不同血糖指数和血糖负荷的食物对耐力运动员免疫能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨运动前三天摄入不同血糖指数和血糖负荷的饮食对耐力运动员免疫能力的影响。方法:本文的研究对象为9名男性耐力运动员(年龄20.11±0.78y,身高174.0±2.23cm,体重64.8±5.00kg,BMI(体重指数)为21±1.31,最大摄氧量64.8±2.35ml·kg~(-1)min~(-1))以平衡重复的顺序完成三次实验,每次实验间隔时间至少7天。运动员在正式实验的第一天早上进行糖原消耗,然后随机摄入三天的HH(高血糖指数、高血糖负荷)、LL(低血糖指数、低血糖负荷)或HL(高血糖指数、低血糖负荷)餐,HH餐碳水化合物(CHO)的摄入量占每天总热量摄入的73%,每天摄入的食物总血糖指数80,血糖负荷553;LL餐CHO的摄入量占到每天每天总热量摄入的73%,每天摄入的食物总血糖指数42,血糖负荷249;HL餐CHO的摄入量占每天总热量摄入的31%,每天摄入的食物总血糖指数79,血糖负荷227。HH和LL餐提供每天每kg体重10g的CHO,而HL餐提供每天每kg体重3g的CHO。第四天受试者首先在水平跑台上跑步1小时(70%VO_(2max)),随后以尽可能短的时间完成10km时间测试。本实验测试了他们在运动前、运动中及运动后的血糖浓度、外周血的免疫细胞计数、血清皮质醇浓度与白细胞介素-6的浓度。
     结果:
     (1)与运动前三天摄入HL餐比较,运动员在运动前三天摄入HH餐和LL餐,在运动中和运动后恢复期都保持较高的血糖浓度(P<0.01)。与运动前三天摄入HL餐比较,运动员在运动前三天摄入LL餐后其完成10km的时间更短(48.6±1.3min,P<0.05),而摄入HH餐后其运动能力与之比较没有显著性差异,但所用的时间则更少(51.3±5.3min,P>0.05)。
     (2)运动员在运动前三天摄入HH餐后在运动时和运动后的免疫细胞数量与摄入LL餐的比较,没有显著性差异(HH vs LL,P>0.05)。与运动前三天摄入HH和LL餐比较,摄入HL餐后在运动时和运动后恢复期其白细胞数量更高(HH vs LL vsHL,P<0.05),血浆淋巴细胞数量在运动期间和运动后1小时内都保持较高水平,但只在运动10km结束时有显著性差异(P<0.05)。摄入HH和LL餐后在运动时和运动后嗜中性粒细胞的数量更低(P<0.05)。运动前三天摄入的饮食对单核细胞的数量影响不大。
     (3)摄入三种餐后在运动过程中的CD4~+%都呈下降趋势(60min:P<0.01;10km:P<0.05),运动后上升,而CD8~+%在运动过程中及运动后变化不大,CD4~+/CD8~+比值与CD4~+%的变化相似。需要指出的是运动员在运动前三天摄入HH和LL餐在运动过程中及运动后其CD4~+%较高,但没有显著性差异(P>0.05),CD4~+/CD8~+比值也是如此(除运动10km即刻),而运动员在运动前三天摄入LL餐后在运动后2h时其CD4~+/CD8~+比值处于正常水平,与餐前比较有显著性差异(P<0.05)。
     (4)高糖饮食能够使运动员在运动过程中及运动后保持更高的血糖浓度,并且削弱了皮质醇浓度(HH vs LL vs HL,P<0.01)。运动员在运动前三天摄入LL餐后其皮质醇在运动后2h的反应更低(P<0.01)。
     (5)与运动前三天摄入HH和LL餐比较,摄入HL餐后在运动时和运动后恢复期时IL-6的反应更大(HH vs LL vs HL,P<0.01)。运动员在运动前三天摄入HH餐后在运动时和运动后的IL-6浓度与摄入LL餐的比较,没有显著性差异(HH vs LL vsHL,P>0.05)。
     结论:运动员在运动前三天摄入LL餐具有潜在提高免疫能力,减少免疫抑制出现的机会。这与摄入LL餐能够保持运动员在运动中和运动恢复期较高的血糖浓度有关,并且削弱白细胞和嗜中性粒细胞、皮质醇及IL-6(白细胞介素-6)对运动的反应。摄入LL餐可以更好地提高运动能力,而摄入两种高糖膳食运动能力没有明显差。
Purpose: the present study was designed to investigate the influence of 3 days carbohydrate loading with different GI (Glycemic Index) and GL (Glycemic Load) meals on immune responses in endurance runners. Methods: Nine endurance-trained male runners(Age:20.11±0.78 ys; Body mass: 64.8±5.00 kg; BMI: 21±1.31; VO_2max: 64.8±2.35 ml·kg~(-1)min~(-1))completed three main trials in a randomized order separated by at least 7 days. 3 foods which consisted of HH (High Glycemic Index, High Glycemic Load), LL( Low Glycemic Index, LOw Glycemic Load) and HL( High Glycemic Index, Low Glycemic Load) was given to the subjects at 3 days before exercise on a level treadmill(1h of run at 70% VO_2max continuous with 10-km self-pacing run). Carbohydrate intake (% of energy intake), GI, and GL per day was 73%, 80, and 553 for the HH; 73%, 42, and 249 for the LL; 31%, 79, and 227 for the HL. The HH, LL trials provided 10.0g CHO·kg~(-1) body mass per day, whereas the HLtrial provided only 3.0g CHO·kg~(-1) body mass per day. Then blood glucose concentrations, circulating concentrations of immune cells, serum cortisol concentrations and IL-6 concentrations in the peripheral blood were detected before, during and after exercise.
