玄参和黄连的化学成分分离及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玄参为玄参科植物玄参Scrophularia ningpoensis Hemsl.的根。重庆市南川区目前已成为全国最大的玄参种植基地,是全国玄参的重点产区。黄连属毛莨科黄连Coptis chinensis Franch.的根。黄连为重庆石柱县的地道中药材。
     为了更好的开发利用玄参和黄连的药用价值,发展当地中药产业经济,本文对玄参和黄连进行了化学成份和生物活性研究。本研究内容包括:
     1.提取分离实验
     1.1玄参化学成分的分离
     取玄参根,粉碎,用70%的乙醇渗漉提取,再经D101大孔树脂分离洗脱为30%,60%和90%乙醇的三部分。此三部分利用硅胶柱层析、HSCCC色谱等手段从玄参中分离出9个化合物,经波谱数据鉴定结构确定为哈巴苷、桃叶珊瑚苷、类叶升麻苷、升麻素苷、蔗糖、肉桂酸、哈巴俄苷、安格洛苷C和二十七烷。其中60%乙醇部分,用高速逆流色谱(HSCCC)技术在氯仿-正丁醇-甲醇-水(4:1:3:2)体系中分离,首次同时分离出高纯度哈巴俄苷(98%)和安格洛苷C(98.5%),此为这两化合物分离提供了一条新的简单容易分离手段。
     1.2黄连化学成分的分离
     本实验采用HSCCC法,在CHCl3-MeOH-0.2M HC1(4:1.5:2)体系中分离黄连浸膏,直接一步分离出小檗碱(纯度为80.56%)、黄连碱(纯度为82%)、药根碱(纯度为82%)、巴马汀(纯度为78%)及表小檗碱(纯度为85.65%),各单一斑点的流分再分别过Sephadex LH-20柱纯化,以氯仿/甲醇系统洗脱,可分别得到纯度较高的5个生物碱(98%)。
     2.细胞实验
     2.1体外的降糖活性初步研究
     本实验对玄参和黄连化学成分的降糖活性初步研究,选择用HepG2细胞。从玄参中分离得到的各浸膏组分和化合物均能在不同程度上促进HepG2细胞中葡萄糖消耗。过大孔树脂分离的60%乙醇组分为玄参降糖活性的主要活性部位。在0.1μg/ml-2.5gg/ml浓度范围内,筛选玄参和黄连中的各个化合物的降糖活性,以小檗碱的葡萄糖消耗能力最高,对促进HepG2细胞中葡萄糖消耗具有一定的剂量依赖关系;哈巴俄苷和黄连碱对促进HepG2细胞中葡萄糖消耗相对较好。
     2.2HepG2细胞内活性氧清除实验
     采用高糖刺激的方法来建立ROS模型,用荧光法测定,依据药物的荧光强度值和抑制率的结果可知,玄参和黄连中化合物对细胞内活性氧都有抑制作用,只是抑制的程度不同。在1-10μg/ml的药物浓度时,与高糖组相比,化合物中的小檗碱和黄连碱有较好的抗氧化活性,其在一定浓度下能够较好的抑制高糖刺激的活性氧升高,且呈现剂量依赖关系;同时,黄连中分离的生物碱比玄参中的化合物的抗氧化能力基本上要强。
     2.3玄参化学成分对血管紧张素转化酶(ACE)的抑制作用
     血管紧张素转化酶(angiotensin converting enzyme, ACE)在肾素-血管紧张素系统中具有调控血压的作用。本实验采用高效液相色谱(HPLC)的方法测定ACE-HHL-ACEI反应体系产物Hip,计算抑制率,验证玄参的降压机制是否与抑制ACE活力相关。实验中,考察玄参中各化合物在同一浓度(2mg/ml)下,加入不同体积(体积X为30、60和120μl)对ACE活性的抑制作用。结果表明各化合物在同一浓度加入不同体积对ACE活性的抑制作用有剂量关系,加入体积越大,抑制效果越好,但与卡托普利的抑制作用相比,玄参中各化合物在此浓度下的ACE活力的抑制率明显较低(P<0.01),说明玄参中各化合物降压效果一般。
