血管生成素对肾小球内皮细胞衰老的影响及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分过氧化氢诱导肾小球内皮细胞衰老模型的建立
     目的:
     在体外培养条件下,正常体细胞在经过有限次数的增殖分裂后即进入不可逆转的分裂停滞状态,这种由于在连续的细胞分裂中端粒逐渐缩短所引发的现象称为细胞复制性衰老。除此以外,氧化应激、某些癌基因过度表达、紫外线、化学诱变剂等应激因素亦可诱导细胞进入一种应激性早衰状态。细胞早衰不依赖端粒的缩短,并且与复制性衰老细胞在形态、功能及生物学特性上具有许多相同的特征。细胞衰老是生物整体衰老的基础,以细胞为模型的衰老生物学研究是当前老年医学研究的重要内容。H202是一种广泛使用的致细胞早衰的诱导剂,通过DNA损伤机理诱导细胞衰老,且外源性上调端粒酶的活性不能抑制其诱导衰老作用。因此本研究首先通过过氧化氢诱导,探讨可否在体外建立成功而稳定的肾小球内皮细胞(MGECs)衰老模型,从而为进一步的实验奠定良好模型基础。
     方法:
     应用体外细胞培养技术,培养小鼠肾小球内皮细胞,选择过氧化氢(H2O2)作为诱导物。设立正常对照组、H2O2组进行实验。应用p-半乳糖苷酶染色(SA-β-Gal)方法检测衰老细胞阳性率,流式细胞术检测细胞周期,Western blot免疫印迹法检测p16蛋白的表达,通过分析H202对细胞衰老指标的影响鉴定其作用后是否可引起MGECs衰老。同时通过Hoechst-33342染色法及流式细胞术检测H2O2对细胞凋亡的影响。
     结果:
     1. H2O2(50μmol/L)诱导7天后,在倒置相差显微镜下观察可见肾小球内皮细胞形态发生明显改变,细胞体积增大,胞体扁平,呈现衰老细胞形态;
     2. SA-β-Gal染色实验结果显示:正常细胞SA-β-Gal染色几乎无阳性表达(0.76±0.24%),随H2O2作用时间延长阳性细胞数逐渐增多;H202作用3天即可观察到少量SA-β-Gal染色阳性衰老细胞(13.12±1.81%)的出现,继续予以H2O2作用7天后SA-β-Gal染色阳性细胞可达70.47%;
     3.对细胞周期的分析发现,与正常对照组相比,H2O2具有阻止肾小球内皮细胞进入增殖期(S期),而将细胞周期阻滞于静止期(Gl期)的作用,差别具有统计学意义(P<0.05);
     4. Western blot实验结果显示,与正常对照组相比H202组p16蛋白的表达显著增高(Control:21.09±0.67 vs. H2O2:69.39±4.10),差别具有统计学意义(P<0.05);
     5. hoechest-33342着染后H2O2组并未出现明显凋亡样细胞改变,同样流式细胞术检测显示正常对照组及H2O2组细胞G1峰前均无凋亡峰出现,细胞凋亡率无显著性差异(3.19±0.49%vs 3.26±0.39%,P>0.05)。
     结论:
     过氧化氢在体外能成功诱导肾小球内皮细胞衰老。H2O2(50μmol/L)诱导7天后衰老相关SA-β-Gal染色阳性,细胞周期阻滞于G1期,p16蛋白表达上调。且H2O2作用后细胞无异常凋亡发生。过氧化氢诱导肾小球内皮细胞衰老的模型成功、可信。
     第二部分血管生成素对过氧化氢诱导的肾小球内皮细胞衰老的作用研究
     目的:
     衰老是一个自然进程,在所有物种中都有此现象,并导致很多器官出现退行性改变。肾脏是受衰老影响最明显的器官之一,肾脏功能随衰老进程逐渐减退。肾脏衰老时存在血管形成异常,表现为局灶性肾小管周围及肾小球毛细血管密度减少;随着年龄的增长,肾小球出现内皮细胞进行性减少和丢失。但目前有关肾脏毛细血管改变与衰老相关肾脏病变的直接关系尚未明了。血管生成素(Ang)是一组内皮细胞特异性生长因子,可以有效促进内皮细胞的增殖、分化、介导新生血管管腔形成。Angl可促使Tie2磷酸化,提高内皮细胞的存活能力,促进血管生成,而Ang2则作用相反,能抑制Angl介导的Tie2活化。本部分研究拟探讨血管生成素系统是否能够调控肾小球内皮细胞的衰老,进而影响肾小球内皮细胞的功能及肾脏新生血管的生成,并对其作用机制进行初步探讨。
     方法:
     体外培养小鼠肾小球内皮细胞,设立正常对照组、H2O2组、Angl组、Ang2组进行实验。应用H2O2诱导MGECs衰老,通过p-半乳糖苷酶染色(SA-β-Gal)、流式细胞术检测细胞周期、Western blot检测p16蛋白表达评估细胞衰老指标的变化。应用硝酸还原酶法检测内皮细胞NO的分泌量,ELISA方法检测内皮细胞vWF的分泌量,Matrigel凝胶实验检测内皮细胞血管生成能力,探讨血管生成素对内皮细胞功能的影响。比色法测定细胞裂解液中的丙二醛(MDA)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的水平。Western blot方法检测Tie2、ERK1/2信号通路的变化。
     结果:
     1.血管生成素对肾小球内皮细胞衰老指标的影响:H2O2组SA-β-Gal阳性率增高,Angl作用后细胞SA-β-Gal着色变浅、阳性率降低,与H2O2组相比其阳性率下降达到51.80%(P<0.05),而Ang2组和H2O2组之间SA-β-Gal阳性率无显著性差异(P>0.05);H2O2诱导衰老后细胞周期阻滞于Gl期,Angl组Gl期细胞比例下降至74.50+0.16%,S期细胞比例上升至18.89±0.68%,与H202组相比差别有统计学意义(P<0.05),但Ang2组Gl期及S期细胞数与H2O2组无明显差异(P>0.05);H202组p16蛋白表达增高,Angl作用后p16表达水平较H2O2组下降44.30%(P<0.05),但Ang2对p16蛋白表达无影响(P>0.05)。
     2.血管生成素对肾小球内皮细胞功能的影响:H2O2组肾小球内皮细胞NO分泌量明显减少,Angl组细胞NO分泌显著增加(H202:10.26±0.69vs.Angl:15.61±1.61,P<0.05),Ang2组NO分泌量与H2O2组无明显差异(Ang2:10.15±0.42,P>0.05);H2O2组vWF含量明显升高(P<0.05),Angl作用后vWF含量显著降低(Angl:5.13±0.69 vs H2O2:9.88±0.27,P<0.05),而Ang2对vWF分泌无明显影响(Ang2:10.02±0.31,P>0.05);H2O2组MGECs管状结构形成能力显著抑制,Angl组细胞管状结构形成明显增加(P<0.05),而Ang2组则与衰老组无明显差异。
     3.血管生成素对肾小球内皮细胞氧化应激指标的影响:H2O2组MDA含量增加,与H2O2组相比,Angl组MDA含量降低(H2O2;10.31±0.22 vs.Angl;5.02±0.47,P<0.05),而Ang2组MDA含量则无显著变化(Ang2;9.13±0.81,P>0.05);与正常对照组相比,H2O2组GSH、SOD、CAT活性均明显降低,与H2O2组相比,Angl作用后GSH、SOD、CAT活性均显著升高(P<0.05),但Ang2组GSH、SOD、CAT活性则无显著性差异。
     4.血管生成素对Tie2-ERK1/2通路的影响:Westen blot结果显示Angl组P-Tie2水平明显增高(H2O2:4.12±2.06 vs.Angl:71.09±2.15,P<0.05),Ang2组P-Tie2无明显变化(Ang2:10.07±3.16,P>0.05);Angl能显著提高细胞P-ERK1/2水平(P<0.05),但Ang2作用未能引起P-ERK1/2的明显变化(P>0.05)。
