不同直链淀粉含量的玉米淀粉理化性质及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于淀粉中直链淀粉含量会直接影响淀粉颗粒的理化性质,进而影响淀粉的应用性能,本论文对直链淀粉含量分别为0%、26.8%、53.4%、61.6%、75.7%、78.9%、85.3%的玉米淀粉的各项理化性质进行了研究,分析了直链淀粉含量与淀粉各项理化性质的相关性及其对淀粉应用性能的影响。通过实验表明:(AS表示直链淀粉)
     (1)直链淀粉含量影响淀粉颗粒的形态结构和粒度分布:0%AS淀粉颗粒较大,棱形,不光滑,大小均匀,它的颗粒平均粒径为14.307μm,结晶结构属于A型;26.8%AS淀粉颗粒较大,棱形,不光滑,大小不均匀,含有小部分极小颗粒淀粉,它的颗粒平均粒径为14.269μm,结晶结构属于A型;53.4%AS淀粉颗粒表面不光滑,棱形,大小不均匀,含有极小颗粒淀粉的比例较大,它的颗粒平均粒径为14.178μm,结晶结构属于B型;61.6%AS淀粉颗粒表面比较光滑,近似圆形或椭圆形,大小不均匀,小淀粉比例大,它的颗粒平均粒径为11.746μm,结晶结构属于B型;75.7%AS淀粉颗粒表面光滑,近似椭圆形或圆形,大小均匀,颗粒较小,含有大颗粒淀粉的比例小,它的颗粒平均粒径为10.545μm,结晶结构属于B型;78.9%AS淀粉颗粒表面光滑,近似椭圆形或圆形,大小均匀,含有极少部分大颗粒淀粉,它的颗粒平均粒径为9.938μm,结晶结构属于B型;85.3%AS淀粉颗粒表面光滑,近似椭圆形或圆形,大小均匀,颗粒较小,含有大颗粒淀粉的比例小,它的颗粒平均粒径为9.715μm,结晶结构属于B型。
     (2)直链淀粉含量的增加提高了淀粉的糊化温度:0%AS、26.8%AS、53.4%AS、61.6%AS、75.7%AS、78.9%AS和85.3%AS玉米淀粉的糊化温度范围分别为63.36~69.57℃,68.61~74.80℃,68.67~78.54℃,107.58~163.98℃,108.01~164.16℃,107.38~166.42℃,108.77~170.13℃。
     (3)直链淀粉含量的增加降低了淀粉糊的粘度:当淀粉浓度为2%时,玉米淀粉的粘度随着直链淀粉含量的增加而降低。0%AS、26.8%AS、53.4%AS、61.6%AS、75.7%AS、78.9%AS和85.3%AS的玉米淀粉的淀粉糊粘度分别为0.164,0.016,0.013,0.012,0.01,0.01和0.009Pa.s。
     (4)直链淀粉含量的增加提高了淀粉糊的稳定性能,降低了淀粉的凝胶强度:七种玉米淀粉糊粘度随着离子浓度的增加而增加,随着温度的增加、剪切速率的增大、加热时间的延长而下降,受pH值影响无规律。0%AS和26.8%AS玉米淀粉受上述因素影响的变化幅度较大,53.4%AS、61.6%AS、75.7%AS、78.9%AS和85.3%AS的玉米淀粉受上述因素的影响较小。当淀粉浓度为10%时,0%AS、26.8%AS、53.4%AS、61.6%AS、75.7%AS、78.9%AS和85.3%AS的玉米淀粉的淀粉凝胶强度分别为9.7,58.3,48.7,30.5,22.3,15.8,14.2g。
     53.4%AS、61.6%AS、75.7%AS、78.9%AS和85.3%AS玉米淀粉的透光率较小,凝沉作用强,易老化;冻融稳定性较差;溶解度和膨胀度较差。相对而言,0%AS和26.8%AS玉米淀粉的透光率较好,凝沉作用弱,不容易老化;冻融稳定性较好;溶解度和膨胀度较好。
     (5)七种玉米淀粉对水、油和卡托普利的吸附性实验得出,0%AS玉米淀粉对油的吸附量最大,85.3%AS玉米淀粉对水和卡托普利的吸附量最大。
     (6)直链淀粉含量的增加提高了淀粉抗酶解性能:在相同处理条件下,玉米淀粉水解率大小顺序依此为0%AS>26.8%AS>53.4%AS>61.6%AS>75.5%AS>78.9%AS>85.3%AS,表明61.6%AS、75.7%AS、78.9%AS和85.3%AS玉米淀粉的抗酶解性能明显优于0%AS和26.8%AS玉米淀粉。从电镜扫描图看出:0%AS和26.8%AS玉米淀粉颗粒表面有大量的小孔形成,53.4%AS玉米淀粉颗粒表面有少量的小孔形成,61.6%AS、75.5%AS、78.9%AS和85.3%AS玉米淀粉颗粒表面上没有小孔形成。七种不同直链淀粉含量的玉米淀粉的抗酶解性能随着酶处理时间的延长而增加。
     (7)直链淀粉含量的增加提高了淀粉膜的强度,实验得出:高直链玉米淀粉膜的性质优于普通玉米淀粉膜,淀粉-PVA共混体系的相容性好于普通玉米淀粉,羟丙基化降低了淀粉膜的拉伸强度,提高了伸长率和撕裂强度;淀粉-PVA共混体系中高直链玉米淀粉的配比量增大,薄膜的拉伸强度随之增加,伸长率随之下降;乙二醇含量过高会引起膜发粘,强度降低,过低膜会变脆;不同直链淀粉含量的玉米淀粉膜的外观形态均呈透明、柔软、无色状,羟丙基淀粉膜呈浅黄色,吸水率随着直链淀粉含量增加而减小,羟丙基淀粉膜的吸水率大大的低于原淀粉膜。
