不同血糖指数、血糖负荷的食物对人体耐力及代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:目前国内外在运动营养领域当中,通过控制血糖指数来调节CHO摄入的方法已经开始逐渐应用,但是对更优化的反应CHO摄入的方法,血糖指数和血糖负荷结合起来来研究对人体耐力及代谢影响的文章还没有。本文试图探讨运动前连续三天进食不同血糖指数(GI)、血糖负荷(GL)食物对人体耐力及代谢的影响。方法:本方案采用平衡重复测试法。9名男子耐力运动员[年龄20.11±0.78岁,身高174±2.23cm,体重64.8±5.00kg,最大摄氧量(64.8±2.35ml.kg~(-1).min~(-1),最大心率(192±3次/min)]进行三个实验,每个实验之前均进行糖原耗竭运动,随后受试者随机进食三天含等热量的高血糖指数、高血糖负荷(H-H)[CHO=73%、GI=80、GL=553],低血糖指数、低血糖负荷(L-L)[CHO=73%、GI=42、GL=249],高血糖指数、低血糖负荷(H-L)[CHO=31%、GI=79、GL=227]的碳水化合物(CHO)食物,每个实验间隔至少7天。H-H和L-L饮食组每天提供10.0克CHO/千克体重,H-L饮食组每天提供3.0克CHO/千克体重。测试日受试者安静休息2小时,首先在水平跑台上以70%VO_2max的强度运动1小时,随后以最短时间完成10km运动耐力测试。
     结果:1.连续三天进食不同GI、GL的CHO食物后,L-L与H-L相比运动时间明显缩短(L-L vs H-L:48.6±1.3min vs 55.3±6.9min,P<0.05);
     2.连续三天进食不同GI、GL的CHO食物后,H-L实验组总的CHO利用量明显低于H-H和L-L实验组(P<0.01),总的脂肪利用量明显高于H-H和L-L实验组(P<0.01);
     3.连续三天摄入不同GI、GL的CHO食物后,H-H和L-L实验组呼吸转化率(RER)明显高于H-L实验组(P<0.05);三组中心率、自我感觉、口渴感觉、腹部舒适度随着运动时间延长明显增加(P<0.01),但各组之间没有明显差异(P>0.05)。运动后40分钟L-L实验组腹部舒适效果明显好于H-H实验组(P<0.01);
     4.连续三天进食不同GI、GL的CHO食物后,H-H实验组最后一餐餐后2小时的血糖反应曲线增加面积是L-L和H-L实验组的1.5倍(P<0.01),运动中和恢复期间H-H和L-L实验组血糖浓度明显高于H-L实验组(P<0.01);
     5.连续三天进食不同GI、GL的CHO食物后,H-L实验组血清甘油、非脂化脂肪酸浓度明显高于H-H和L-L实验组(P<0.01),运动中和恢复期间H-L实验组明显高于L-L和H-H实验组(P<0.01);
     6.连续三天进食不同GI、GL的CHO食物后,运动过程中三个实验组血乳酸浓度之间没有明显差异(P>0.05)。
     结论:在运动前三天连续进食L-L的CHO食物,比提供等热量H-L的CHO食物能更有效地提高运动耐力;连续三天的高糖膳食(H-H和L-L)似乎可以为运动员提供更多的CHO供应来源,使运动中血糖浓度保持在较高水平。连续三天进食L-L的CHO食物,运动后期底物消耗出现了由糖氧化供能转向脂肪氧化供能;连续三天的L-L的CHO食物,能够使运动员在运动中出现良好的腹部舒适状态。
Purpose'This study examined the effect of three days meal with different glycemic index/glycemic load on endurance and metabolic. Methods:Nine endurance-trained male runners ( age:20, 1±0.78 years;height:174±2.23cm;body mass:64.±5.00kg; VO_2 max:64.8±2.35ml.kg~(-1).min~(-1);HRmax:192±3 beats.min~(-1)) completed three main trials that were separated by at least seven days in a counter-balanced design. After an overnight fast for 10 to 12hours, each subject completed glycogen-depleting exercise and consumed an isocaloric meal three days containing among high glycemic index and high glycemic load(CHO=73%、GI=80、GL=553 H-H), low glycemic index and low glycemic load (CH0=73%、GI=42、GL=249 L-L) , high glycemic index and low glycemic load( CHO=31%、GI=79, GL=227 H-L).H-H and L-L that provided 10.0g CHO(kg~(-1) bodymass) , H-L provided 3.0g CHO(kg~(-1) bodymass). After two hours, the subjects were required to run at 70% VO_2max during the first one hour of the run Then they completed the remaining 10-km as fast as possible.
