高抗凝、可诱导再生小口径人工血管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的血管疾病是世界上发病率最高的疾病之一,而血管移植术是其目前主要的治疗手段。临床上应用的血管移植术材料主要来源为自体血管、异体血管和人工材料。目前,大、中口径人工血管移植应用效果较好,而小口径移植血管(直径<6mm)易发生吻合口内膜增生以及血栓形成,远期通畅率不理想。血管组织工程技术为血管移植术所需材料、特别是小口径血管,提供了新途径。但目前,构建小口径组织工程化血管仍不尽如人意,如在人工血管内壁种植血管内皮细胞周期较长,短期内不能形成完整内膜,无法满足临床需求,而且同样存在远期通畅率不理想等问题。为此本课题将新鲜牛心包用于体外实验研究,将猪来源小口径血管用于体内实验研究,应用组织工程中的脱细胞技术和化学交联技术进行预处理,再进行肝素结合以及负载生长因子等改性处理,以期短期高效地制备出具有抗凝血活性、可诱导自体内皮再生的小口径人工血管。
     方法(一)材料前期处理:反复冻融+TritonX-100联合作用对新鲜牛心包膜进行脱细胞处理,行HE染色后光镜下观察脱细胞效果;采用碳化二亚胺(EDC)作为交联剂,交联脱细胞牛心包膜,并通过生物力学检测、体外胶原酶降解实验以及变性温度测试考察交联程度。(二)材料表面肝素化处理,采用三种途径负载肝素:(1)EDC共价键合肝素;(2)聚乙烯亚胺(PEI, MW=1800D, 10kD,20kD)离子结合肝素;(3) EDC-PEI共价-离子联合负载肝素,即在EDC共价键合肝素基础上再采用PEI离子结合肝素。采用电感耦合等离子体质谱仪(ICP-MS)和红外光谱评价材料负载肝素情况,采用接触角测量仪评价材料表面的亲疏水性,检测肝素化材料的含水量,并通过溶血试验、血小板粘附实验、抗凝血时间、复钙时间及细胞毒性试验评价材料的血液相容性及细胞相容性。(三)肝素化材料负载血管内皮细胞生长因子(VEGF165)实验,分别考察EDC共价键合肝素、PEI离子结合肝素以及共价-离子联合肝素化材料对碘标记VEGF165(125I-VEGF165)的控制释放能力,并进行促血管内皮细胞增殖实验。(四)将筛选出的最佳肝素化方式运用到小口径异种血管的表面改性,通过对犬实施血管置换手术观察这种小口径异种血管的可行性。
     结果(一)光镜下观察发现,材料中的细胞脱除彻底,细胞外基质形态良好,结构完整,排列有序,表明反复冻融+TritonX-100联合作用是一种有效、经济、快捷的脱细胞方法。脱细胞基质经EDC交联处理后,力学性能及变性温度较新鲜牛心包显著提高且具有良好的抗降解性能。
     (二)PEI离子结合肝素量与结合层数呈正相关,可通过调节结合层数达到所需肝素量要求,而EDC共价键合肝素量为定值,与PEI离子结合肝素层数达到18层左右时的肝素量相当。此外,采用三种分子量的PEI分别进行离子结合15层肝素处理,含水量及接触角测试结果表明PEI1800D处理组含水能力和亲水性能均优于PEI10kD、PEI20kD处理组;溶血试验中,PEI1800D溶血率为2.66%,PEI10kD溶血率为5.02%,PEI20kD溶血率为5.58%,表明PEI1800D溶血试验合格。通过上述实验筛选出PEI1800D作为阳离子剂进行后续实验。分别对交联对照组、EDC共价键合肝素组、PEI1800D离子结合肝素组、EDC-PEI1800D联合负载肝素组进行溶血试验、血小板粘附、凝血时间、复钙时间测试,发现EDC共价键合肝素组溶血试验不合格;EDC-PEI1800D联合负载肝素组抗凝血效果最佳,经过长时间生理盐水浸泡(15d),该组抗凝血性能保持最好。细胞毒性试验中,PEI1800D离子结合肝素组为0.5级,EDC-PEI1800D联合负载肝素组为1.0级,细胞毒性试验合格,优于EDC共价键合肝素组的1.3级。
     (三)肝素化材料对VEGF165控释实验结果显示,EDC共价键合肝素对VEGF165的控释力优于PEI1800D离子结合肝素组,验证了共价键合稳定性高于离子结合方式,因此,采用EDC-PEI联合负载肝素方式可以弥补单纯使用离子结合肝素稳定性差的缺点。内皮细胞增殖实验中,EDC-PEI1800D联合负载肝素结合VEGF165组促细胞增殖力最好。
     (四)结合VEGF165的EDC-PEI1800D联合肝素化小口径血管移植后,短期观察通畅效果良好,需要进一步长期观察。
     结论EDC-PEI1800D联合负载肝素结合VEGF165方式具有良好的抗凝血性、促血管内皮细胞增殖能力,同时具有一定的降解性能和适当的力学性能,制备周期短,冻干灭菌后可室温长期保存,为小口径人工血管尽快适应临床要求提供了新的血管制备途径。
Objective:Treatment of obstructive atherosclerotic disease, which is a major cause of mortality and morbidity in the world, may involve replacement and bypassing of affected arteries using autologous, allogenic and synthetic vascular grafts. Although vascular grafts have been used successfully to replace large-diameter blood vessels, the long term patency of small-diameter (<6mm) vascular grafts is still disappointing, primarily due to stenosis and thrombus formation. Vascular tissue engineering has provided new approaches for implantation, especially small-diameter vascular grafts. Vascular grafts with a confluent lining of endothelial cells can be obtained after expansion of cell numbers by cell culture in vitro. Drawbacks of this approach are the time interval between the need of an endothelialized vascular graft and its availability, as well as the increased risk of bacterial infection, limiting its use to non-emergency situations. In this study, decellularized fresh specimens of bovine pericardiums in vitro and pig small-diameter blood vessels in vivo were studied with respect to crosslinking, heparinization and vascular endothelial cell growth factor (VEGF) binding and release, in order to produce high-performance small-diameter artificial blood vessels with highly anticoagulant property and ability to induce regeneration in short time.