Because the content of amylose in starch would affect the physical-chemical characters of starch, and would affect the application of starch. This paper has studied on the every physical-chemical characters of starch with the content of amylose starch were 0%、26.8%、53.4%、61.6%、85.3%、78.9%、75.7%.The affection of amylose content on the application of starch and the pertinences of amylose content and physical-chemical characters of starch were analyzed. The main results were as follows:
     (1)The content of amylose would affect configuration frame and granularity distributing of starch granule: 0%AS starch particle was big, rhombus, coarse and uniformity. Average diameters of starch granules were 14.307μm and X-ray showed type A; 26.8%AS starch granule were big, rhombus, coarse, inconsistent and some particles were lesser. Average diameters of starch granules were 14.269μm and X-ray showed type A; 53.4%AS starch granule was coarse, rhombus, inconsistent and most of the particles were lesser. Average diameters of starch granules were 14.178μm and X-ray showed type B; 61.6%AS starch was lubricity, rotundity or ellipse, inconsistent, most of the particles were lesser. Average diameters of starch granules were 11.746μm and X-ray showed type B; 75.7%AS starch was lubricity, rotundity or ellipse, uniformity and most of the particles were lesser. Average diameters of starch granules were 10.545μm and X-ray showed type B; 78.9%AS starch was lubricity, uniformity and most of the particles were lesser. Average diameters of starch granules were 9.938μm and X-ray showed type B; 85.3%AS starch was lubricity, rotundity or ellipse, uniformity and most of the particles were lesser.Average diameters of starch granules were 9.715μm and X-ray showed type B.
     (2) Starch gelatinization will be improve when the content of amylose increased:Gelatinized temperature of cornstarch with 0%AS, 26.8%AS, 53.4%AS, 61.6%AS, 75.7%AS, 78.9% AS and 85.3%AS were 63.36 - 69.57℃,68.61 - 74.80℃,68.67~78.54℃,107.58~163.98℃, 108.01~164.16℃,107.38-166.42℃and 108.77-170.13℃.
     (3) Viscidity of gelatinization will be reduced when the content of amylose decreased: Gelatinization of 2% comstarch will be reduced when amylose content increased. Gelatinization of comstarch with 0%AS、26.8%AS、53.4%AS、61.6%AS、75.7%AS、78.9%AS and 85.3%AS were 0.164,0.016、0.013, 0.012, 0.01, 0.01和0.009Pa.s.