     Results 1. A better performance was found in the L-L trial when compared with the H-L trail (L-L VS H-L :48.6±1.3min VS 55.3±6.9min, P<0.05)
     2. Carbohydrate oxidation was obvions higher (P<0.01) and fat oxidation was obvious lower (P<0.01) in the two high CHO trials i.e., H-H and L-L, when compared to that in the low CHO trail i. e. ,H-L.
     3. Respiratory exchange rate was obvious higher(P<0.01) in the two high CHO trials, when compared to that in the low CHO trail. Heart rate, ratings of perceived exertion, perceived thist , abdominal discomfort were no different in the three trails. But a better abdominal discomfort was found in the L-L after forty minutes(P<0.01)
     4. The 2 h incremental area under the blood glucose curve after the last breakfast was about 1.5 times larger in the H-H trial than that in L-L and H-L trials(P<0.05).Higher blood glucose concentrations were also observed in the two high-CHO trials during the exercise and the recovery period when compared to that in the H-L trial(P<0.05).
     5. Serum nonesterified fatty acids (NEFA) and the serum glycerol concentrations were higher in the H-L trial than that in the H-H and L-L trials throughout exercise (P<0.05).
     6. There was no difference in the blood lactate concentrations throughout the performance run in the three trails (P>0.05).
     Conculsion Consumption of three days L-L meal is more effective in improving the 10-km run time when compared to isocaloric H-H and H-L meals. It seems that consumption of three days high CHO meals can provide more CHO for runners and keep blood glucose concentrations higher. There is a relative shift in substrate utilization from CHO to fat and a better abdominal discomfortable when consumption of three days L-L meal.
引文
[1] Bergstrom, J., Hermansen, L., Hultman, E. Diet muscle glycogen and physical performance. Acta Physiologica Scandinavica, 1967, 71(2): 140-50.
    [2] Coyle EF, Coggan AR, Hemmert MK. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol, 1986, 61: 165-172
    [3] Burke, Louise M., John A. Hawley. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol 2000, 88: 1284-1290.
    [4] Schabort, E. J., Bosch, A. N., Weltan, S. M. The effect of a preexercise meal on time to fatigue during prolonged cycling exercise. Medicine and Science in Sports and Exercise, 1999, 31, 464-471.
    [5] El-Sayed, M. S., Balmer, J. & Rattu, A. J. Carbohydrate ingestion improves endurance performance during al hour simulated cycling time trial. Journal of Sports Science, 1997, 15, 223-230.
    [6] Kirwan, J. P., Cyr-Campbell, D., Campbell, W. W. Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metabolism: Clinical and Experimental, 2001, 50, 849-855.
    [7] Chryssanthopoulos C, Williams C, Wilson W. Comparison between carbohydrate feedings before and during exercise on running performance during a 30-km treadmill time trial. Int J Sport Nutr. 1994, 4(4): 374-86.
    [8] Williams A, Stephens R, McKnight T. Factors affecting adherence of end-stage renal disease patients to an exercise programme. Br J Sports Med. 1991, 25(2): 90-3.
    [9] KarlssonJ, Salti, B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971, 31(2): 203-6.