     Methods:1 Matrix preparation:Fresh specimens of bovine pericardiums were treated by repeatedly freezing and thawing+TritonX-100. Tissue samples were then observed by HE staining to confirm the removal of cells. Acellular tissue samples were crosslinked by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS),and the content of crosslink was detected by mechanical properties, in vitro degradation by collagenase and the shrinkage temperature indicating the resistance against thermal denaturation.
     2 Heparin immobilization,3 methods:(1) Heparinized EDC treated acellular tissue samples; (2) Heparinized poly(ethyleneimine) (PEI, MW=1800D, 10kD,20kD) treated acellular tissue samples; (3) Heparinized EDC-PEI treated acellular tissue samples. Determination of immobilized heparin was tested by ICP-MS and FTIR; the surface wettability was tested by contact angle; the moisture uptake was analyzed; cell and blood compatibility were evaluated by cytotoxic test, hemolysis test, platelet attachment test, PT/APTT and recalcification time.
     3 VEGF165 labeling and binding:VEGF165 was labeled with 125I in comparison of EDC treated group, PEI treated group and EDC-PEI treated group in order to observe the binding and release of VEGF165. Proliferation of human umbilical vein endothelial cells was tested.
     4 Small-diameter vascular xenografts were modified by the best heparinization way and implanted in canine left carotid artery to evaluate the feasibility.
     Results:1 Histological analysis revealed that repeatedly freezing and thawing +TritonX-100 resulted into a complete loss of cellular structures and no loss or disruption of extracellular matrix. This suggested that it was an effective, economic, fast decellularization method. Mechanical properties and heat shrinkage temperature were greater in matrix crosslinked by EDC than that in fresh specimens of bovine pericardiums, and had the perfect anti-degradeation function.
     2 Amount of heparin with PEI was increasing by multilayers. Different multilayers would produce different amount of heparin. Heparin immobilized by EDC equaled to heparin produced by 18 multilayers. Heparin was treated by 15 multilayers with 3 MW of PEI, moisture uptake and contact angle tests revealed that wettability and hydrophilia abiltity were greater in PEI1800D treatment group than that in PEI10kD and PEI20kD group. In hemolysis test, hemolysis ratio was 2.66% in PEI1800D treatment group,5.02% in PEIlOkD treatment group,5.58% in PEI20kD treatment group. These revealed that only PEI1800D treatment group was qualification. Hemolysis test, platelet attachment, PT/APTT and recalcification time were tested in control group, EDC-Hep group, PEI1800D-Hep group and EDC-PEI1800D-Hep group, confirmed that anticoagulant properties were the best in EDC-PEI1800D-Hep group during immersed in saline for 15 days. In cytotoxic test, PEI1800D-Hep group was 0.5 degree, EDC-PEI1800D-Hep group was 1.0 degree, EDC-Hep group was 1.3 degree. These suggested that PEI1800D-Hep group and EDC-PEI1800D-Hep group were better than EDC-Hep group.
     3 Through the results of binding and release of VEGF165 from heparized materials, we could make conclusion that controlled release of VEGF165 from EDC-Hep group was better than that of PEI-Hep group, which confirmed the stability of heparin was better in crosslinking. Therefore, the stability of heparin in EDC-PEI1800D-Hep group was satisfactory too. Proliferation of human umbilical vein endothelial cells in EDC-PEI1800D-Hep group was the best.
     4 EDC-PEI1800D-Hep grafts binding VEGF165 were implanted in canine left carotid artery. All grafts were not occluded in short time. We should observe continuously.
     Conclusions:Fresh exogenic tissue, binding heparin and VEGF165 with EDC-PEI1800D, had better anticoagulant properties, proliferation of vascular endothelial cells, mechanical properties and anti-degradeation function. Period of preparation was short, and we could make conservation after freezing and sterilization for a long time. These results demonstrated that these small-diameter artificial blood vessels with highly anticoagulant property and ability to induce regeneration would be applied in clinical settings in future.
引文
[1]Nalysnyk L,Fahrbach K,Reynolds MW,et al.Adverse events in coronary artery bypass graft (CABG) trials:a systematic review and analysis.Heart,2003,89(1):767-772
    [2]Jeschke MG,Hermanutz V,Wolf SE,et al.Polyurethane vascular prostheses decrease neointimal formation compared with expanded polytetrafluoroethylene[J].J Vasc Surg.1999,29(1):168-176.
    [3]Alok Tiwari,Henryk Salacinski,Alexander M.Seifalian and George Hamilton.New prostheses for use in bypass grafts with special emphasis on polyurethanes[J].Card Sur,2002,10(3):191-197..
    [4]Conklin BS,Richter ER,Kreutziger KL,et al.Development and evaluation of a novel decellularized vascular xenograft.Med Eng Phy,2002,24:173-183.
    [5]Lu Qinjin,Ganesan K,Dan TS,et al.Novel porous aortic elastin and collagen scaffolds for tissue engineering[J].Biomaterials.2004,25:5227-5237.