     3.动物实验
     3.1黄连的化合物对实验性胃溃疡保护作用的研究
     本实验考察了黄连中的5个生物碱和8-烷基小檗碱衍生物(8-BBR-Cn,n=4,8,12和16)对大鼠胃溃疡保护作用的可能机制。
     在无水乙醇致胃黏膜损伤性模型中,与模型对照组相比,大鼠胃黏膜损伤指数和抑制率的考察结果可知,表小檗碱、巴马汀和药根碱(25、50、100mg/kg)均无明显的抑制乙醇诱导的大鼠急性胃黏膜损伤。而西咪替丁(50mg/kg,阳性对照组),黄连碱、小檗碱和8-烷基小檗碱衍生物(25、50、100mg/kg)均能显著的抑制乙醇诱导的大鼠急性胃黏膜损伤(P<0.001)。对胃黏膜的前列腺素E2(PGE2)和一氧化氮合酶(NOS)检测实验中,黄连碱、小檗碱和8-烷基小檗碱衍生物对乙醇诱导的大鼠急性胃黏膜损伤的保护作用可能是通过PGE2和NOS的通路来调节改善,而8-十六烷基小檗碱可明显抑制乙醇诱导的大鼠急性胃黏膜损伤(P<0.001),其抑制效果最好。
     幽门结扎法复制大鼠胃溃疡模型中,与模型对照组相比,黄连碱、小檗碱和8-烷基小檗碱衍生物(25、50、100mg/kg)能显著减少其胃液量、降低胃液总酸度和胃蛋白酶活性(P<0.001),且呈现剂量依赖关系。灌胃给药100mg/kg的黄连碱、小檗碱和8-烷基小檗碱衍生物也可显著抑制H+K+-ATP酶活力(P<0.05,P<0.01),其结果是抑制由于幽门结扎手术引起的胃酸分泌过多,从而使药物对胃溃疡有保护作用。在影响NO上,各给药组(25、50、100mg/kg)均显著促进NO生成(P<0.05,P<0.01)。在影响MDA上,黄连的化合物中仅有黄连碱对幽门结扎型消化性溃疡大鼠MDA的抑制有显著的作用(P<0.01)。
     3.2大鼠长期食用黄连中的巴马汀对其体重调节和性别偏好的影响
     在实验90天考察中,各组大鼠每10天称体重1次,根据体重调节给药量。与空白雌性大鼠对照组的体重相比,食用巴马汀(100mg/Kg)的雌性大鼠在50天后体重明显增加(P<0.05);在60-90天内,食用巴马汀的雌性大鼠的体重显著增加(P<0.01)。与空白雄性大鼠对照组的体重相比,食用巴马汀(100mg/Kg)的雄性大鼠体重在40-70天内明显减少(P<0.05),而80-90天大鼠体重显著降低(P<0.01)。所以,巴马汀在大鼠体重有性别选择的调节作用。通过检查血液学的参数,雌激素水平和分析肾组织中UCP2表达(免疫印迹法)的方法来验证巴马汀对大鼠体重调节和性别偏好影响的可能机制。
Xuanshen is the root of Scrophularia ningpoensis Hemsley, family Scrophulariaceae. Nanchuan district of Chongqing has become the largest national planting base, which is the focus areas of S. ningpoensis(Scrophularia ningpoensis). Huanglian is the root of Coptis chinensis Franch., family Ranunculaceae. Huanglian is Chinese herbs from Shizhu county of Chongqing.