     Results:
     (1) The blood glucose concentrations were higher during and after exercise in the HH and LL trials when compared with the HL trial (P<0.01). Better performance was found in the LL trial when compared with the HL trial (LL vs HL, 48.6±1.3min vs 55.3±6.9min, P<0.05), but no statistical differences in time to complete the 10-km self-pacing run between the HH and HL trials (HH vs HL 51.3±5.3min vs 55.3±6.9min, P>0.05).
     (2) The immune cell counts were not significant differences during and after exercise between the HH and LL trials (HH vs LL, P>0.05). Circulating concentrations of Leukocytes were higher during and after exercise in the HL trial when compared with the HH and LL trials (HL vs HH vs LL, P<0.05 ) . Also, circulating concentrations of lymphocytes were higher during exercise and by post-lh in the HL trial compared with the HH and LL trials, but the significant differences only at 10-km (P<0.05) Circulating concentrations of neutrophils were lower during and after exercise in the HH and LL trials compared with the HL trial (P<0.05). But, influence of the meals on the level of moncytes was limited.
     (3) The percentage of CD4+ cells decreased during exercise (60min: P<0.01; 10km:P<0.05) and increased after exercise, but the change of the percentage of CD8~+ cells was limited. The rate of CD4~+/CD8~+ was similar to the change of the CD4~+ cells. It suggested that the percentage of CD4~+ cells in the HH and LL trials was higher than that of the HL trial, the same to the rate of CD4~+/CD8~+(except 10-km). The rate of CD4~+/CD8~+ in the LL trial was normal at post-2 h (LL vs Pre-Ex:P<0.05).
     (4) High carbohydrate intake maintained higher blood glucose concentrations during and after exercise and attenuated cortisol concentrations. Serum cortisol concentrations were significantly lower at post-2h in the LL trial(HH vs LL vs HL, P<0.01) when compared with the HH and HL trials.
     (5) The concentrations of IL-6 were higher during and after exercise in the HL trial compared with the HH and LL trials (HH vs LL vs HL, P<0.01 ). The concentrations of IL-6 were not statistical differences during and after exercise between the HH and LL trials (HH vs LL vs HL, P>0.05).
     Conclusions: LL trial might improve immune function and prevent immune suppression. It also suggested the blood glucose concentrations were higher during and after exercise in the LL trial, and LL trial attenuated the counts of leukocytes and neutrophils, and the increases of cortisol and IL-6 concentrations compared with the HL trial . Better performance was found in the LL trial. There were no significant differences between two high carbohydrate meals.