    [6]Schenke-Layland K,Vasilevski O,Opitz F,et al.Impact of decellularization of xenogeneic tissue on intracellular matrix integrity for tissue engineering of heart valves[J].J Structural Biology.2003,143:201-208.
    [7]Peter L,Gerd J,Stefan M.Autologous endothelialized vein allograft:a solution in the search for small-caliber grafts in coronary artery bypass graft operations[J].Circulation.2001,1:108-114.
    [8]Niu S,Kurumatani H,Satoh S,et al.Small diameter vascular prostheses with incorporated bioabsorbable matrices A preliminary study.ASAIO J,1993,39(3):M750.
    [9]Falk J,Townsend LE,Vogel LM,et al.Improved adherence of genetically modified endothelial cells to small-diameter expanded polytetrafluoroethylene grafts in a canine mode.J Vasc Surg,1998,27(5):902.
    [10]Bowlin GL,Rittgers SE,Electrostatic endothelial cell seeding technique for small-diameter(<6mm)vascular prostheses:feasibility testing Cell Transplant,1997,6(6):623.
    [11]Carr HM,Vohra R,Sharnna H,et al.Endothelial cell seeding kinetics under chronic flow in prosthetic grafts. Ann Vasc Surg,1996,10(5):469.
    [12]Bhat VD.Klitzman B,Koger K,et al.Improving endothelial cell adhesion to vascular graft surfaces:clinical need and strategies.J Biomater Sci Polym Ed,1998,9(11):1117.
    [13]Bos GW,Scharenborg NM,Poot AA,et al.Proliferation of endothelial cells on surface-immobilized album in-heparin conjugate loaded with basic fibroblast growth factor.L Biomed Mater Res,1999,44(3):330.
    [14]Wissink MJ,Beernink R,Poot AA,et al.Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release,2000,64(1-3):103.
    [15]Weatherford DA,Sackman JE,Reddick TT,et al.Vascular endothelial growth factor and heparin in a biologic glue promotes human aortic endothelial cell proliferation with aortic smooth muscle cell inhibition.Surgery,1996,120(2):433.
    [16]Teebken OE,Haverich A.Tissue engineering of small diameter vascular graft.Eur J Vasc Endovasc Surg 2002;23:474
    [17]李勇刚综述,张尔永审校,牛心包片在心血管外科的应用华西医学2002;17:420-421
    [18]Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs [J]. Biomaterials,2006,27(19):3675-3683.
    [19]Steinhoff G,Stock U,Karim N,etal.Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits:in vivo restoration of valves tissue.Circulation,2000,102(19 Suppl 3):Ⅲ50-55
    [20]Schenke-Layland K,Opitz F,Gross M,etal.Complete dynamic repopulation of decellularized heart valve by application of defined physical signals an in vitro study.Cardiovasc Res,2003,60:497-509
    [21]Kasimir MT,Rieder E,Seebacher G,etal.Comparison of different decellularization procedures of porcine heart valves.Int J Artif Organ,2003,26:421-427.
    [22]Cynthia RL,Howard A.Articular cartilage chondrocytes in type Ⅰ and type Ⅱ collagen-GAG matrices exhibit contractile behavior in vitro[J].Tissue Engineering 2000,6(5):555-564
    [23]M.J.B. Wissink, R.Beernink, J.S.Pieper,Binding and release of basic fibroblast growth factor from heparinized collagen matrices Biomaterials 22(2001)2291-9
    [24]P.E.McClain and E.R.Wiley,Differential scanning calorimeter studies of the thermal transitions of collagen:Implications on structure and stability. J.Biol.Chem., 247,692-697(1972).
    [25]J.M.Lee,C.A.Pereira,D.Abdulla,W.A.Naimark,and I.Crawford,A multi-sample denaturation temperature tester for collagenous biomaterials, Med.Eng.Phys.,17, 115-121(1995).
    [26]张文斌,武汉江,胡广伟,等。牛心包衍生膜材料的制备及理化性能检测口腔医学研究,2005,21(1):27-30
    [27]周建业,胡盛寿,任兵,等。牛心包膜细胞基质的研制 中国医学科学院学报2001,23(2):193-195
    [28]Allaire E,Guettier C,Bruneval P,etal.Cell-free arterial grafts: morphologic characteristics of aortic isografts,allografts,and xenografts in rats.[J] Vasc Surg 1994; 19:446-56
    [29]Angele P,Abke J,Kujat R,etal.Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices.[J].Biornaterials,2004,25(14):2831-2841
    [30]Uluoglu C,Zengil H,Comparison of different de-endothelization procedures in the isolated rat thoracic aorta:a short communication[J]. Res Common Mol Pathol Pharmacol,2003,11(3):289-297
    [31]Jackson DW,Arnoczky SP,etal.Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device(LAD),An experimental study in a goal model[J].Am J Sports Med,1987,15(6):528-538.
    [32]Rieder E, Kasimir MT, Silberhumer G,etal Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004 Feb;127(2):399-405.