     结论:
     Angl对过氧化氢诱导的肾小球内皮细胞衰老有保护作用,可以有效减少细胞的衰老程度,保护肾小球内皮细胞的正常功能,增强细胞抗氧化酶活性,拮抗H2O2引起的细胞氧化损伤。同时,Angl可以激活Tie2、ERK1/2的磷酸化进程。然而Ang2对内皮细胞无上述保护作用。
     第三部分血管生成素1对肾小球内皮细胞衰老保护作用的机制探讨
     目的:
     Angl能与Tie2受体结合并活化Tie2受体,诱导磷酸化的ERK1/2表达升高,进一步发挥其对内皮细胞的增殖、粘附等的作用。在第二部分的研究中,我们的研究结果也提示Angl的确可以启动内皮细胞Tie2及ERK1/2的磷酸化过程。Angl对H2O2所诱导的肾小球内皮细胞衰老的保护作用是否是通过激活Tie2-ERK1/2信号通路所致?为了更进一步探讨Angl对肾小球内皮细胞衰老保护作用的机制,我们用Angl的天然拮抗剂Ang2、Tie2受体的特异性抑制剂sTie2-Fc及MAPK信号通路MEK特异性抑制剂PD98059预处理肾小球内皮细胞,以明确Angl对肾小球内皮细胞衰老的保护作用的信号通路。
     方法:
     应用体外细胞培养技术,培养小鼠肾小球内皮细胞,设立正常对照组、H2O2组、Angl组、Ang2+Angl组、sTie2-Fc组、PD98059组进行实验。应用H2O2诱导MGECs衰老,通过p-半乳糖苷酶染色(SA-β-Gal)、流式细胞术检测细胞周期、Western blot检测p16蛋白表达评估细胞衰老指标的变化。应用硝酸还原酶法检测内皮细胞NO的分泌量,ELISA方法检测内皮细胞vWF的分泌量,Matrigel凝胶实验检测内皮细胞血管生成能力,探讨血管生成素对内皮细胞功能的影响。Western blot方法检测Tie2、ERK1/2信号通路的变化。
     结果:
     1. Tie2-ERK1/2通路抑制剂对肾小球内皮细胞衰老指标的影响:与Angl组比较,Ang2+Ang1组、sTie2-Fc组及PD98059组SA-β-Gal阳性细胞数显著增加(Ang2:63.94±2.05, sTie2-Fc:72.56±1.51, PD98059:73.31±2.73 vs.Ang1:18.67±2.73, P<0.05); Ang2、sTie2-Fc及PD98059作用后,细胞周期分布比例仍呈现衰老细胞特征,细胞周期被阻滞于G1期,S期细胞较少,与Angl组相比,差别有统计学意义(P<0.05);Ang2、sTie2-Fc及PD98059能阻断Angl对p16蛋白表达降低的作用(Ang2:58.39±2.02,sTie2-Fc: 61.08±3.10, PD98059: 62.19±3.72vs. Ang1: 21.16±1.11, P<0.05);
     2. Tie2-ERK1/2通路抑制剂对肾小球内皮细胞功能的影响:Ang2、sTie2-Fc及PD98059可以下调Angl对内皮细胞NO分泌的促进作用(Ang2:11.92±0.44, sTie2-Fc: 10.22±0.36,PD98059:10.87±0.66 vs. Ang1: 16.38±0.35,P<0.05);与Angl组相比,予以Ang2、sTie2-Fc及PD98059作用后细胞vWF分泌量显著增加(P<0.05);Ang2+Angl组、sTie2-Fc组及PD98059组细胞血管腔形成能力下降(Ang2: 23.11±2.29, sTie2-Fc: 15.21±3.31,PD98059:18.56±2.36 vs.Angl:57.66±3.17,P<0.05);
     3. Tie2-ERK1/2通路抑制剂对Tie2-ERK1/2通路的影响:Westen blot结果显示Ang2及sTie2-Fc能显著抑制Angl引起的肾小球内皮细胞P-ERK1/2水平的提高(Ang2: 47.12±2.89, sTie2-Fc: 35.62±3.71 vs. Ang1:135.16±2.27,P<0.05);PD98059不能抑制Angl引起的Tie2磷酸化(PD98059:63.72±2.87 vs.Angl:61.25±1.91,P>0.05)
     结论:
     血管生成素样1可能通过Tie2-ERK1/2信号通路而调控过氧化氢诱导的肾小球内皮细胞衰老。
PART I The established model of mouse glomerular endothelial cell senescence induced by hydrogen peroxide
     OBJECTIVE:
     Normal primary cells proliferate a limited number of times in vitro and activate senescence process due to progressive telomere shortening. Furthermore, cells may also undergo acute stress-induced senescence, which could be triggered by cumulative stimuli involving oxidation, ultraviolet(UV) light, toxic compounds, as well as oncogens. Stress induces senescence through telomere-independent mechanisms, and displays all the major characteristics of replicatively senescent cells. The molecular basis of aging in organs is not well established, but organ aging may reflect aspects of cellular senescence involved with molecular pathway changes. In recent years, much attention has been devoted to studying the relevance of cellular senescence to aging and disease. H2O2, a common causative agent of cellular senescence, can produce various types of DNA damage, which represents the type of stress-induced senescence via DNA damage and cannot be rescued by over-expression of telomerase reverse transcriptase(TERT).The purpose of the study is to investigate whether H2O2 can induce mouse glomerular endothelial cells(MGECs) senescence in vitro.