     In order to develop and utilize the medicinal value of Xuanshen and Huanglian, and develop economy of local herbal industry, we studied chemical constituments and biological activities of two drugs. This paper has seven major parts:
     1. Extraction and separation experiments
     1.1Study on chemical constituents from S. ningpoensis
     A sample of air-dried root of S. ningpoensis was chopped and diacolated with70%ethanol at room temperature. The crude extract was redissolved in water and was loaded on a glass column containing D101macroporous resin, and washed with water, then eluted using a gradient mehtod with30%,60%and90%ethanol fractions. Three fractions were separated by silica gel column and HSCCC to obtain nine compounds. The structures of compounds were identified by1H and13C-NMR spectroscopic data. Compounds were identified as Harpagide、Aucubin、Acteoside、Prim-O-glucosyl-cimifugin、D-(+)-sucrose、Cinnamic acid、Harpagoside、Angroside C and Twenty-seven alkane. The60%ethanol fraction was used for subsequent HSCCC isolation. HSCCC is liquid-liquid distribution chromatography technology. S. ningpoensis was isolated in chloroform-n-butanol-methanol-water (4:1:3:2, v/v/v/v) solvent system by HSCCC. The crude extract was loaded onto a HSCCC column and yielded harpagoside and angroside C with the purity of higher than98%and98.5%resepctively. It is feasible to isolate active compounds harpagoside and angroside C from Scrophularia ningpoensis using HSCCC.
     1.2Study on chemical constituents from Rhizoma Coptidis
     Extracts of Rhizoma Coptidis were isolated in CHCl3-MeOH-0.2MHCl (4:1.5:2) solvent system by HSCCC with one step of separation, which were berberine palmatine, coptisine, epiberberine and jatrorrhizine with the purity of80.56%、78%、82%、82%and85.65%resepctively. Each part with single spot respectively from HSCCC separation by Sephadex LH-20column chromatography with eluting in chloroform/methanol system, could obtain5alkaloids with the purity of higher than98%.
     2. Cell experiments
     2.1Antihyperglycemic effect of constituents in vitro
     In this experiment, we studied antihyperglycemic activity of the chemical constituents of S. ningpoensis and Rhizoma Coptidis by glucose consumption in HepG2cells. The extracts and compounds can promote glucose consumption of HepG2cells in different extent from S. ningpoensis. The60%ethanol fraction was the main active parts of S. ningpoensis in antihyperglycemic activity. Antihyperglycemic activity of each compounds in0.1-2.5μg/ml concentration range was selected, and glucose consumption ability of berberine was highest, and had dose-dependent relationship within test concentration in glucose consumption ability of HepG2cell. The glucose consumption ability of harpagoside and coptisine were higher.
     2.2Inhibition the level of reactive oxygen in HepG2cell
     This experiment established reactive oxygen species model by using the method of glucose stimulation and measured by fluorescence method. According to the results of the fluorescence intensity and inhibition rate of S. ningpoensis and Rhizoma Coptidis, compounds had different degree of suppression. Compared with glucose group, berberine and coptisine (1~10μg/ml) had good antioxidant activity, which could inhibit the level of reactive oxygen by glucose stimulation and had dose-dependent relationship within test concentration. At the same time, compared to the compounds from S. ningpoensis, the antioxidant ability of the alkaloids in Rhizoma coptidis was basically better.
     2.3The effect of inhibition on ACE activity to chemical constituents of S. ningpoensis
     Angiotensin converting enzyme (ACE) in the renin-angiotensin system is the role of regulating blood pressure. We measured the content of hippuric acid by HPLC in ACE-HHL-ACEI system and calculated the inhibition rate of ACE activity. In this experiment, we investigated the effect of inhibition on ACE activity of each compound at the same concentration (2mg/ml), with different volume (volume X is30,60and120μl). These results showed that compounds had the effect of inhibition on ACE activity in the same concentration with increasing volume. But compared to the inhibitory effect of captopril, inhibition of ACE activity of each compound of S. ningpoensis was significantly lower at this concentration (P<0.01), which indicated that the effects of compounds in lowering blood pressure were not well.
     3. Animal experiments
     3.1Gastroprotective effect of compounds from Rhizoma Coptidis on experimented gastric ulcer in rats
     This paper studied the possible mechanisms underlying the gastroprotective effect of5alkaloids from Rhizoma Coptidis and8-Alkylberberine (8-BBR-Cn) derivatives with a long aliphatic chain (n=4,8,12and16) against gastric mucosal injury in rats.