    [33]胡刚,邢彬,欧来良等动物血管脱细胞方法及细胞外基质材料评价研究。中国生物医学工程学报2008 27(6):912-921
    [34]郭铁芳、杨大平、韩雪峰等脱细胞基质与血管内皮细胞体外相容性的研究中国修复重建外科杂志2003 2:165-168
    [35]Olde Damink LHH,Dijkstra PJ,Van Luyn MJA.Crosslinking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996,17:765
    [36]Lee JM,Edwards HHL,Pereira CA,etal.Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(EDC).J Mater Sci Mater Med.1996;7:531
    [37]I.V.Yannas,Materials for skin and nerve regeneration:biological analogues of the extracellular matrix,Mater.Sci Tech.14(1992) 179-208
    [38]Raghumath K,Biswas G,Rao KP,Joseph KT,Chvapil M.Some characteristics of collagen-heparin complex.J Biomed Mater Res 1983;17:613-21
    [39]Senatore F,Shankar H,Herng JH,Avantsa S.In vitro and in vivo studies of heparinized collageno-elastic tubes.J Biomed Mater Res 1990;24:939-57
    [40]高宁国,程秀兰,杨敬,肝素结构与功能的研究进展生物工程进展1999;19(5)4-13
    [41]麻开旺,高玮,蔡绍晳。肝素固定化技术研究进展生物医学工程杂志2007;24(2):466-9
    [42]侯长军,张文彬,霍丹群。肝素化结合方式及本体材料的研究进展化工进展2003;22(7):703-8
    [43]李经忠,王青青,曹雪涛。新型非病毒载体聚乙烯亚胺体内应用的研究进展国外医学药物分册2004;31(1):34-37
    [44]李达,王青青,汤谷平。低分子量聚乙烯亚胺作为转基因载体在肿瘤基因治疗中的应用 实用肿瘤杂志2006;21(6):527-530
    [45]刘永军,张爱宁,薛小平。PEI在动物皮肤组织基因转化中的应用研究生物工程学报2007;23(1):166-170
    [46]GB/T 16886.1-1997医疗器械生物学评价第5部分细胞毒性试验[S],北京:中国标准出版社,1997
    [47]Zhengwei Mao,Lie Ma,Jie Zhou, Bioactive Thin Film of Acidic Fibroblast Growth Factor Fabricated by Layer-by-Layer Assembly. Bioconjugate Chem.2005;16:1316-1322
    [48]Ai Zhipiao,Harvey A.Jacobs,Ki Dong Park,etal. Heparin immobilization by surface amplification[J].ASAIO Journal 1992,26:638-643
    [49]李长青,周跃,张传志。仿生髓核组织工程细胞支架的构建及初步理化指标分析第三军医大学学报2005:27(13):1351-54
    [50]GB/T 16886.4-2003医疗器械生物学评价第4部分:与血液相互作用试验选择[S],北京:中国标准出版社,2003
    [51]牟善松,马安德,屠美。以胶原为基质的组织工程支架材料的制备及组织相容性研究第一军医大学学报2002;22(10):878-882
    [52]陈佳龙,李全利,陈俊英等利用胶原-肝素自组装多层膜改善纯钛表面血液相容性的研究功能材料2008;8(39):1363-69
    [53]Mori Y. The effect of released heparin from the heparinized hydrophilic polymer on the process of thrombus formation. Trans Am Soc,1978,(24):736-744.
    [54]Antiplatelet Trialist's Collaboration.Collaborative overview of randomized trails of antiplatelet therapy--Ⅱ:maintenance of vascular graft or arterial patency by antiplatelet therapy.Brit Med J 1994;308:159-68.
    [55]MacNeillBD, Pomerantseva I,Lowe HC, et al. Toward a new blood vessel[J]. VascMed,2002,7:241-246
    [56]Koch G,Gutschi S,Pascher O,Fruhwirth J,Hauser H.Femoropopliteal vascular replacement:vein,ePTFE or ovine collagen? Zentralbl Chir 1996; 121:761-7
    [57]Watelet J,Soury P,Menard JF,Plissonnier D,Peillon C,Lestrat JP,Testart J.Femoropopliteal bypass:in situ or reversed vein grafts?. Ten-year results of a randomized prospective study. Ann Vasc Surg 1997;11:510-9
    [58]Raghumath K,Biswas G,Rao KP,Joseph KT,Chvapil M.Some characteristics of collagen-heparin complex.J Biomed Mater Res 1983; 17:613-21
    [59]Senatore F,Shankar H,Herng JH,Avantsa S.In vitro and in vivo studies of heparinized collageno-elastic tubes.J Biomed Mater Res 1990;24:939-57
    [60]俞耀庭,张兴栋主编,生物医用材料,天津大学出版社,2000年12月第1版
    [61]顾汉卿,徐国风主编,生物医用材料学,天津科技翻译出版公司,1993年8月第1版
    [62]GB/T 16886.4-2003/ISO 10993-4:2002医疗器械生物学评价第4部分:与血液相互作用试验选择
    [63]Suhara H,Sawa Y,Nishimura M,etal. Efficacy of a new coating material,PMEA,for cardiopulmonary bypass circuits in a porcine model.Ann Thorac Surg,2001,71:1603-1608
    [64]Dasai U R,Petitiou M.,Bjork I.,etal. Biol.Chem.,1998,273:7478-7487
    [65]高宁国,程秀兰,杨敬。肝素结构与功能的研究进展[J].生物工程进展,1999,19(5):4-13
    [66]Van der Hulst VP,Grundeman PF,Moulijn AC etal. Long-term extracorporeal blood bypass in dogs at low flows without systemic heparinization.ASAIO Trans.[J].1991,37(4):577-83
    [67]Belboul A,Akbar O,Lofgren C,etal. Improved blood cellular biocompatibility with heparin coated circuits during cardiopulmonary bypass[J].J Cardiovasc Surg,2000,41:357-362
    [68]Hans P, Wendel, Gerhard Ziemer. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation[J].Eur J Cardiothorac Surg,1999,16:342-350
    [69]Palatianos GM, Dewanjee MK, Smith W, etal. Platelet preservation during cardiopulmonary bypass with iloprost and Duraflo Ⅱ heparin-coated surfaces. ASAIO Trans,1991,7:620-622
    [70]Li-Chien Hsu.Principles of heparin-coating techniques[J].Perfusion,1991,6:209-219
    [71]Larm O,Larsson R,Olsson P.The search for thromboresistance using immobilized heparin.In blood in contact with natural and artificial surfaces[J].Ann NY Acad Sci.,1987,516:102-115
    [72]P.Klement,Y.J.Du,L.Berry,etal.Blood-compatible biomaterials by surface coating with a novel antithrombin-heparin covalent complex[J].Biomaterials,2002,23:527-535
    [73]Jaffe EA,Nachman RL,Becker CG,etal.Culture of human endothelial cells derived from umbilical veins:identification by morphologicandimmunologic criteria.[J]Clin Invest,1973,52:2745-2756
    [74]卞杰勇,周岱。人脐静脉内皮细胞体外培养的影响因素。细胞生物学杂志,1997,1:66-68.