引文
[1] Calder PC, Field C, Gill HS. Nutrition and Immune Function. Oxford: 2002, CABI Publishing.
    [2] Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutr, 1997, 66, 460S-463S.
    [3] Bishop NC, Blannin AK, Rand L, Johnson R, Gleeson M. Effects of carbohydrate and fluid intake on the blood leucocyte responses to prolonged cycling. Journal of Sports Sciences, 1999(a), 17, 26-27.
    [4] Bishop NC, Blannin AK, Robson PJ, Walsh NP, Gleeson M. The effects of carbohydrate supplementation on neutrophil degranulation responses to a soccer-specific exercise protocol. Journal of Sports Sciences, 1999(b)17, 787-796.
    [5] Gleeson M, Bishop NC. Modification of immune response to exercise by carbohydrate, glutamine and anti-oxidant supplements. Immunology and Cell Biology, 2000, 78, 554-561.
    [6] Gleeson, M., Nieman, D. C., Pederson, B. K.. Exercise, nutrition and immune function. Journal of Sports Science, 2004, 22, 115-125.
    [7] Nieman, D. C., Johansen, L. M., Lee, J. W., Arabatzis, K.. Infectious episodes in runners before and after the Los Angeles Marathon. Journal of Sports Medicine and Physical Fitness, 1990, 30, 316-328.
    [8] Peters, E. M., Bateman, E. D.. Ultramarathon running and URTI: An epidemiological survey. S Afr Med J, 1983, 64, 582-4.
    [9] Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Shannon M, Davis JM, Austin MD, Hisey CL, Holbeck JC, Hjertman JM, Bolton MR, Schilling BK. Immune response to two hours of rowing in elite female rowers. International Journal of Sports Medicine, 1999, 20, 476-481.
    [10] Peters, E. M. Exercise, immunologyand upper respiratory tract infections. International Journal of Sports Medicine, 1997, 18(suppl. 1), S69-S77.
    [11] Mackinnon L. T.. Chronic exercise training effects on immune function. Med Sci SportsExerc: 2000, 32(7)(suppl), pp S369-S376.
    [12] Jenkins DJA, Wolever TMS, Taylor RH, et al. Glycemic index of food-A physical basis for carbohydrate exchange. AmJ Clin Nutr, 1981, 34: 362-366.
    [13] Foster-Powell K, Holt SHA, Brand-Miller JC. International table of glycemic index and glycemic load values: American Journal of Clinical Nutrition, 2002, 76, 5-56.
    [14] Braner-Miller J, Foster-Powell K and Colagiuri S. The GI Factor. Sdney, Austrilia: Hodder&Stoughton, 1996.
    [15] Wolever TMS. The glycemic index. World Rev Nutr Diet, 1990, 62: 1230-185.
    [16] Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Journal of American Medical Association, 1997, 277: 472-7.
    [17] Brand-Miller JC, Thomas M, Swan V, Ahmad ZI, Petocz P, Colagiuri S.Physiological validation of the concept of glycemic load in lean young adults. J Nutr, 2003, 133(9), 2728-32.
    [18] Foster C, Costill DL and Fink WJ. Effects of pre-exercise feedings on endurance performance. Med Sci Sports, 1979, 11: 1-5.
    [19] Wong SHS, Morris JG. Influence of pre-exercise carbohydrate meals on a 21-km run. Med Sci Sports Exerc, 2003, 35(Supp5.): S298.
    [20] Sherman WM, Brodowicz G, Wright DA, et al. Effects of 4 h pre-exercise carbohydrate feedings on cyling performance. Med Sci Sports Exerc, 1989, 21: 598-604.
    [21] Wright DA, Sherman WM and Derbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol, 1991, 71: 1082-1088.
    [22] 王香生,陈亚军.血糖指数及其在运动营养实践中的应用.中国运动医学杂志,2004,23(3):291-296.
    [23] Bloom PSC, Hostmark AT, Vaage O, et at. Effect of different post-ecercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc, 1987, 19: 491-496.
    [24] Williams A, Stephens R, McKnight T, Dodd S. Factors affecting adherence of end-stage renal disease patients to an exercise programme. British Journal of Sports Medicine, 1991, 25(2): 90-3.