     Gastric mucosal injury in rats was induced by ethanol. The ulcer index and percentage inhibition were evaluated. Compared with model control group, the ulcer index of epiberberine, palmatine and jatrorrhizin (25、50、100mg/kg) was not decreased significantly. Additionally, the ulcer index of cimetidine, berberine, coptisine and8-alkyl berberine derivatives was decreased significantly in rats (P<0.001). In this experiment, to test PGE2and NOS, we found the fact that berberine, coptisine and8-BBR-Cn (n=4,8,12and16) had protective effect on gastric mucous membrane, which was related to prostaglandin E2and nitric oxide synthase pathways.8-BBR-C16displayed stronger gastroprotective effect (P<0.001).
     Coptisine, berberine and8-alkylberberine derivatives (25,50,100mg/kg, ig) could significantly reduce the volume of gastric juice and the total gastric acidity, and decrease activity of pepsin (P<0.001) in gastric mucosal ulcer model by pylorus-ligature, which showed dose-dependent relationship. Coptisine, berberine and8-alkylberberine derivatives Coptisine, berberine and8-alkylberberine derivatives (25,50,100mg/kg, ig) also could significantly inhibit H+K+-ATP enzyme activity (P<0.05, P<0.01), these results indicated that drugs could inhibit excessive secretion of gastric acid by pylorus-ligature operation and had protective effect on gastric ulcer. To NO, each drug was significantly increased NO level (P<0.05, P<0.01). To MDA, coptisine could significantly inhibit MDA level in chemical constituents from Rhizoma Coptidis (P<0.05,P<0.01).
     3.2Weight regulation and gender preference effects by palmatine in long-term treatment in rat
     Body weight of both genders was measured at10-day intervals for three months. A significant increase in the female body weight and a decrease in the male body weight were observed in rats after treatment with palmatine for90days. Comparing to the female control group, body weight of female rats by palmatine treatment (100mg/Kg) increased from50day (P<0.05), and body weight of female rats increased significantly from60day to90day (P<0.01). Body weight of male rats relative to the male control group rats decreased from40day to70day (P<0.05) and decreased significantly from80day to90day (P<0.01). So, palmatine had the regulation effect of gender selection in rat weight. This experiment provides evidence that the changes in hematological parameters, estrogen level and uncoupling protein2(UCP2) expression are involved in the effect of the body weight regulated by palmatine.
引文
[1]谢小艳,夏春森.中药玄参的化学成分及药理研究进展[J]Asia-Pacific Traditional Medicine,2010,6(5):121-125.
    [2]张雯洁,刘玉青,李兴从,等.中药玄参的化学成分[J].云南植物研究,1994,16(4):407-412.
    [3]张建春,朱建美.玄参的化学成分与药理活性研究进展[J].山东医药工业,2003,22(1):25-27.
    [4]胡瑛瑛,黄真.玄参的化学成分及药理作用研究进展[J].浙江中医药大学学报,2008,32(2):268-270.
    [5]李医明,蒋山好,高文运,朱大元.玄参中的苯丙素苷成分[J].中草药,1999,30(7):487-489.
    [6]王珲.玄参水溶性成分的研究[D].武汉工业学院硕士论文,2008.
    [7]陈迎平,张霞.咽喉消炎喷雾剂的制备与质量标准研究[J].时珍国医国药,2005,16(8):704-704.
    [8]王建华,谢丽华,刘洪宇.玄参不同加工品中哈巴俄苷与肉桂酸的HPLC含量测定[J].中国药学杂志,2000,35(6):375-378.
    [9]俞静静,陈素红,吕圭源.玄参“凉血滋阴”药效相关研究概况[J].中国实验方剂学杂志,2007,13(9):63-66.
    [10]AHMED B.荒漠玄参中新的环烯醚萜苷及其抗糖尿病和抗炎活性[J].Biol Pharm Bull,2003,26(4):462-467.