    [75]秦明春,王若光,秦莉花等 人脐静脉内皮细胞的体外分离培养及鉴定湖南中医药大学学报 2007,27(4):12-15
    [76]Lery AP,Levy NS,Wegner S,et al.Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia[J].J Biol Chem,1995,270:13333-13340.
    [77]Engler DA.Use of vascular endothelial growth factor for therapeutic angiogenesis[J].Circulation,1996,94(7):1496-1498.
    [78]Yang HT,Deschenes MR,Ogilvi RW,et al.Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation[J].Circ Res,1996,79:62-69.
    [79]Debabrata M,Leonidas T,Xiao-Mai ZH,et al.Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation[J].Nature,1995,375(6532):577-581.
    [80]Barrios V,Cuevas B,Carceller F,et al.Angiogenesis in the rat heart induced by local delivery of basic fibroblast growth factor[J].Eur Heart J,1995,16(suppl):171.
    [81]Zisch AH,Lutolf MP,Hubbell JA.Biopolymeric delivery matrices for angiogenic growth factors[J].Cardiovasc Pathol,2003,12(6):295-310.
    [82]Tabata Y,Miyao M,Ozeki M,et al.Controlled release of vascular endothelial growth factor by use of collagen hydrogels[J].J Biomater Sci Polym Ed.2000,11(9):915-930.
    [83]Pieper JS,Hafmans T,van Wachem PB,et al.Loading of collagen-heparin sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats[J].J Biomed Mater Res,2002,62(2):185-194.
    [84]张晓东,曹润武,李若儿,等.’VEGF在激光TMLR中促心肌血管生成的实验研究[J].解剖学报,2002,33(2):204.207.
    [85]Soncin F,Strydom D.J,Shapiro R.Interaction of heparin with human angiogenin[J].J Biol Chem,1997,272(15):9818-9824.
    [86]Horbett TA,Schway MB.Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate-ethylmethacrylate copolymers[J].J Biomed Mater Res.1988,22(9):763-793.
    [87]Iuliano DJ,Saaverdra SS,Truskey GA.Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion[J].J Biomed Mater Res.1993,27(8):1103-1113.
    [88]Prime KL,Whitesides GM.Self-assembled organic monolayers:model systems for studying adsorption of proteins at surfaces[J].Science,1991,252(5010):1164-1167.
    [89]Williams RL,Hunt JA,Tengvall P.Fibroblast adhesion onto methyl-silica gradients with and without preadsorbed protein[J].J Biomed Mater Res,1995,29(12):1545-1555.
    [90]Bhatia SK,Teixeira JL,Anderson M,Shriver-Lake LC,et al.Fabrication of surfaces resistant to protein adsorption and application to two-dimensional protein patterning[J].Anal Biochem.1993,208(1):197-205.
    [91]Lanza R.P.,Langer R.,Chick W.L..Principle of tissue engineering.First edition.Austin,USA:R.G.Lander company.1996,229-235.
    [92]曲乐丰,王玉墒,景在平,中小血管无缝线胶粘吻合的町行性实验研究。上海医学,2003,26(8):543.545
    [93]Vara DS,Salacinski HJ,Kannan RY,et al.Cardiovascular tissue engineering:state of the art.Pathol Biol,2005,53(10):599-612.
    [94]Okoshi T,Soldani G,Goddard M,et al.Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting.J Thorac Cardiovasc Surg,1993,105(5):791-795,
    [95]Karlsson JO,Toner M.Longer-term storage of tissue by cryopreservation:critical issues.Biomaterials,1996,17(4):243-256.
    [96]Tiwari A,Salacinski HJ,Punshon G,et al.Development of a hybrid cardiovascular graft using a tissue engineering approach,FASEB J,2002,16(8):791-796.
    [97]Seifalian AM,Tiwari A,Hamilton G,et al.Improving the clinical patency of prosthetic vascular and coronary bypass grafts:the role of seeding and tissue engeering.Artif Organs,2002,26(4):307-320.
    [98]L'heureux N,Dusserre N,Konig G,et al.Human tissue-engineered blood vessels for adult arterial revascularization.Nat Med,2006,12(3):361-365.
    [99]Teebken OE,Haverich A.Tissue engineering of small diameter vascular grafts.Eur J Vasc Endovasc Surg,2002,23(6):474-485.
    [100]Bader A,Steinhoff G,Strobl K,et al.Engineering of human vascular aortic tissue based on a xenogeneic starter matrix.Transplantation,2000,70(1):7-14.