     (4) When AS increased, stability of gelatinization will be enhanced but gel-intention will be reduced. Viscidity of comstarch will be enhanced when the ion increased and will be reduced when temperature, time, cut-speed increased. Comstarch with 0%AS and 26.8%AS were great effected by the factors. Comstarch with 53.4%AS、61.6%AS、75.7%AS、78.9%AS and 85.3%AS were little affected. Gel-intention of 10% comstarch with 0%AS、26.8%AS^ 53.4%AS、61.6%AS、75.7%AS、78.9%AS and 85.3% AS were 9.7, 58.3, 48.7, 30.5, 22.3, 15.8, 14.2g.
     Comstarch with 53.4%AS、61.6%AS、75.7%AS、78.9%AS and 85.3%AS were difficult to light-permeated and has worse solubility, swelling, stability when melted. But they were easy to retrograded and swell. Comstarch with 0%AS and 26.8%AS were better to light-permeated, swell and has better solubility and stability when melted. But they were difficult to retrograded and deposited.
     (5)The adsorption experiment of water, oil and Cptopril to these seven comstarch with different content of amylose adsorbed water, oil and Cptopril indicated: the capacity of 0%AS comstarch adsorbed oil was the most; but the capacity of 85.3%AS comstarch adsorbed water and Cptopril was the most.
     (6) Resisting-capability of comstarch to enzyme was enhanced when the content of amylase and hydrolyze-time increased. Hydrolyze rate of different comstarch were 0%AS>26.8%AS> 53.4%AS>61.6%AS>75.5%AS>78.9%AS>85.3%AS. Resisting-capability of comstarch with 61.6%AS> 75.7%AS、78.9%AS和85.3%AS were better than 0%AS and 26.8%AS. SEM showed that there are many pinhole in the surface of comstarch with 0%AS and 26.8%AS., there are a few pinhole in the surface of comstarch with 53.4%AS, there are no pinhole in the surface of cornstarch with 61.6%AS, 75.7%AS, 78.9%AS and 85.3%AS.The seven of cornstarch with different content of amylose, resisting-capability increased with increasing time.
     (7) Intensity of starch velum was enhanced when the content of amylase was increased. Character such as starch-PVA dissolution of high amylose corn starch was better than common corn starch. Hydroxide and propyl starch was better to extend but difficult to elongate. Intensity of extend will be enhanced but the elongate rate will be reduced when the content of amylase was increased in PVA.film of amylose will has more viscidity and less intensity when content of glycol increased. Cornstarch with different content of AS were all clarity, liability and achrornaticity. Film of Hydroxide and propyl starch was buff. Drink rate of Hydroxide and propyl starch was reduced when content of amylase decreased and it was great lower than common starch.
引文
[1]邱礼平,温其标.改性高链玉米淀粉的生物降解性能[J].华南理工大学学报(自然科学版),2004,32(6):55~58.
    [2]王振华,张新,亢为民.高淀粉玉米及其开发利用[J].玉米科学,2002,10(3):90~92.
    [3]邱礼平,温其标.高直链交联变性淀粉结构及糊化性质的研究[J].粮油食品科技,2004,12(1):8~10.
    [4]谷宏,马涛.高直链玉米淀粉在生物可降解塑料中的应用[J].农产品加工,2006,2:37~39.
    [5]Batz O,Scheibe R, Neuhaus HE.Purification of chloroplasts from fruits of green pepper and characterization of starch synthase[J].Planta,1995,196:50.
    [6]Okita TW.Is there an alternative pathway for starch synthesis[J].plant Physiol,1992,100:560.
    [7]Muller-Rober B,Kobmann J.Approaches to inflence starch quantity and starch quality in transgenic plants[J].Plant cell and Enviroment, 1994.17:601.
    [8]王学宏.淀粉及其水解产物与碘的显色反应[J].中学生物学,2006,22(2):6.
    [9]刘放.淀粉基础知识讲座[J].中国粮油食品,1985(2):36~37.
    [10]Jane J,Wong K S, McPherson A E.Branch-structure difference in starches of A- andB-type X-ray patterns revealed by their Naegeli dextrins[J].Carbohydrate Report, 1997, 300:219~227.
    [11]Morell M K, Rahman S, Abrahams S L, Appels R. The biochemistry and molecular biology of starch synthesis in cereals[J]. Australian Journal of Plant Physiology, 1995, 22:647~660.
    [12]Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large medium and small granule starches in normal and waxy barley endosperms[J]. Carbohydrate Polymers, 2002,49: 217~224.