    [10] Tsintzas, K.&Wiliams, C. Human muscle glycogen metabolism during exercise. Sports Medicine, 1998,25, 7-23.
    [11] Burke LM, Collier GR, Hargreaves M. Glycemic index—A new tool in sport nutrition? Int J Sport Nutr 1998,8:401-415
    [12] Ventura, J.L., Estruch, A. Effect of prior ingestion of glucose or fructose on the performance of exercise of intermediate duration. European Journal of Applied Physiology, 1994,68,345-349.
    [13] Mitchell, J. B., Braun, W.A., Pizza, F.X. Pre-exercise carbohydrate and fluid ingestion: influence of glycemic response on 10-km treadmill running performance in the heat. Journal of Sports Medicine and Physical Fitness, 2000,40,41-50.
    [14] Brundle, S.,Thayer, R. Comparison of fructose and glucose ingestion before and during endurance cycling to exhaustion. Journal of Sports Medicine and Physical Fitness, 2000,40,343-349.
    [15] Hargreaves, M. Pre-exercise nutritional strategies: effects on metabolism and performance. Canadian Journal of Applied Physiology, 2001,26, S64-70.
    [16] Hawley, J. A. & Burke, L. M. Effect of meal frequency and timing on physical performance. British Journal of Nutrition, 1997,77,S91-S103.
    [17] Febbraio MA, Keenan J. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 2000,89: 1845- 1851
    [18] Horowitz, J. &Klein, S. Lipid metabolism during endurance exercise. American Journal of Clinical Nutrition, 2000, 72, 558S-563S.
    [19] Jeukendrup, A. E., Saris, W. H. M. Fat metabolism during exercise. International Journal of Sports Medicine, 1998a, 19, 231-244.
    [20] Jeukendrup, A. E.,Thielen, J. J. Effect of mediumchaintriacyl glycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. American Journal of Physiology, 1998b, 67, 397-404.
    [21] Horowitz, J. F. & Coyle, E. F. Metabolic responses to preexercise meals containing various carbohydrates and fat. American Journal of Clinical Nutrition, 1993, 58, 235-241.
    [22] Jenkins DJA, Wolever TMS. Glycemic index of food-A physical basis for carbohydrate exchange. AmJ Clin Nutr, 1981, 34: 362-366.
    [23] 杨勇 赵国华 食物血糖生成指数及其食物影响因素的研究[J] 杭州食品科技2004年第1期,1-3
    [24] Foster-Powell K, Holt SHA and Miller JS. International tables of glycemic index and glycemic load values. Am JC lin Nutr, 2002, 76: 5-56.
    [25] Sherman WM, Costill DL, Fink WJ. The effects of exercise and diet manipulation on muscle glycogen and its subsequent use during performance. Int J Sports Med, 1981, 2: 114-118.
    [26] Costill, D. L., Coyle, E., Dalsky, G. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. Journal of Applied Physiology, 1977, 43, 695-699.
    [27] Foster, C., Costill, D. L. & Fink, W. J. Effects of preexercise feedings on endurance performance. Medicine and Science in Sports and Exercise, 1979, 11, 1-5.
    [28] Koivisto VA, Karonen SL, Nikkila EA. Carbohydrate ingestion before exercise: comparison of glucose, fructose, and sweet placebo. J Appl Physiol 1981, 51:783-787
    [29] Hargreaves M, Costill DL. Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Med Sci Sports Exerc 1987, 19:33-36
    [30] Hawley JA and Burke LM. Effect of meal frequency and timing on physical performance. Br J Nurr, 1997, 77(suppl): S19-S103
    [31] Hargreaves M, Costill DL, Katz A. Effects of fructose Ingestionon muscle glycogen usage during exercise. Med Sci Sports, 1985, 17:360-363.