    [101]Campbell JH,Efendy JL,Campbell GR,et al.Novel vascular graft grown within recipient's own peritoneal cavity.Circ Res,1999,84(12):1173-1178.
    [102]Schmedlen RH,Elbjeirami WM,Gobin AS,et al.Tissue engineered small-diameter vascular grafts.Clin Plast Surg,2003,30(4):507-511.
    [103]Dahl SL,Koh J,Prabhakar V,et al.Decellularized native and engineered artierial scaffolds for transplantation.Cell Transplant,2003,12(6):659-666.
    [104]郭铁芳,杨大平,韩雪峰等,脱细胞基质与血管内皮细胞体外相容性的研究。中国修复重建外科杂志,2003,17(2):
    [105]Brossollet LJ.Mechanical issues in vascular grafting:a review.Int J Artif Organs,1992,15(5):579-584.
    [106]Mitchell SL,Niklason LE.Requirement for growing tissue-engineered vascular grafts.Cardiovasc Pathol,2003,12(2):271-276.
    [107]Roeder R,Wolfe J,Lianakis N,et al.Burst pressure of canine carotid arteries.Australas Phys Eng Sci Med,2000,23(2):66-67.
    [108]Wilson GJ,Yeger H,Klement P,et al.Acellular matrix allograft:small caliber vascular prostheses.ASAIO Trans,1990,36(3):340-343.
    [109]Belboul A,Akbar O,Lofgren C,et al.Improved blood cellular biocompatibility with heparin coated circuits during cardiopulmonary bypass[J].J Cardiothorac Surg,2000,41:357-362.
    [110]Wendel HP,Ziemer G.Coating techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation[J].Eur J Cardiothorac Surg,1999,16:342-350.
    [111]Gu YJ,van Oeveren W,Boonstra PW,et al.Heparin-coated cardiopulmonary bypass circuit for use during lung transplantation.J Heart Lung Transplant,1995,14(4):605-606.
    [112]Schreurs HH,Wijers MJ,Gu YJ,et al.Heparin-coated bypass circuits:effects on inflammatory response in pediatric cardiac operations.Ann Thorac Surg,1998,66(1):166-171.
    [113]王涛,顾玉东,李继峰,等。肝素对内皮细胞增殖和收缩因子释放的影响[J]。中华显微外科杂志,1999,23(3):603-606。
    [114]张红,洪晓涛。肝素联合VEGF预处理对人工血管内皮细胞生长及贴附率的影响[J]。中国现代医学杂志,2004,14(12):75-76.
    [115]Balllyk PD,Walsh C,Butany J,et al.Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses.J Biomech,1998,31(1):229-237.
    [116]Ishibashi H,Sunamura M,Karino T,et al.Flow preferred and preferred sites of intimal thickening end-to-end anastomosed vessel.Surgery,1995,117(4):409-420.
    [117]Wada S,Koujiya M,Karino T,et al.Theoretical study of the effect of local flow disturbances on the concentration of low-density lipoproteins at the luminal surface of end-to-end anastomosed vessel.Med Biol Eng Comput,2002,40(5):576-587.
    [118]Greenwald SE,Berry CL.Improving vascular grafts:the importance of mechanical and haemodynamic properties.J Pathol,2000,190(3):292-299.
    [119]Stewart SF,Lyman DJ.Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow.J Biomech,1992,25(3):297-310.
    [120]Haruguchi H,Teraoka S.Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts:a review.J Artif Organs,2003,6(4):227-235.
    [121]Lin PH,Chen C,Bush RL,et al.Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model.J Vasc Surg,2004,39(1):1322-1328.
    [1]. Stock UA, Vacanti JP. Tissue engineering:current state and prospects. Annu Rev Med.2001;52:443-451.
    [2]. Herring M, Gardner A, Glover J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery.1978;84(4):498-504.
    [3]. Birchall IE, Field PL, Ketharanathan V. Adherence of human saphenous vein endothelial cell monolayers to tissue-engineered biomatrix vascular conduits. J Biomed Mater Res.2001;56(3):437-443.
    [4]. Hibino N, Imai Y, Shin-oka T, et al. [First successful clinical application of tissue engineered blood vessel]. Kyobu Geka.2002;55(5):368-373.
    [5]. Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiovascular tissue engineering:a comparative study. Eur J Cardiothorac Surg.2004;25(4):635-641.
    [6]. Karube N, Soma T, Noishiki Y, et al. Clinical long-term results of vascular prosthesis sealed with fragmented autologous adipose tissue. Artif Organs. 2001;25(3):218-222.
    [7]. Arts CH, de Groot P, Heijnen-Snyder GJ, et al. Application of a clinical grade CD34-mediated method for the enrichment of microvascular endothelial cells from fat tissue. Cytotherapy.2004;6(1):30-42.
    [8]. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient's own peritoneal cavity. Circ Res.1999;85(12):1173-1178.
    [9]. Redondo S, Ruiz E, Padilla E, et al. Role of TGF-betal in vascular smooth muscle cell apoptosis induced by angiotensin Ⅱ. Eur J Pharmacol. 2007;556(1-3):36-44.
    [10]. Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22(5):439-444.
    [11]. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med.2001;7(9):1035-1040.
    [12]. Shirota T, He H, Yasui H, et al. Human endothelial progenitor cell-seeded hybrid graft:proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng.2003;9(1):127-136.
    [13]. Wu H, Riha GM, Yang H, et al. Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells. J Surg Res.2005;126(2):193-198.
    [14]. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood.2000;95(3):952-958.
    [15]. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest.2002;109(3):337-346.