    [13]Jenkins P J,Donald A M.The influence of amylose on starch granule structure.International[J] Journal of Biological Macromolecules,1995,17: 315~321.
    [14]Glallant D J,Bouchet B,Baldwin P M.Microscopy of starch:Evidence for a new level of granule organization[J].Carbohydrate Polymers, 1997, 32:177~191.
    [15]Smith A M. Making starch.Current Opinion in Plant Biology[J], 1999,3:223~229.
    [16]Cheetham N W H, Tao L P.The effects of amylase content on amylose molecular size and on theaverage chain length of amylopectin in maize starches[J].Carbohydrate Polymers,1997,33:251~261.
    [17]华丽,高群玉,梁世中.抗性淀粉结晶性质的研究[J].食品科学,2003,24(7):44~47.
    [18]阎俊,张勇,何中虎.小麦品种糊化特性研究[J]..中国农业科学,2001,34(1):9~13.
    [19]Jane J,Chen Y Y, Lee L F, McPherson A E,Wong K S,Radosavljevic M, Kasemsuwan T.Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch[J]. Cereal Chemistry, 1999,76: 629-637.
    [20] 杨晓蓉,李歆,凌家煜.不同类别大米糊化特性和直链淀粉含量的差异研究[J].中国粮油学报,2001,16(6):37~42.
    [21] 舒庆尧,吴殿星,夏英武,等.稻米淀粉RVA谱特征与食用品质的关系[J].中国农业科学,1998,31(3):1~4.
    [22] Zeng M, Morris C F. Batey I L, Wrigley C W. Sources of variation for starch gelatinization, pasting and gelation properties in wheat[J]. Cereal Chemistry, 1997, 74(1):63~71.
    [23] Tester R F, Debon S J J, Sommerville M D.Annealing of maize starch[J]. Carbohydrate Polymers, 2000, 42:287~299.
    [24] Gerard C, Planchot V, Buleon A, Colonna P. Crystalline structure and gelatinization behaviour of genetically modified maize starches. In P. Colonna & S. Guilbert,Biopolymer Science:food and non-food applications[J], Les Colloques. Paris: INRA.1999,91,59~63.
    [25] 黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展[J].高分子材料科学与工程.2004,20(5):19~23.
    [26] 梁勇,张本山,高大雄,等.淀粉的结晶性与非晶性研究进展[J].化学通报,2002,65(9):1~6.
    [27] 孙秀萍,于九皋,刘延奇.DSC分析方法在淀粉凝胶化研究中的应用[J].化学通报,2003,66 (32):1~7.
    [28] 明东风,马均.稻米直链淀粉及其含量研究进展[J].中国农学通报,2003,19(1):68~71,149.
    [29] 邱礼平,黄国平,温其标.改性高链玉米淀粉消化性能的研究[J].食品工业科技,2004,4(25):49~51.
    [30] 王月慧,丁文平.大米淀粉凝胶在储藏过程中消化特性的变化[J].粮食与饲抖工业,2003,11:9~10.
    [31] 李晓玺,温其标,陈玲.三氯氧磷交联木薯淀粉的消化性能及酶降解程度[J].化学工程,2002,30(4):45~49.
    [32] 变性淀粉专业委员会.高食物纤维淀粉,http://www.cn-mds.org/xiaozhishi/041023/26.htm。2005.6.
    [33] 吴建平.抗消化淀粉的研究进展及其应用前景[J].食品与发酵工业,25,2:66~70.
    [34] 何东保,李青.直链淀粉马来酸酐酯的合成及性能研究.武汉大学学报:理学版[J],2003,49(2):193~196.
    [35] 马红彦,杨宜功.酶法链淀粉流变特性的研究[J].华南农业大学学报,2002,23(2):81~83.
    [36] 邹丽霞,徐琼.直链淀粉羟丙基化研究[J].化工时刊,2002,5:20~23.
    [37] 邱礼平,牛晨艳,温其标.高直链淀粉羧甲基化影响因素的研究[J].食品科技,2004(4): 60~65.
    [38]董琪,陈大俊.高直链淀粉的醋酸酯化反应动力学[J].化学世界,2004(12):635~637.
    [39]董琪,朱颖先,陈大俊.高直链淀粉醋酸酯的合成与表征研究[J].化学世界,2003(8):408~411.