     METHODS:
     The MGECs stimulated with hydrogen peroxide(H2O2) were cultured in vitro,and were devided into control group、H2O2 group. The senescent status of cells were verified by senescence-associated P-Galactosidase (SA-β-Gal) staining. The cell cycle of mouse glomerular endothelial cells was analyzed by flow cytometry. The expression of p16 was detected by Western Blot. The senescent of MGECs which was induced by H2O2, was evaluated according above detection. Furthermore, the apoptosis characteristic of MGECs was observed by Hoechst-33342 staining and flow cytometry.
     RESULTS:
     1. MGECs treated with H2O2 (50μM) for 1 week exhibited an enlarged size and flattened morphology, characteristic of the senescent phenotype of MGECs.
     2. The staining of SA-β-Gal assay show that:there was almost negative expression of SA-P-Gal activity in control group; The effect that H2O2 increased SA-β-gal-positive cells was increased with longer incubating time.With H2O2 treatment, the percentage of SA-β-gal-positive MGECs was increased from 13.12%at 3 days to 70.47%at 7 days.
     3. Through analyzing from cell cycle result, we could conclude that:compared with control group, H2O2-induced senescent cells presented with the classical senescence-related cell cycle dysfunction. H2O2-induced senescence group mitosis is delayed in G1 phase and the cells have a limited capacity to enter S phase (P<0.05).
     4. Western blot data demonstrated that H2O2 induced the significant increasing in induction of p16INK4a(Control:21.09±0.67 vs. H2O2:69.39±4.10).
     5. After hoechest-33342 staining, we could see no apoptosis morphology changes. Furthermore,the result of flow cytometry didn't show typical sub-G1 apoptosis peak. H2O2 did not induce apoptosis (apoptosis rate:3.19±0.49% vs 3.26±0.39%, P>0.05).
     CONCLUSIONS:
     H2O2 can induce mouse glomerular endothelial cells senescence in vitro.MGECs treated with H2O2 (50μM) for 1 week exhibited characteristic of the senescent phenotype of MGECs, increased SA-β-gal-positive cells and the expression of p16INK4a presented with cell cycle G1 arrest. Furthermore, H2O2 did not induce apoptosis. These results indicate that H2O2 can mimic the induction of the cell senescent phenotype.
     PART II Effects of Angiopoietins on the senescence of mouse glomerular endothelial cell induced by hydrogen peroxide
     OBJECTIVE:
     Aging is a normal biological process defined as a form of permanent and irreversible proliferation arrest, with progressive organ modification and ultimately the loss of organ function. The kidney also participates in the aging process of the whole body, and age-associated changes have many implications for nephrology, including the slightly lower level of renal function with normal aging. The vasculature plays a key role in the progression of renal damage in aging, with reduction in glomerular and peritubular capillary density and decreased endothelial proliferative response. However, a direct link between changes in renal capillary endothelium and aging-associated renal disease has not been yet elucidated. The angiopoietins, which regulate the transition between a mature stable vasculature and angiogenic or remodeling vessels, play an important role in vascularization. Angl acts primarily as an agonist ligand of Tie2, which induces Tie2 phosphorylation, stabilizes vascular branch networks, and promotes endothelial cell survival. In contrast, Ang2 is a natural antagonist ligand of Tie2, promoting vascular destabilization by opposing the effects of Ang1. In the second part of this study, we investigated the role of Angl in protecting mouse glomerular endothelial cells from H2O2-induced cellular senescence.,and discuss its preliminary mechanisms.
     METHODS:
     The MGECs were cultured in vitro and devided into control group、H2O2 group、Ang1 group Ang2 group. MGECs were subjected to H2O2 induced senescence, which was evaluated by senescence-associated (3-Galactosidase (SA-P-Gal) staining, cell-cycle analysis and expression of p16. Endothelial cell function was assessed by NO, vWF secretion and capillary-like structure formation. The assays of malonaldehyde (MDA),glutathione(GSH),superoxide dismutase (SOD) and catalase (CAT) in cell lysis were measured by colorimetric method. Western blot were used to locate and quantitate the signal activity of Tie2、ERK1/2.