    [16]. Matsumura G, Miyagawa-Tomita S, Shin'oka T, et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation.2003; 108(14):1729-1734.
    [17]. Shin'oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg.2005;129(6):1330-1338.
    [18]. Cho SW, Park HJ, Ryu JH, et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials.2005;26(14):1915-1924.
    [19]. Devine SM. Mesenchymal stem cells:will they have a role in the clinic? J Cell Biochem Suppl.2002;38:73-79.
    [20]. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol.2002;30(1):42-48.
    [21]. Nuttall ME, Patton AJ, Olivera DL, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype:implications for osteopenic disorders. J Bone Miner Res.1998;13(3):371-382.
    [22]. Ghilzon R, McCulloch CA, Zohar R. Stromal mesenchymal progenitor cells. Leuk Lymphoma.1999;32(3-4):211-221.
    [23]. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood.1997;90(9):3471-3481.
    [24]. Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg.1999;65(1):22-26.
    [25]. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells.2004;22(3):377-384.
    [26]. 徐成阳,冯德广,杜英,et al.人骨髓间充质干细胞诱导分化为内皮细胞的实验研究.中原医刊.2006;33(8):22-23.
    [27]. 刘丹丹,王悦增,赵东海,et al.人骨髓间充质干细胞向血管内皮细胞诱导分化的研究.中国应用生理学杂志.2006;22(4):423-427.
    [28]. Levenberg S, Golub JS, Amit M, et al. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A.2002;99(7):4391-4396.
    [29]. 蔡巍巍,陈长志.干细胞技术在血管组织工程中的应用.上海交通大学学报:医学版2007;27(10):1282-1285.
    [30]. Xie C, Huang H, Wei S, et al. A Comparison of Murine Smooth Muscle Cells Generated from Embryonic versus Induced Pluripotent Stem Cells. Stem Cells Dev.2008.
    [31]. Hoerstrup SP, Zund G, Sodian R, et al. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg.2001;20(1):164-169.
    [32]. Schmidt CE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials.2000;21(22):2215-2231.
    [33]. Kader KN, Akella R, Ziats NP, et al. eNOS-overexpressing endothelial cells inhibit platelet aggregation and smooth muscle cell proliferation in vitro. Tissue Eng.2000;6(3):241-251.
    [34]. McKee JA, Banik SS, Boyer MJ, et al. Human arteries engineered in vitro. EMBO Rep.2003;4(6):633-638.
    [35]. Stegemann JP, Dey NB, Lincoln TM, et al. Genetic modification of smooth muscle cells to control phenotype and function in vascular tissue engineering. Tissue Eng.2004; 10(1-2):189-199.
    [36]. Murphy WL, Peters MC, Kohn DH, et al. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials.2000;21(24):2521-2527.
    [37]. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials.2000;21(24):2529-2543.
    [38]. Schugens C, Maquet V, Grandfils C, et al. Polylactide macroporous biodegradable implants for cell transplantation. Ⅱ. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res. 1996;30(4):449-461.
    [39]. 陈兵,张柏根.血管外科血管组织工程研究进展和方向 中华外科杂志.2004;42(5):302-305.
    [40]. Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998;115(3):536-545; discussion 545-536.
    [41]. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science.1999;284(5413):489-493.
    [42]. Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg.1999;68(6):2298-2304; discussion 2305.
    [43]. Ye Q, Zund G, Jockenhoevel S, et al. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J.2000;46(6):730-733.
    [44]. Opitz F, Schenke-Layland K, Richter W, et al. Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann Biomed Eng.2004;32(2):212-222.
    [45]. Martin. DP, Williams. SF. Medical applications of poly-4-hydroxybutyrate:a strong flexible absorbable biomaterial Biochem Eng J.2003;16(2):97-105.
    [46]. Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877-886.
    [47]. Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering:attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27(19):3608-3616.
    [48]. Torikai K, Ichikawa H, Hirakawa K, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg. 2008;136(1):37-45,45 e31.
    [49]. Atala A. Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transplant.2004;4 Suppl 6:58-73.
    [50]. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science.1986;231(4736):397-400.
    [51]. 潘勇,艾玉峰,黄蔚.体外组织工程血管支架内皮化的实验研究.中国美容医学.2002;11(4):300-303.
    [52]. Nagai N, Mori K, Munekata M. Biological Properties of Crosslinked Salmon Collagen Fibrillar Gel as a Scaffold for Human Umbilical Vein Endothelial Cells. J Biomater Appl.2008.
    [53]. Sims CD, Butler PE, Cao YL, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101(6):1580-1585.
    [54]. Teebken OE, Bader A, Steinhoff G, et al. Tissue engineering of vascular grafts:human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg.2000; 19(4):381-386.
    [55]. Bader A, Steinhoff G, Strobl K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation.2000;70(1):7-14.
    [56]. Clarke DR, Lust RM, Sun YS, et al. Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann Thorac Surg.2001;71(5 Suppl):S433-436.
    [57]. Harding SI, Afoke A, Brown RA, et al. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst Eng.2002;25(1):53-59.
    [58]. 刘咸罗,孙大宽,钱小星,et al.血管脱细胞细胞外基质制备的实验研究.中国现代普通外科进展.2002;5(1):14-17.
    [59]. 韩雪峰,杨大平,郭铁芳.曲拉通X-100对制备脱细胞血管基质影响的实验研究.中华外科杂志.2002;40(1):27-29.
    [60]. Lu Q, Ganesan K, Simionescu DT, et al. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials. 2004;25(22):5227-5237.
    [61]. Schaner PJ, Martin ND, Tulenko TN, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg.2004;40(1):146-153.