    [32] Thomas DE, Brotherhood JR, Brand JC. Carbohydrate feeding before exercise:effect of glycemic index. Int J Sports Med 1991, 12:180-186
    [33] Thomas DE, Brotherhood JR, Miller JB. Plasma glucose levels after prolonged strenuous exercise correlate inversely with glycemic response to food consumed before exercise. Int J Sport Nutr, 1994, 4:361-373
    [34] Febbraio MA, Stewart KL. Carbohydrate feeding before prolonged exercise:effect of glycemic index on muscle glycogenolysis and exercise performance. J Appl Physiol 1996, 81:1115-1120
    [35] Sparks MJ, Selig SS, Febbraio MA. Pre-exercise carbohydrate ingestion: effect of the glycemic index on endurance exercise performance. Med Sci Sports Exerc 1998, 30:844-849
    [36] DeMarco HM, Sucher KP. Preexercise carbohydrate meals:Application of glycemic index. Med Sci Sports Exerc 1999, 31:164-170
    [37] Wee SL, Williams C, Gray S. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc 1999, 31: 393-399
    [38] Stannard SR, Thompson MW, Brand Miller JC. The effect of glycemic index on plasma glucose and lactate levels during incremental exercise. Int J Sport Nutr Exerc Metab 2000, 10: 51-61
    [39] Kirwan JP, Cyr-Campbell D. Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metab Clin Experi, 2001, 50, 849-855
    [40] Wong, S. H., Lok, A. and Morris, J. Influence of pre-exercise carbohydrate meals on a 21-km run. Medicine and Science in Sports and Exercise. 2003, 35(5): S298.
    [41] 王香生 陈亚军 运动前进食不同血糖指数的食物对运动能力的影响[J] 中国运动医学杂志,2003,22(5):453-457
    [42] McClellan TM, Cheung SS&Jacobs I, Variability of time to exhaustion during submaximal exercise, Can J Appl Physiol, 1995, 20: 39-51
    [43] 史小才.补液补糖和运动[J].中国运动医学杂志,1997,16(3):192-199
    [44] McCoy M, Proietto J, and Hargreaves M. Skeletal muscle GLUT-4 and post-exercise muscle glycogen storage in humans. J Appl Physiol, 1996, 80: 411-415
    [45] Cohen P, Nimmo HG, and Proud CG. How does insulin stimulate glycogen synthesis? Biochem Soc Symp, 1979, 43: 69-75
    [46] 王香生 陈亚军 血糖指数及其在运动营养实践中的应用[J]中国运动医学杂志 2004,23(3):291-296
    [47] Ive JL, Lee MC, Brozinick JT. Muscle glycogen storage after different amounts of CHO ingestion, J Appl Physiol, 1988, 65: 2018-2023.
    [48] Keins B, Raben AB, Valeur A-K. Benefit of dietary simple carbohydrates on the early post exercise muscle glycogen repletion in male athletes. Med Sci Sports Exerc 1990, 22: S88
    [49] Blom PSC. Hostmark AT. Effect of different postexercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987; 19:491-496
    [50] Burke LM, Collier GR. Muscle glycogen storage after prolonged exercise:effect of the glycemic index of carbohydrate feedings. J Appl Physiol 1993, 75:1019-1023
    [51] Jozsi AC, Trappe TA, Starling RD. rhe influence of starch structure on glycogen resynthesis and subsequent cycling performance. Int J Sports Med 1996, 17:373-378
    [52] Jenkins DJA, Jenkins AL, Wolever TMS. Low glycemic index:Lente carbohydrate and physiological effects of altered food frequency. AMJ Clin Nutr, 1994, 59(suppl): 706S-709S.
    [53] Costill DL, Sherman WM, Fink WJ. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 1981, 34:1831-1836
    [54] Burke LM, Collier GR, Davis PG. Muscle glycogen storage after prolonged exercise:effect of the frequency of carbohydrate feedings. Am J Clin Nutr 1996, 64:115-119
    [55] Wong SHS, Siu PMF, Morris JG. High glycemic index food: effect of feeding frequency on subsequent endurance capacity. Med Sci Sports Exerc, 2002, 34(Suppl.):S231.