     RESULTS:
     1. Senescent phenotypes:The percentage of SA-β-gal-positive MGECs was increased with H2O2 treatment. Co-incubation with Angl markedly inhibited the induction of senescence by 51.80%(P<0.05). However, SA-β-Gal activity of MGECs treated with H2O2 in the presence of Ang2 showed no significant change. H2O2 group mitosis is delayed and the cells have a limited capacity to enter S phase. In contrast, Angl treatment induced a dramatic change in this pattern, the G1 population reduced from 84.10%incubated with H2O2 to 74.50%, whereas S populations were increased from 10.88% to 18.89%. No significant difference in this pattern of distribution was observed in cells treated with only Ang2. H2O2 induced the increased induction of p16INK4a, Angl showed 44.30% down-regulated p16INK4a levels in MGECs under H2O2 stimulation. However, under Ang2 treatment conditions, high expression of p16INK4a was also noticeable.
     2. Endothelial cell functions:The mean NO level decreased dramatically in senescence cells in contrast to control. Whereas incubation of MGECs with Angl resulted in a significant increase in the release of NO(15.61±1.61 vs 10.26±0.69, P<0.05). However, there was no significant difference in NO concentration between Ang2 and H2O2 group. Elevated levels of vWF were detected in the culture medium of senescent cells.Treatment of endothelial cells with Angl had a decreased effect on release of vWF into the culture medium(5.13±0.69 vs 9.88±0.53, P<0.05). In contrast, when endothelial cells were treated with Ang2, no difference was detected in the amount of vWF secreted by the senescent cells (Ang2:10.02±0.31, P>0.05) Angl-treated cells formed capillary-like structures more efficiently than senescent cells at base line. In contrast, no significant changes were observed with Ang2.
     3. Oxidative stress:MDA of H2O2 group was significantly higher than that of control group. Whereas incubation of MGECs with Angl resulted in a significant decrease in the release of MDA(H2O2; 10.31±0.22 vs. Ang1; 5.02±0.47, P<0.05). In contrast, when endothelial cells were treated with Ang2, no difference was detected in the amount of MDA. SOD、GSH and CAT of H2O2 group were notably lower in contrast to control. Treatment of endothelial cells with Angl had a increase effect on activity of SOD、GSH and CAT(P<0.05). No significant difference was observed in cells treated with only Ang2(P>0.05).
     4. Tie2-ERKl/2 signaling:Western blot data demonstrated that a dramatic increase of Tie2 tyrosine phosphorylation was detected exposure to Angl, while total Tie2 level was not affected(H2O2:4.12±2.06 vs. Ang1: 71.09±2.15, P<0.05). In contrast, in the H2O2 plus Ang2 group, there was no significant elevation of Tie2 phosphorylation level (Ang2:16.07±3.16, P>0.05). Angl caused significant elevation of phosphorylated but not total-ERK levels(P<0.05). However, Ang2 could not elicit ERK activation.
     CONCLUSIONS:
     The present studies suggest that Angl inhibits H2O2-induced senescence in mouse glomerular endothelial cells。Moreover, Angl regulated the secretion and capillary-like structure formation of endothelial cells with aging. Improvement of oxidative stress may also be involved. Angl causes significant elevation of phosphorylated Tie2 and ERK1/2 levels. However, under Ang2 treatment conditions, no significant difference was observed in cells treated with H2O2.
     PARTⅢThe mechanisms of angiopoietin-1 inhibits mouse glomerular endothelial cell senescence
     METHODS:
     The MGECs were cultured in vitro and devided into control group、H2O2 group、Ang1 group、Ang2+Ang1 group、sTie2-Fc group、PD98059 group. MGECs were subjected to H2O2 induced senescence, which was evaluated by senescence-associatedβ-Galactosidase (SA-β-Gal) staining, cell-cycle analysis and expression of p16. Endothelial cell function was assessed by NO, vWF secretion and capillary-like structure formation. Western blot were used to locate and quantitate the signal activity of Tie2、ERK1/2.
     OBJECTIVE:
     Angl acts primarily as an agonist ligand of Tie2, which induces ERK1/2 phosphorylation, stabilizes vascular branch networks, and promotes endothelial cell survival. In the second part of this study, we have found Ang1could significant elevated phosphorylation of Tie2 and ERK1/2 levels. However the question arose as to whether Tie2-ERK1/2 signal was involved in the inhibition of cellular senescence induced by Ang1 in MGECs. To further investigated the signaling pathway of Tie2 in mediating the effect of ERK1/2 in mouse glomerular endothelial cells during aging, cells were pretreated with Ang2, Tie2 antagonist (sTie2-Fc) or a specific ERK1/2 inhibitor(PD98059) before adding Ang1.
     RESULTS:
     1. Senescent phenotypes:Compaired with Ang1, the percentage of SA-β-gal-positive MGECs was increased with Ang2、sTie2-Fc and PD98059 treatment(Ang2:63.94±2.05, sTie2-Fc:72.56±1.51, PD98059:73.31±2.73 vs. Ang1:18.67±2.73, P<0.05). MGECs treated with sTie2-Fc, Ang2 and PD98059 subsequently exhibited the same senescence-associated morphologies as H2O2-induced senescence cells. Cell cyle is delayed and the cells have a limited capacity to enter S phase. Angl showed down-regulated p16INK4a levels in MGECs under H2O2 stimulation. However, such effects could be completely eliminated either by sTie2-Fc, Ang2 or by PD98059(Ang2:58.39±2.02, sTie2-Fc:61.08±3.10, PD98059:62.19±3.72vs. Ang1:21.16±1.11, P<0.05).
     2. Endothelial cell functions:Angl resulted in a significant increase in the release of NO. However, this change was completely blocked by treatment with Ang2, sTie2-Fc and PD98059(Ang2:11.92±0.44, sTie2-Fc:10.22±0.36, PD98059:10.87±0.66 vs. Ang1:16.38±0.35, P<0.05). Treatment of endothelial cells with Ang2, sTie2-Fc and PD98059 had a increased effect on release of vWF into the culture medium (P<0.05). Cells incubated with Ang2, sTie2-Fc or PD98059 plus Angl failed to stimulate capillary-like structure formation(Ang2:23.11±2.29, sTie2-Fc:15.21±3.31, PD98059:18.56±2.36 vs.Ang1:57.66±3.17, P<0.05).
