lipoprotein-induced apoptosis. Cardiovasc Res 2001; 49:872-881.
    32. Kwak HJ, Lee SJ, Lee YH, et al. Angiopoietin-1 inhibits irradiationand mannitol-induced apoptosis in endothelial cells. Circulation 2000;101:2317-2324.
    33. Kim I, Moon SO, Park SK, et al. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 2001; 89:477-479.
    34. Kim I,Oh JL, Ryu YS, et al. Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J 2002; 16:126-128.
    35. ThurstonG,SuriC,SmithK, et al. Leakage-resistant blood vessels inmice transgenically overexpressing angiopoietin-1. Science 1999; 286:2511-2514.
    36. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6:460-463.
    37. Nykanen AI, Krebs R, Saaristo A, et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 2003;107:1308-1314.
    38. Nykanen Al, Pajusola K, Krebs R, et al. Common protective and diverse smooth muscle cell effects of AAV-mediated angiopoietin-1 and -2 expression in rat cardiac allograft vasculopathy. Circ Res 2006; 98:1373-1380.
    39. Sullivan CC, Du L, Chu D, et al. Induction of pulmonary hypertension by an angiopoietin l/Tie2/serotonin pathway. Proc Natl Acad Sci U S A 2003;100:12331-12336.
    40. Zhao YD, Campbell AI, Robb M, et al. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res 2003; 92:984-991.
    41. Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 2011; 121:2278-2289.
    42. Eriksson EE. Mechanisms of leukocyte recruitment to atherosclerotic lesions:future prospects. Curr Opin Lipidol 2004; 15:553-558.
    43. Dallabrida SM, Ismail NS, Pravda EA, et al. Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. FASEB J 2008; 22:3010-3023.
    44. Hauer AD, Habets KL, van Wanrooij EJ, et al. Vaccination against Tie2 reduces atherosclerosis. Atherosclerosis 2009; 204:365-371.
    45. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277:55-60.
    46. Roviezzo F, Tsigkos S, Kotanidou A, et al. Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 2005; 314:738-744.
    47. Sturn DH, Feistritzer C, Mosheimer BA, et al. Angiopoietin affects neutrophil migration. Microcirculation 2005; 12:393-403.
    48. Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12:235-239.
    49. Goettsch W, Gryczka C, Korff T, et al. Flow-dependent regulation of angiopoietin-2. J Cell Physiol 2008; 214:491-503.
    50. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 2002; 3:411-423.
    51. Ahmed A, Fujisawa T, Niu XL, et al. Angiopoietin-2 confers atheroprotection in apoE-/-mice by inhibiting LDL oxidation via nitric oxide. Circ Res 2009;104:1333-1336.
    52. Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A 2006; 103:15491-15496.
    53. Verbeuren TJ, Coene MC, Jordaens FH, et al. Effect of hypercholesterolemia on vascular reactivity in the rabbit. Ⅱ. Influence of treatment with dipyridamole on endothelium-dependent and endothelium-independent responses in isolated aortas of control and hypercholesterolemic rabbits. Circ Res 1986; 59:496-504.
    54. Cooke JP, Singer AH, Tsao P, et al. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90:1168-1172.
    55. Knowles J W, Reddick RL, Jennette JC, et al. Enhanced atherosclerosis and kidney dysfunction in eNOS(-/-)Apoe(-/-) mice are ameliorated by enalapril treatment. J Clin Invest 2000; 105:451-458.
    56. Steinberg D. Atherogenesis in perspective:hypercholesterolemia and inflammation as partners in crime. Nat Med 2002; 8:1211-1217.
    57. Liao JK, Shin WS, Lee WY, Clark SL. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995; 270:319-324.
    58. Wang W, Hein TW, Zhang C, et al. Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation 2011; 18:36-45.
    59. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005; 118 (Pt 4):771-780.
    60. Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004; 103:4150-4156.
    61. Jaumdally RJ, Lip GY, Varma C, Blann AD. Impact of high dose atorvastatin on endothelial, platelet, and angiogenic indices:effect of ethnicity,cardiovascular disease, and diabetes. Angiology 2011;62:571-8
    62. Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 1999; 99:1726-1732.
    63. Calvi C, Dentelli P, Pagano M, et al. Angiopoietin 2 induces cell cycle arrest in endothelial cells:a possible mechanism involved in advanced plaque neovascularization. Arterioscler Thromb Vase Biol 2004; 24:511-518.
    64. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression,and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-1998.
    65. Beck H, Acker T, Wiessner C, et al. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the r

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700