    [56] Salmeron J, Manson JE, Stampfer MJ. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997 Feb 12; 277(6):472-7.
    [57] Scaglioni, S. Stival, G. Dietary glycemic load, overall glycemic index, and serum insulin concentrations in healthy schoolchildren. American Journal of Clinical Nutrition, 2004, 79: 339-340.
    [58] Jeukendrup, A. E., Saris, W. H. M. A new validated endurance performance test. Medicine and Science in Sports and Exercise, 1996, 28, 266-270.
    [59] Louise M. Burke, Greg R. Collier. Effect of alcohol intake on muscle glycogen storage after prolonged exercise J Appl Physiol 2003, 95: 983-990
    [60] Soeren, M. H. V. & Graham, T. E. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. Journal of Applied Physiology, 1998, 85, 1493-1501.
    [61] Tarnopolsky, M. A. Caffeine and endurance performance. Sports Medicine, 1994, 18(2), 109-125.
    [62] Borg, G. A. V. Psychophysical basis of physical exertion. Medicine and Science in Sports and Exercise, 1982, 14, 377-387.
    [63] Siu, P. M., Wong, S. H. Effect of frequency of carbohydrate feedings on recovery and subsequent endurance run. Medicine and Science in Sports and Exercise, 2004, 36: 315-323.
    [64] Taylor, H. L., Buskirk, E. Maximal oxygen uptake as an objective measure of cardio-respiratory performance. Journal of Applied Physiology, 1955, 8, 73-80.
    [65] Jentjens RLP, Cale C, Gutch C. Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiot, 2002, 88: 444-452
    [66] Wolever, T. M., Jenkins, A. L. & Josse, R. G. The glycemic index: methodology and clinical implications. American Journal of Clinical Nutrition, 1991, 54, 846-854.
    [67] Williams, C., Brewer, J., Walker, M. The effect of a high carbohydrate diet on running performance during a 30-km treadmill time trial. European Journal of Applied Physiology and Occupied Physiology, 1992, 65(1):18-24
    [68] Gleeson M, Blannin AK, Walsh NP. Effect of low- and high-carbohydrate diets on the plasma glutamine and circulating leukocyte responses to exercise. Int J Sport Nutr. 1998, 8(1):49-59.
    [69] Choi, D., Cole, K. J. Effect of passive and active recovery on the resynthesis of muscle glycogen. Medicine and Science in Sports and Exercise, 1994, 26, 992-996.
    [70] Hagan, R. D., Diaz, F. J. & Horvarth, S. M. Plasma volume changes with movement to supine and standing position. Journal of Applied Physiology, 1978, 45, 414-418.
    [71] Shirreffs, S. M. & Maughan, R. J. The effect of posture change on blood volume, serum potassium and whole body electrical impedance. European Journal of Applied Physiology, 1994, 69, 461-463.
    [72] Luke Moseley Graeme I. Lancaster Asker E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance Eur J Appl Physiol 2003, 88:453-458
    [73] Saltin, B. & Karlsson, J. Muscle glycogen utilization during work of different intensities. In B. Pernow & B. Saltin (eds.), Muscle Metabolism During Exercise 1977, (pp. 289-300). New York: Plenum Press.
    [74] Brooks, G. & Mercier, J. Balance of carbohydrate and lipid utilization during exercise:The"crossover" concept. Journal of Applied Physiology, 1994, 76, 2253-2261.
    [75] Romijn, J. A., Coyle, E. F. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 1993, 265, 380-391.
    [76] Horowitz, J. F. Regulation of lipid mobilization and oxidation during exercise in obesity. Exercise and Sport Sciences Reviews, 2001, 29, 42-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700