     3. Tie2-ERK1/2 signaling:Western blot data demonstrated that sequestering Angl by Ang2 and sTie2-Fc blocked ERK phosphorylation(Ang2: 47.12±2.89, sTie2-Fc:35.62±3.71 vs. Angl:135.16±2.27, P<0.05). Furthermore, when a specific ERK inhibitor PD98059 was used in combination with Ang1, the same intense bands corresponding to phosphorylation of Tie2 tyrosine were observed as cells treated with Ang1(Ang1:61.25±1.91, vs.PD98059:63.72±2.87, P>0.05).
     CONCLUSIONS:
     The present studies suggest that Angl inhibits H2O2-induced senescence in mouse glomerular endothelial cells via the Angl-Tie2-ERKl/2 signaling pathway.
引文
1 Ferder LF, Inserra F, Basso N:Effects of renin-angiotensin system blockade in the aging kidney. Exp Gerontol 2003;38:237-244.
    2 Silva FG:The aging kidney:a review--part i. Int Urol Nephrol 2005;37:185-205.
    3 Silva FG:The aging kidney:a review-part ii. Int Urol Nephrol 2005;37:419-432.
    4 Melk A:Senescence of renal cells:molecular basis and clinical implications. Nephrol Dial Transplant 2003; 18:2474-2478.
    5 Kang DH, Joly AH, Oh SW, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ:Impaired angiogenesis in the remnant kidney model:i. potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 2001;12:1434-1447.
    6 Ohashi R, Kitamura H, Yamanaka N:Peritubular capillary injury during the progression of experimental glomerulonephritis in rats. J Am Soc Nephrol 2000; 11:47-56.
    7 Choi YJ, Chakraborty S, Nguyen V, Nguyen C, Kim BK, Shim SI, Suki WN, Truong LD:Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney:altered expression of vascular endothelial growth factor. Hum Pathol 2000;31:1491-1497.
    8 Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes J, Hugo C, Kerjaschki D, Schreiner GF, Johnson RJ: Impaired angiogenesis in the aging kidney:vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 2001;37:601-611.
    9 Anderson S, Brenner BM:Progressive renal disease:a disorder of adaptation. Q J Med 1989;70:185-189.
    10 Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I: Endothelial cell senescence in human atherosclerosis:role of telomere in endothelial dysfunction. Circulation 2002;105:1541-1544.
    11 Munzel T, Jr Keaney JF:Are ace inhibitors a "magic bullet" against oxidative stress?. Circulation 2001;104:1571-1574.
    12 Szmitko PE, Wang CH, Weisel RD, Jeffries GA, Anderson TJ, Verma S: Biomarkers of vascular disease linking inflammation to endothelial activation: part ii. Circulation 2003; 108:2041-2048.
    13 Rafii S, Lyden D:Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003;9:702-712.
    14 Shimizu A, Kitamura H, Masuda Y, Ishizaki M, Sugisaki Y, Yamanaka N: Rare glomerular capillary regeneration and subsequent capillary regression with endothelial cell apoptosis in progressive glomerulonephritis. Am J Pathol 1997;151:1231-1239.
    15 Kitamura H, Shimizu A, Masuda Y, Ishizaki M, Sugisaki Y, Yamanaka N: Apoptosis in glomerular endothelial cells during the development of glomerulosclerosis in the remnant-kidney model. Exp Nephrol 1998;6:328-336.
    16 Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ:Impaired angiogenesis in the remnant kidney model:ii. vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 2001;12:1448-1457.
    17 Eklund L, Olsen BR:Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 2006;312:630-641.
    18 Brindle NP, Saharinen P, Alitalo K:Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 2006;98:1014-1023.
    19 Satchell SC, Harper SJ, Tooke JE, Kerjaschki D, Saleem MA, Mathieson PW: Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. J Am Soc Nephrol 2002; 13:544-550.
    20 Yuan HT, Tipping PG, Li XZ, Long DA, Woolf AS:Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. Kidney Int 2002;61:2078-2089.
    21 Rizkalla B, Forbes JM, Cao Z, Boner G, Cooper ME:Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes:role of the renin-angiotensin system. J Hypertens 2005;23:153-164.
    22郭洁,陈靖,张敏敏,钟建泳,郝传明,顾勇:血管新生调控因子及其受体随增龄在小鼠肾组织内的表达.中华肾脏病杂志2009;25:698-705.
    23 Troen BR:The biology of aging. Mt Sinai J Med 2003;70:3-22.
    24 HAYFLICK L:The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37:614-636.
    25 Li J, Zhang Z, Tong T:The proliferative response and anti-oncogene expression in old 2bs cells after growth factor stimulation. Mech Ageing Dev 1995;80:25-34.
    26 Sugimoto M, Yamashita R, Ueda M:Telomere length of the skin in association with chronological aging and photoaging. J Dermatol Sci 2006;43:43-47.
    27 Loayza D, de Lange T:Pot1 as a terminal transducer of trf1 telomere length control. Nature 2003;423:1013-1018.
    28 di d'Adda FF, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP:A dna damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194-198.
    29 Ben-Porath I, Weinberg RA:The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005;37:961-976.
    30 Toussaint O, Royer V, Salmon M, Remacle J:Stress-induced premature senescence and tissue ageing. Biochem Pharmacol 2002;64:1007-1009.
    31 Harman D:The free radical theory of aging. Antioxid Redox Signal 2003;5:557-561.
    32 Shringarpure R, Davies KJ:Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 2002;32:1084-1089.
    33 Droge W:Oxidative stress and aging. Adv Exp Med Biol 2003;543:191-200.
    34 Duan J, Duan J, Zhang Z, Tong T:Irreversible cellular senescence induced by prolonged exposure to h2o2 involves dna-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol 2005;37:1407-1420.