    [62]. Opitz F, Schenke-Layland K, Cohnert TU, et al. Tissue engineering of aortic tissue:dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc Res.2004;63(4):719-730.
    [63]. Narita Y, Kagami H, Matsunuma H, et al. Decellularized ureter for tissue-engineered small-caliber vascular graft. J Artif Organs. 2008;11(2):91-99.
    [64]. He W, Yong T, Teo WE, et al. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers:potential vascular graft for blood vessel tissue engineering. Tissue Eng.2005;11(9-10):1574-1588.
    [65]. Miller DC, Haberstroh KM, Webster TJ. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J Biomed Mater Res A.2005;73(4):476-484.
    [66]. Ma Z, He W, Yong T, et al. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng. 2005; 11 (7-8):1149-1158.
    [67]. 颜永年,刘海霞,熊卓,et al.细胞直接受控组装技术的实现与研究进展.科学通报.2005;50(11):1159-1160.
    [68]. 熊猛,艾玉峰,王潘勇.采用组织工程方法体外构建血管模型的初步实验研究.中国修复重建外科杂志.2001;15(2):109-112.
    [69]. 程光存,严中亚.动态旋转系统构建组织工程化血管模型中血管内皮细胞分泌功能检测.中华实验外科杂志.2004;21(9):1091-1093.
    [70]. Zhu Y, Gao C, Liu X, et al. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng.2004;10(1-2):53-61.
    [71]. Mei N, Chen G, Zhou P, et al. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan-the fibroblasts proliferation in vitro. J Biomater Appl.2005; 19(4):323-339.
    [72]. Niu S, Kurumatani H, Satoh S, et al. Small diameter vascular prostheses with incorporated bioabsorbable matrices. A preliminary study. ASAIO J. 1993;39(3):M750-753.
    [73]. Conklin BS, Wu H, Lin PH, et al. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif Organs.2004;28(7):668-675.
    [74]. Gupta B, Plummer C, Bisson I, et al. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films:characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002;23(3):863-871.
    [75]. Wu S, Liu Y, Cui B, et al. [Intravascular biocompatibility of decellularized xenogenic vascular scaffolds/PHBHHx hybrid material for cardiovascular tissue engineering]. Sheng Wu Gong Cheng Xue Bao.2008;24(4):610-616.
    [76]. Lu G, Zhang J, Li JX, et al. [Surface modification of vascular tissue engineering biomaterial by low temperature plasma with NH3, CO2 and O2]. Zhonghua Yi Xue Za Zhi.2007;87(47):3362-3366.
    [77]. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev.1997;18(1):4-25.
    [78]. Kagiwada H, Yashiki T, Ohshima A, et al. Human mesenchymal stem cells as a stable source of VEGF-producing cells. J Tissue Eng Regen Med. 2008;2(4):184-189.
    [79]. Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005; 16(2):159-178.
    [80]. Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol.2003; 12(6):295-310.
    [81]. Kim BS, Putnam AJ, Kulik TJ, et al. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng.1998;57(1):46-54.
    [82]. Conklin BS, Surowiec SM, Lin PH, et al. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue. Med Eng Phys. 2000;22(6):441-449.
    [83]. Williams C, Wick TM. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng.2004;10(5-6):930-941.
    [84]. Williams C, Wick TM. Endothelial cell-smooth muscle cell co-culture in a perfusion bioreactor system. Ann Biomed Eng.2005;33(7):920-928.
    [85]. Boccafoschi F, Raj an N, Habermehl J, et al. Preparation and characterization of a scaffold for vascular tissue engineering by direct-assembling of collagen and cells in a cylindrical geometry. Macromol Biosci.2007;7(5):719-726.
    [86]. Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a Composite Degradable/Nondegradable Tissue-engineered Vascular Graft. Artif Organs. 2008.
    [87]. Chue WL, Campbell GR, Caplice N, et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg. 2004;39(4):859-867.
    [88]. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science.2002;295(5557):1009-1014.
    [89]. L'Heureux N, Stoclet JC, Auger FA, et al. A human tissue-engineered vascular media:a new model for pharmacological studies of contractile responses. FASEB J.2001;15(2):515-524.
    [90]. Hoenig MR, Campbell GR, Rolfe BE, et al. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol. 2005;25(6):1128-1134.
    [91]. Shin'oka T. [Clinical results of tissue-engineered vascular autografts seeded with autologous bone marrow cells]. Nippon Geka Gakkai Zasshi. 2004;105(8):459-463.
    [92].黄惠民,吴少峰,任洪.脱细胞组织基质和自身细胞构建组织工程移植物.上海医学.2006;29(5):319-325.
    [93]. Huang HM, Ma LL, Ren H, et al. [Tissue-engineered graft constructed by bone marrow mononuclear cells and heterogeneous acellularized tissue matrix: an animal experiment]. Zhonghua Yi Xue Za Zhi.2007;87(48):3440-3442.
    [94]. Brennan MP, Dardik A, Hibino N, et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg.2008;248(3):370-377.
    [95]. L'Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel. FASEB J.1998; 12(1):47-56.
    [96]. 张金明,何涛,黄红军.骨髓间充质干细胞体外诱导分化为平滑肌细胞的实验.中国临床康复.2006;10(1):23-26.
    [97].徐正云,任国珍,马爱群.骨髓间质干细胞多向分化及其机制的研究进展.医学综述.2006;12(4):203-204.
    [98]. Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering:from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol.2008;26(6):338-344.
    [99]. Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients:a 9-year experience. Surgery.1999;126(5):847-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700