    [25] Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiologica Scandinavica, 1967, 71(2): 129-39.
    [26] Burke LM, Hawley JA, Schabort EJ, St Clair Gibson A, Mujika I, Noakes TD. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial Applied Physiology, 2000, 88(4): 1284-90.
    [27] Bussau VA, Fairchild TJ, Rao A, Steele P, Foumier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. European Journal of Applied Physiology, 2002, 87(3): 290-5.
    [28] Hawley JA, Dennis SC, Lindsey EH, Noakes TD. Nutritional practices of athletes: are they sub-optimal? J Sports Sci, 1995, 13, S75-81.
    [29] Thomas DE, Brotherhood JR, Brand JC. Carbohydrate feeding before exercise: effect of glycemic index. International Journal of Sports Medicine, 1991, 12, 180-186.
    [30] DeMarco HM, Sucher KP, Cisar CJ, Butterfield GE. Pre-exercise carbohydrate meals: application of glycemic index. Med Sci Sports Exerc, 1999, 31, 164-170.
    [31] Wee SL, Williams C, Gray S, Horabin J. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc, 1999, 31, 393-399.
    [32] Febbraio MA, Keenan J, Angus D J, Campbell SE, Garnham AP. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol, 2000, 89, p. 1845-1851.
    [33] Guezennec GY. Oxidation rates, complex carbohydrates and exercise. Sports Med, 1995, 19: 365-372.
    [34] Hawley JA, Dennis SC, and Noakes TD. Oxidation of carbohydrate ingested during prolonged exercise. Sports Med, 1992, 14: 27-42.
    [35] Nieman, D.C., Pedersen, B.K.. Nutrition and Exercise Immunology. Boca Raton, FL: 2000, CRC Press.
    [36] Peters, E.M., Goetzsche, J.M., Grobbelaar, B., Noakes, T.D.. Vitamin C supplementation reduces the incidence of post-race symptoms of upper respiratory tract infection in ultramarathon runners. American Journal of Clinical Nutrition, 1993, 57, 170-174.
    [37] Peters, E.M., Goetzsche, J.M., Joseph, L.E., Noakes, T.D.. Vitamin C is effective as combinations of anti-oxidant nutrients in reducing symptoms of upper respiratory tract infections in ultramarathon runners. South African Journal of Sports Medicine, 1996, 11, 23-27.
    [38] Nieman DC, Fagoaga OR, Butterworth DE, Warren BJ, Utter A, Davis, JM, Henson DA, Nchlsen-Cannarella SL. Carbohydrate supplementation affects blood granulocyte and monocyte trafficking but not function after 2.5 h running. Am J Clin Nutr, 1997, 66, 153-9.
    [39] Petersen, E.W., Pedersen, B.K.. Exercise and immune function-effect of nutrition. In Nutrition and Immune Function (edited by P.C. Calder, C.J. Field and H.S. Gill), 2002, pp 347-355.
    [40] Nieman, D.C., Henson, D.A., McAnulty, S.R., McAnulty, L., Swick, N.S., Utter, A.C., Vinci, D.M., Opiela, S.J., Morrow, J.D.. Influence of vitamin C supple-mentation on oxidative and immune changes after an ultramarathon. J Appl Physiol, 2002(a), 92, 1970-1977.
    [41] Castell, L.M., Poortmans, J.R., Leclercq, R.. Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. Eur J Appl Physiol, 1997, 75, 47-53.
    [42] Rohde, T., MacLean, D.A., Hartkopp, A., Pedersen, B.K.. The immune system and serum glutamine during a triathlon. Eur J Appl Physiol, 1996, 74, 428-34.
    [43] Rohde, T., Asp, S., MacLean, D., Pedersen, B.K.. Competitive sustained exercise in humans, and lymphokine activated killer cell activity-an intervention study. Eur J Appl Physiol, 1998, 78, 448-453.
    [44] Walsh, N.P., Blannin, A.IC, Bishop, N.C., Robson, P.J., Gleeson, M.. Effect of oral glutamine supplementation on human neutrophil lipopolysaccharide-stimulated degranulation following prolonged exercise. Int J Sport Nutr Exerc Metab, 2000, 10(1), 39-50.