    35 Gorbunova V, Seluanov A, Pereira-Smith OM:Expression of human telomerase (htert) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 2002;277:38540-38549.
    36 Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S:Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res 2004;94:768-775.
    37 Akis N, Madaio MP:Isolation, culture, and characterization of endothelial cells from mouse glomeruli. Kidney Int 2004;65:2223-2227.
    38 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith 0, et A:A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995;92:9363-9367.
    39 Kurz DJ, Decary S, Hong Y, Erusalimsky JD:Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000;113 (Pt 20):3613-3622.
    40 Blagosklonny MV, Pardee AB:The restriction point of the cell cycle. Cell Cycle 2002;1:103-110.
    41 Boonstra J:Identification of a restriction point at the m/gl transition during the ongoing cell cycle. Adv Enzyme Regul 2007;47:208-221.
    42 Jensen MR, Audolfsson T, Factor VM, Thorgeirsson SS:In vivo expression and genomic organization of the mouse cyclin i gene (ccni). Gene 2000;256:59-67.
    43 Duan J, Zhang Z, Tong T:Senescence delay of human diploid fibroblast induced by anti-sense pl6ink4a expression. J Biol Chem 2001;276:48325-48331.
    44 Collado M, Blasco MA, Serrano M:Cellular senescence in cancer and aging. Cell 2007;130:223-233.
    45 Sandhu C, Peehl DM, Slingerland J:P16ink4a mediates cyclin dependent kinase 4 and 6 inhibition in senescent prostatic epithelial cells. Cancer Res 2000;60:2616-2622.
    46 Wang W, Wu J, Zhang Z, Tong T:Characterization of regulatory elements on the promoter region of p16(ink4a) that contribute to overexpression of p16 in senescent fibroblasts. J Biol Chem 2001;276:48655-48661.
    47 Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD:Angiopoietins 3 and 4:diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 1999;96:1904-1909.
    48 Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A:Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and i1-8 production. Br J Pharmacol 2003;139:329-336.
    49 Fiedler U, Krissl T, Koidl S, Weiss C, Koblizek T, Deutsch U, Martiny-Baron G, Marme D, Augustin HG:Angiopoietin-1 and angiopoietin-2 share the same binding domains in the tie-2 receptor involving the first ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 2003;278:1721-1727.
    50 Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY:Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/akt signal transduction pathway. Circ Res 2000;86:24-29.
    51 Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG:Tyrosine 1101 of tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and akt. Mol Cell Biol 1998;18:4131-4140.
    52 Peters KG, Kontos CD, Lin PC, Wong AL, Rao P, Huang L, Dewhirst MW, Sankar S:Functional significance of tie2 signaling in the adult vasculature. Recent Prog Horm Res 2004;59:51-71.
    53 Haggstrom RS, Johansson A, Franck LI, Wikstrom P, Bergh A:Localized expression of angiopoietin 1 and 2 may explain unique characteristics of the rat testicular micro vasculature. Biol Reprod 2003;69:1231-1237.
    54 Satchell SC, Mathieson PW:Angiopoietins:microvascular modulators with potential roles in glomerular pathophysiology.;:,2003,16, pp 168-178.
    55 Shimizu A, Masuda Y, Mori T, Kitamura H, Ishizaki M, Sugisaki Y, Fukuda Y:Vascular endothelial growth factor 165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 2004; 15:2655-2665.
    56 Satchell SC, Anderson KL, Mathieson PW:Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol 2004;15:566-574.
    57 Schrijvers BF, Flyvbjerg A, de Vriese AS:The role of vascular endothelial growth factor (vegf) in renal pathophysiology. Kidney Int 2004;65:2003-2017.
    58 Suga S, Kim YG, Joly A, Puchacz E, Kang DH, Jefferson JA, Abraham JA, Hughes J, Johnson RJ, Schreiner GF:Vascular endothelial growth factor (vegfl21) protects rats from renal infarction in thrombotic microangiopathy. Kidney Int 2001;60:1297-1308.
    59 Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 2005;85:1292-1307.
    60 Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME:The angiopoietin/tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 2008;49:2163-2171.
    61 Frank PG, Woodman SE, Park DS, Lisanti MP:Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 2003;23:1161-1168.
    62 Holmang A, Jennische E, Bjorntorp P:Rapid formation of capillary endothelial cells in rat skeletal muscle after exposure to insulin. Diabetologia 1996;39:206-211.
    63 van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF:Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000;192:1731-1744.
    64 Saharinen P, Kerkela K, Ekman N, Marron M, Brindle N, Lee GM, Augustin H, Koh GY, Alitalo K:Multiple angiopoietin recombinant proteins activate the tie1 receptor tyrosine kinase and promote its interaction with tie2. J Cell Biol 2005;169:239-243.
    65 Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ:Identification of tek/tie2 binding partners. binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 1999;274:30896-30905.
    66 Cascone I, Audero E, Giraudo E, Napione L, Maniero F, Philips MR, Collard JG, Serini G, Bussolino F:Tie-2-dependent activation of rhoa and rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood 2003; 102:2482-2490.
    67 Lobov IB, Brooks PC, Lang RA:Angiopoietin-2 displays vegf-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 2002;99:11205-11210.
    68 Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG:The tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005;118:771-780.
    69 Murray BW, Padrique ES, Pinko C, McTigue MA:Mechanistic effects of autophosphorylation on receptor tyrosine kinase catalysis:enzymatic characterization of tie2 and phospho-tie2. Biochemistry-Us 2001;40:10243-10253.
    70 Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD:Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 1997;277:55-60.
    71 Rupin A, Paysant J, Sansilvestri-Morel P, Lembrez N, Lacoste JM, Cordi A, Verbeuren TJ:Role of nadph oxidase-mediated superoxide production in the regulation of e-selectin expression by endothelial cells subjected to anoxia/reoxygenation. Cardiovasc Res 2004;63:323-330.