    [40]Randal L&Shogren.Preparation, thermal properties, and extrusion of high-amylose starch acetates.Carbhydrate polymers[J],1996,29(1):57~62.
    [41]史振声,王志斌,李凤海,等.国内外高直链淀粉玉米的研究与利用[J].辽宁农业科学,2002(1):30~33.
    [42]F.Ravenelle et al.Mechanical properties and structure of swollen crosslinked high amylase starch tablets[J].Carbhydrate polymers,2002, 47: 259~266.
    [43]黄立新,姜欣,高群玉,等.糯米及其淀粉性质的研究-粘度曲线及抗剪切性[J].郑州粮食学院学报,1998,19(3):35~39.
    [44]林江涛,刘国琴,钟沽明,等.微孔性变性淀粉的研究[J].郑州粮食学院学报,1999,20(4):45~50.
    [45]李学红,刘钟栋,陈肇锬.小麦羟丙基淀粉的制备及性质研究[J].郑州粮食学院学报,2000,21(3):6~11.
    [46]黄晓杰.高直链玉米淀粉-PVA共混塑料薄膜的制作工艺的研究[J].食品工业科技,2006,3:160~161.
    [47]胡明方主编.食品分析[M].重庆:西南师范大学出版社,1992.
    [48]Scott J, Mc Grance, Hugh J, et al. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products[J].Starch,1998,50(4):158~163.
    [49]高嘉安.淀粉与淀粉制品工艺学[M].北京:中国农业出版社,2001.
    [50]钟耕.野生植物淀粉理化性质及血糖指数体外测定的研究[D].重庆:西南农业大学博士论文,2003.
    [51]Zobel H F.X-ray analysis of starch granules[J].Methods in Carhohydrate Chemistry, 1964,5:109.
    [52]黄立新,周俊侠,张力田.用差示扫描量热法研究酸变性淀粉的糊化特性[J].华南理工大学学报,1998,25(3):17~21.
    [53]徐明生,上官新晨.葛粉与其他淀粉物理特性比较研究[J].中国粮油学报,2003,18(3),62~64.
    [54]杨新亭,王林风,王香东.黄原胶与魔芋的协效凝胶性研究[J].食品科学,2001,22(3):25~28.
    [55]刘惠君.醋酸直链扩增、蜡性和正常玉米淀粉功能性质就研究[J].食品科学.1998,19(3):3~8.
    [56]黄立新,高群玉,周俊侠,等.酯化交联淀粉反应及性质的研究(Ⅲ)-糊性质和应用[J].食品与发酵工业,2001,27(6):1~5.
    [57]李志达,王锦莺,张蓉真,等.凝胶性质的理化性质研究[J].食品与发酵工业,1995,(2):1~8.
    [58]江美都,顾振宇,王强林,等.板栗淀粉加工特性的研究[J].中国粮油学报,2001,16(6):55~58.
    [59]姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ.酶和原料粒度对形成多孔淀粉的影响[J].中国粮油学报,2001,(1):36~38.
    [60]叶兴乾,张贵平,苏平,等.栗粉的理化与功能特性研究[J].中国粮油学报,2001,(4):43~46.
    [61]张淑秋,谢茵,郝正华等.卡托普利缓释骨架片的研究[J].中国药学杂志,1996,31(11):668~669.
    [62]Hauber R.J.Swelling and reactivity of maize starch granules[J].Starch/Staerke,1992,(3):284~288.
    [63]Kishida T, Nogami H, Ogawa H, Ebihara K. The hypocholesterolemic effect of high amylose cornstarch in rats is mediated by an enlarged bile acid pool and increased fecal bile acid excretion, not by cecal fermented products[J]. J Nutr. 2002;132:2519~24.
    [64]余焕玲.抗性淀粉研究方法[J].粮食与油脂,2001,9:18~21.
    [65]张惠芬.硫酸-葸酮测定SPS的方法研究[J].昆明理工大学学报,2002,3:22~27.
    [66]刘长久.木薯淀粉-PVA共混塑料薄膜的制备及其性能的研究[J].广西化工,2000(4):11~12.
    [67]刘宏生,谢丰蔚,余龙,等.不同的链/支淀粉比对玉米淀粉糊化性质的影响[J].http:www.cn-mds.org.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700