    [45] Gleeson M, Blannin AK, Walsh NP, Bishop NC, Clark AM. Effect of low and high carbohydrate diets on the plasma glutamine and circulating leukocyte responses to exercise. Int.J.Sport Butr, 1998, 8, 49-59.
    [46] Bishop NC, Walsh N, Haines DL, Richards EE, Gleeson M. Pre-exercise carbohydrate status and immune responses to prolonged cycling: Ⅱ. Effect on plasma cytokine concentration. Int J Sport Nutr Exerc Metab, 2001, 11, 503-512.
    [47] Mitchell JB, Pizza FX, Paquet A, Davis JB, Forrest MB, Braun WA. Influence of carbohydrate status on immune responses before and after endurance exercise. J Appl Physiol, 1998, 84, 1917-25.
    [48] Pedersen BK, Hoffman-Goetz L. Exercise and the Immune System: Regulation, Integration, and Adaptation. Exercise and the Immune System: Regulation, Integration, and Adaptation. Physiol. Rev, 2000, 80: 1055-1081.
    [49] Nehlsen-Cannarella SL, Fagoaga OR, Nieman DC, Henson DA, Butterworth DE, Schmitt RL, Bailey EM, Warren BJ, Utter A, Davis JM. Carbohydrate and the cytokine response to 2.5 h of running. JAppl Physiol, 1997, 82, 1662-1667.
    [50] Nieman DC, Henson DA, Garner EB, Butterworth DE, Warren BJ, Utter A, Davis JM, Fagoaga OR, Nehlsen-Cannarella SL. Carbohydrate affects natural killer cell redistribution but not function after running. Med Sci Sports Exerc, 1997(b), 20, 1318-1324.
    [51] Bishop NC, Blannin AK, Rand L, Johnson R, Gleeson M. The effects of carbohydrate supplementation on neutrophil degranulation responses to prolonged cycling. Int J Sports Med, 2000(b), 21(suppl. 1), S73.
    [52] Bishop NC, Blannin AK, Armstrong E, Rickman M, Gleeson M. Carbohydrate and fluid intake affect the saliva flow rate and IgA response to cycling. Med Sci Sports Exerc, 2000(a), 32, 2046-2051.
    [53] Henson DA, Nieman DC, Parker JCD, Rainwater MK, Butterworth DE, Warren BJ, Utter A, Davis JM, Fagoaga OR, Nehlsen-Cannarella SL. Carbohydrate supplementation and the lymphocyte proliferative response to long endurance running. Int J Sports Med, 1998, 19, 574-580.
    [54] Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Lee W J, McAnulty SR, McAnulty LS. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol, 2003, 94, 1917-1925.
    [55] Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P, Ott P, Secher NH and Pedersen BK. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. Journal of Physiology, 2003, 549, 607-612.
    [56] Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Archives, 2003, 446, 9-16.
    [57] Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB Journal, 2003, 17, 884-886.
    [58] Brand K. Glutamine and glucose metabolism during thymocyte proliferation. Biochem J, 1985, 228, 353-61.
    [59] Newsholme P, Newsholme EA. Rates of utilisation of glucose, glutamine and oleate and formation of end products. Biochem J, 1989, 261, 211-8.
    [60] Hume DA, Radik JL, Ferber E. Aerobic glycolysis and lymphocyte transformation. Biochem J, 1978, 174, 703-9.
    [61] Coyle EF. Timing and method of increased carbohydrate intake to cope with heavy training competition and recovery. In: Williams C, Devlin J (eds), Eds., Foods, Nutrition and Sports Performance. London, England E & FN Spon, 1992, p35-63.
    [62] Coyle EF, Hagberg JM, Hurkey BE Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol, 1983, 55, 230-5.
    [63] Coggan AR. Plasma glucose metabolism during exercise in humans. Sports Med, 1991, 11 (2), 102-24.
    [64] Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions.Endocr Rev, 1984, 5(1), 25-44.