    72 Kubes P, Suzuki M, Granger DN:Nitric oxide:an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991;88:4651-4655.
    73 Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding QF, Kamalanathan S, Hattori Y, Ignarro LJ, Iguchi A:Endothelial cellular senescence is inhibited by nitric oxide:implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci U S A 2006; 103:17018-17023.
    74 Brock CS, Lee SM:Anti-angiogenic strategies and vascular targeting in the treatment of lung cancer. Eur Respir J 2002;19:557-570.
    75 Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M:Endoglin (cd105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 2003;22:6557-6563.
    76 Sato Y, Shimada T, Takaki R:Autocrinological role of basic fibroblast growth factor on tube formation of vascular endothelial cells in vitro. Biochem Biophys Res Commun 1991;180:1098-1102.
    77 Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N:Angiogenesis assays: a critical overview. Clin Chem 2003;49:32-40.
    78 Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG:Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486-489.
    79 Armstrong RN:Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 1997; 10:2-18.
    80 van Luyn MJ, Muller M, Renes J, Meijer C, Scheper RJ, Nienhuis EF, Mulder NH, Jansen PL, de Vries EG:Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int J Cancer 1998;76:55-62.
    81 van Bladeren PJ:Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 2000;129:61-76.
    82 Del RD, Stewart AJ, Pellegrini N:A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005;15:316-328.
    83 Abramov AY, Canevari L, Duchen MR:Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of nadph oxidase. J Neurosci 2004;24:565-575.
    84 Brindle NP, Saharinen P, Alitalo K:Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 2006;98:1014-1023.
    85 Liu S, Yu D, Xu ZP, Riordan JF, Hu GF:Angiogenin activates erkl/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2001;287:305-310.
    86 Yoon MJ, Cho CH, Lee CS, Jang IH, Ryu SH, Koh GY:Localization of tie2 and phospholipase d in endothelial caveolae is involved in angiopoietin-1-induced mek/erk phosphorylation and migration in endothelial cells. Biochem Biophys Res Commun 2003;308:101-105.
    87 Bai Y, Meng Z, Cui M, Zhang X, Chen F, Xiao J, Shen L, Zhang Y:An angl-tie2-pi3k axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience 2009;160:371-381.
    88 Chong H, Vikis HG, Guan KL:Mechanisms of regulating the raf kinase family. Cell Signal 2003;15:463-469.
    89 Cobb MH, Goldsmith EJ:How map kinases are regulated. J Biol Chem 1995;270:14843-14846.
    90 Ferrer I, Blanco R, Carmona M, Puig B:Phosphorylated mitogen-activated protein kinase (mapk/erk-p), protein kinase of 38 kda (p38-p), stress-activated protein kinase (sapk/jnk-p), and calcium/calmodulin-dependent kinase ii (cam kinase ii) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 2001;108:1397-1415.
    91 Arbabi S, Maier RV:Mitogen-activated protein kinases. Crit Care Med 2002;30:S74-S79.
    92 Harfouche R, Gratton JP, Yancopoulos GD, Noseda M, Karsan A, Hussain SN:Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. Faseb J 2003;17:1523-1525.
    93 Tournaire R, Simon MP, le NF, Eichmann A, England P, Pouyssegur J:A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by tie2 receptor. Embo Rep 2004;5:262-267.
    94 Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T: Angiopoietin-1 promotes lyve-1-positive lymphatic vessel formation. Blood 2005;105:4649-4656.
    1 Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL:Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry-Us 1985;24:5480-5486.
    2 Conklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, Walker KM, Chen LH, Wattler S, Nehls M, Lewis KB:Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 1999;62:477-482.
    3 Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD:Isolation of angiopoietin-1, a ligand for the tie2 receptor, by secretion-trap expression cloning. Cell 1996;87:1161-1169.
    4 Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, Kuriyama T, Cheng SH, Gregory RJ, Jiang C:Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 2003;93:664-673.
    5 Pichiule P, Chavez JC, LaManna JC:Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 2004;279:12171-12180.
    6 Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M:High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of msin3a. J Biol Chem 2007;282:31038-31045.
    7 Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y:Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood vessel formation. Nature 1995;376:70-74.
    8 Marron MB, Hughes DP, Edge MD, Forder CL, Brindle NP:Evidence for heterotypic interaction between the receptor tyrosine kinases tie-1 and tie-2. J Biol Chem 2000;275:39741-39746.
    9 Macdonald PR, Progias P, Ciani B, Patel S, Mayer U, Steinmetz MO, Kammerer RA:Structure of the extracellular domain of tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope. J Biol Chem 2006;281:28408-28414.
    10 Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn S Y, Kim HZ, Lee GM, Koh GY:Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate tie2. J Biol Chem 2005;280:20126-20131.
    11 Jones N, Voskas D, Master Z, Sarao R, Jones J, Dumont DJ:Rescue of the early vascular defects in tek/tie2 null mice reveals an essential survival function. Embo Rep 2001;2:438-445.
    12 Takagi H, Koyama S, Seike H, Oh H, Otani A, Matsumura M, Honda Y: Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 2003;44:393-402.
    13 Chung NA, Makin AJ, Lip GY:Measurement of the soluble angiopoietin receptor tie-2 in patients with coronary artery disease:development and application of an immunoassay. Eur J Clin Invest 2003;33:529-535.
    14 Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD:Requisite role of angiopoietin-1, a ligand for the tie2 receptor, during embryonic angiogenesis. Cell 1996;87:1171-1180.
    15 Ward NL, van Slyke P, Sturk C, Cruz M, Dumont DJ:Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn 2004;229:500-509.
    16 Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD:Increased vascularization in mice overexpressing angiopoietin-1. Science 1998;282:468-471.
    17 Hammes HP, Lin J, Wagner P, Feng Y, Vom HF, Krzizok T, Renner 0, Breier G, Brownlee M, Deutsch U:Angiopoietin-2 causes pericyte dropout in the normal retina:evidence for involvement in diabetic retinopathy. Diabetes 2004;53:1104-1110.