    [65] BuchkinghamJC, Smith T, Loxley HD. The control of ACTH secretion. In:James, V.H.T., ed. The adrenal gland, 2nd ed. New York: Raven Press, 1992, 131-158.
    [66] Imura H, Fukata J, Mori T. Cytokines and endocrine function—An interaction between the immune and neuroendocrine system—Review. Clin. Endocrinol, 1991, 35, pp. 107-115.
    [67] Kappel M, Dela F, Barington T, Galbo H, Pedersen BK. Immunological effects of a hyperinsulinaemic euglycaemic insulin clamp in healthy males.Scand J Immunol, 1998, 47(4), 363-8.
    [68] McCarthy DA, Dale MM. The leucocytosis of exercise. A review and model. Sports Med, 1988, 6(6), 333-63.
    [69] Besedovsky H, Del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science, 1986, 233, 652-654.
    [70] Sharp BM, Matta SG, Peterson PK, Newton R, Chao C, McAllen K. Tumor necrosis factor-α is a potent ACTH secretagogue: Comparison to interleukin-1-β. Endocrinology, 1989, 124, 3131-3133.
    [71] Perlstein RS, Whitnall MH, Abrams JS, Moougey EH. Synergistic roles of interleukin-6, interleukin-1 and tumor necrosis factor in adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology, 1993, 132, 946—952.
    [72] Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunol Rev, 1982, 65: 133-55.
    [73] Kappel M, Tvede N, Galbo H, Haahr PM, Kjaer M, Linstow M, Klarlund K, Pedersen BK. Evidence that the effect of physical activity on natural killer cell activity is mediated by epinephrine. J Appl Physiol, 1991, 70: 2530-4.
    [74] Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, Williams F, Butterworth DE. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc, 1998, 30: 671-8.
    [75] Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol, 2000, 15, 529 Pt 1: 237-42.
    [76] 剧烈运动对机体免疫功能的影响以及检测与调节方法的研究,矫玮著.北京体育大学出版社,2003,8:120-129.
    [77] Murray, R., Paul, G. L., Seifent, J. G. & Eddy, D. E. Responses to varying rates of carbohydrate ingestion during exercise. Medicine and Science in sports and Exercise, 1991, 23: 713-718.
    [78] Smith JK. Effect of exercise on complement activity. Am Allergy, 1990.
    [79] Murray, R., Paul, G. L., Seifent, J. G. & Eddy, D. E. Responses to varying rates of carbohydrate ingestion during exercise. Medicine and Science in sports and Exercise, 1991, 23: 713-718.
    [80] Nieman D. C., Influence of carbohydrate on the immune resposne to intensive, prolonged exercise. Exercise Immunology Review, 1998, 4: 64-76.
    [81] 陈佩杰.强化训练后血浆β内啡肽及生长抑素与T淋巴细胞及其亚群的关系.上海体育学院学报,1995,19(4):24—28.
    [82] 邓树勋主编.运动生理学.北京高等教育出版社,1999:305-335.
    [83] Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, Williams F, Butterworth DE. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc, 1998, 30, 671-8.
    [84] Henson DA, Nieman DC, Blodgett AD, Butterworth DE, Utter A, Davis JM, Sonnenfeld G, Morton DS, Fagoaga OR, Nehlsen-Cannarella SL. Influence of mode and carbohydrate on the immune response to long endurance exercise. Int J Sports Nutr, 1999, 9(2), 213-28.
    [85] Tilz GP, Domej W, Diezruiz A, Weiss G, Brezinschek R, Brezinschek HP, Huttl E, Pristautz H, Wachter H, Fuchs D. Increased immune activation during and after physical exercise. Immunobiology, 1993, 188, 194-202.
    [86] Bruunsgaard H, Galbo H, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol, 1997, 499(3), 833-41.
    [87] Y. J. CHEN, Stephen H. S. WONG, Cherry O. W. CHAN. Effects of GI meal and CHO solution on immune responses and running performance. The Department of Sports Science and Physical Education, The Chinese University of Hong Kong. 2005.
    [88] Gleeson, M., and Bishop, N. C.. Immunology. In: Maughan RJ, editor. Basic science for sports medicine. Oxford: Butterworth Heinemann, 1999, 199-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700