    18 Shimoda H, Bernas MJ, Witte MH, Gale NW, Yancopoulos GD, Kato S: Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 2007;328:329-337.
    19 Hackett SF, Wiegand S, Yancopoulos G, Campochiaro PA:Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 2002; 192:182-187.
    20 Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY:Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/akt signal transduction pathway. Circ Res 2000;86:24-29.
    21 Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN:Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 2002;64:135-147.
    22 Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC:Angiopoietin-1 inhibits endothelial cell apoptosis via the akt/survivin pathway. J Biol Chem 2000;275:9102-9105.
    23 Harfouche R, Gratton JP, Yancopoulos GD, Noseda M, Karsan A, Hussain SN:Angiopoietin-1 activates both anti-and proapoptotic mitogen-activated protein kinases. Faseb J 2003;17:1523-1525.
    24 Kanda S, Miyata Y, Mochizuki Y, Matsuyama T, Kanetake H:Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer Res 2005;65:6820-6827.
    25 Gerhardt H, Betsholtz C:Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003;314:15-23.
    26 Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K: Angiopoietins assemble distinct tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 2008; 10:527-537.
    27 Iivanainen E, Nelimarkka L, Elenius V, Heikkinen SM, Junttila TT, Sihombing L, Sundvall M, Maatta JA, Laine VJ, Yla-Herttuala S, Higashiyama S, Alitalo K, Elenius K:Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding egf-like growth factor. Faseb J 2003;17:1609-1621.
    28 Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC:Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 2006;108:1260-1266.
    29 Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, Takagi H, Honda Y, Wiegand SJ, Yancopoulos GD, Nishikawa S:Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 2002;110:1619-1628.
    30 Nishishita T, Lin PC:Angiopoietin 1, pdgf-b, and tgf-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 2004;91:584-593.
    31 Fujikawa K, de Aos SI, Jain SK, Presman E, Christensen RA, Varticovski L: Role of pi 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 1999;253:663-672.
    32 Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T, Shibuya M, Takakura N, Koh GY, Mochizuki N:Differential function of tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 2008;10:513-526.
    33 Jones N, Dumont DJ:The tek/tie2 receptor signals through a novel dok-related docking protein, dok-r. Oncogene 1998;17:1097-1108.
    34 Jones N, Chen SH, Sturk C, Master Z, Tran J, Kerbel RS, Dumont DJ:A unique autophosphorylation site on tie2/tek mediates dok-r phosphotyrosine binding domain binding and function. Mol Cell Biol 2003;23:2658-2668.
    35 Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, Ahn BC, Koh GY: Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 2000;86:952-959.
    36 Tournaire R, Simon MP, le NF, Eichmann A, England P, Pouyssegur J:A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by tie2 receptor. Embo Rep 2004;5:262-267.
    37 Zhu WH, Han J, Nicosia RF:Requisite role of p38 mapk in mural cell recruitment during angiogenesis in the rat aorta model. J Vasc Res 2003;40:140-148.
    38 Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C: Protective role of angiopoietin-1 in endotoxic shock. Circulation 2005;111:97-105.
    39 Gavard J, Patel V, Gutkind JS:Angiopoietin-1 prevents vegf-induced endothelial permeability by sequestering src through mdia. Dev Cell 2008;14:25-36.
    40 Hughes DP, Marron MB, Brindle NP:The antiinflammatory endothelial tyrosine kinase tie2 interacts with a novel nuclear factor-kappab inhibitor abin-2. Circ Res 2003;92:630-636.
    41 Tadros A, Hughes DP, Dunmore BJ, Brindle NP:Abin-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. Blood 2003;102:4407-4409.
    42 Siner JM, Bhandari V, Engle KM, Elias JA, Siegel MD:Elevated serum angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 2009;31:348-353.
    43 Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I, Sotiropoulou C, Zakynthinos S, Armaganidis A, Papapetropoulos A, Roussos C: Angiopoietin-2 is increased in severe sepsis:correlation with inflammatory mediators. Crit Care Med 2007;35:199-206.
    44 Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG:Angiopoietin-2 sensitizes endothelial cells to tnf-alpha and has a crucial role in the induction of inflammation. Nat Med 2006;12:235-239.
    45 Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G, O'Brien-Jenkins A, Randall TC, Rubin SC, Coukos G:Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 2003;63:3403-3412.
    46 Oliner J, Min H, Leal J, Yu D, Rao S, You E, Tang X, Kim H, Meyer S, Han SJ, Hawkins N, Rosenfeld R, Davy E, Graham K, Jacobsen F, Stevenson S, Ho J, Chen Q, Hartmann T, Michaels M, Kelley M, Li L, Sitney K, Martin F, Sun JR, Zhang N, Lu J, Estrada J, Kumar R, Coxon A, Kaufman S, Pretorius J, Scully S, Cattley R, Payton M, Coats S, Nguyen L, Desilva B, Ndifor A, Hayward I, Radinsky R, Boone T, Kendall R:Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 2004;6:507-516.
    47 Helfrich I, Edler L, Sucker A, Thomas M, Christian S, Schadendorf D, Augustin HG:Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res 2009;15:1384-1392.
    48 Kuboki S, Shimizu H, Mitsuhashi N, Kusashio K, Kimura F, Yoshidome H, Ohtsuka M, Kato A, Yoshitomi H, Miyazaki M:Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 2008;23:el57-el64.
    49 Machein MR, Knedla A, Knoth R, Wagner S, Neuschl E, Plate KH: Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 2004;165:1557-1570.
    50 Shim WS, Teh M, Mack PO, Ge R:Inhibition of angiopoietin-l expression in tumor cells by an antisense rna approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 2001;94:6-15.
    51 Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY: Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbetal integrin and focal adhesion kinase signaling pathway. Cancer Res 2006;66:775-783.
    52 Dallabrida SM, Ismail NS, Pravda EA, Parodi EM, Dickie R, Durand EM, Lai J, Cassiola F, Rogers RA, Rupnick MA:Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. Faseb J 2008;22:3010-3023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700