    [11]赵宇新,李娆娆.荒漠玄参中新的环烯醚萜苷及其抗糖尿病和抗炎活性[J].国外医学:中医中药分册,2004,26(004):236-237.
    [12]Ahmed B, Al-Rehaily AJ, Al-Howiriny TA, El-Sayed KA, Ahmad MS. Scropolioside-D2 and harpagoside-B:two new iridoid glycosides from Scrophularia deserti and their antidiabetic and antiinflammatory activity[J]. Biological and Pharmaceutical Bulletin,2003,26(4):462-467.
    [13]黄才国,魏善建,刘军华.玄参中环烯醚萜Epibueropyridinium A对醛糖还原酶的抑制作用[J].第二军医大学学报,2006,27(007):760-762.
    [14]黄才国,魏善建.玄参中环烯醚萜Epibueropyridinium A预防D-半乳糖性白内障的实验研究[J].第二军医大学学报,2007,27(11):1204-1206.
    [15]孙奎,姜华.玄参中苯丙素苷对肝细胞损伤保护作用的研究[J].药学实践杂志,2002,20(4):234-235.
    [16]Kimura Y, Okuda H, Matsushita N. Effects of baicalein isolated from roots of Scutellaria baicalensis Georgi on interleukin 1β-and tumour necrosis factor a-induced tissue-type plasminogen activator and plasminogen activator inhibitor-1 production in cultured human umbilical vein endothelial cells[J]. Phytotherapy Research,1997,11(5):363-367.
    [17]曾华武,李医明.玄参提取物的抗炎和抗氧活性[J].第二军医大学学报,1999,20(009):614-616.
    [18]黄才国,李医明,贺祥,魏善建,焦炳华.玄参中苯丙素苷对大鼠肝损伤细胞凋亡的影响[J].中西医结合肝病杂志,2004,14(3):160-161.
    [19]冯有为,林红伍,李文吟.脉络宁注射液预防和治疗血栓性疾病作用机理的探讨和临床观察[J].甘肃中医,2000,3:16-17.
    [20]Hajiaghaee R, Monsef-Esfahani HR, Khorramizadeh MR, Saadat F, Shahverdi AR, Attar F. Inhibitory effect of aerial parts of Scrophularia striata on matrix metalloproteinases expression[J]. Phytotherapy Research,2007,21(12):1127-1129.
    [21]李医明,蒋山好.玄参中微量单萜和二萜成分[J].解放军药学学报,2000,16(1):22-24.
    [22]倪正,蔡雪珠,黄一平,王殿俊,卞慧敏.玄参提取物对大鼠血液流变性,凝固性和纤溶活性的影响[J].中国微循环,2004,8(3):152-153.
    [23]黄才国,李医明,贺祥,魏善建,姜华.玄参中苯丙素苷XS-8对兔血小板cAMP和兔血浆中PGI2/TXA2的影响[J].第二军医大学学报,2004,25(8):920-921.
    [24]陈红英.黄连化学成分的分离及其降糖活性研究[D].西南大学博士论文,2012.
    [25]陈馥葬,高晓山.古代中医药文献中的黄连单方及黄连法[J].中成药,1997,19(9):36-37.
    [26]余园媛,王伯初,彭亮,等.黄连的药理研究进展[J].重庆大学学报(自然科学版),2006,29(2):106-107.
    [27]邹晨辉,申竹芳.黄连生物碱抗糖尿病机制的研究进展[J].中草药,2004,35(11):附2-5.
    [28]冯敏,黄明,李学刚.味连及副产物有效成分和氨基酸含量的研究[J].中药材,2005,28(9):753-754.
    [29]陈红英.黄连指纹图谱研究进展[J].中国中医药信息杂志,2012,19(5):109-112.
    [30]Ma BL, Ma YM, Shi R, Wang TM, Zhang N, Wang CH, et al. Identification of the toxic constituents in Rhizoma Coptidis[J]. Journal of Ethnopharmacology,2010,128(2):357-364.
    [31]Prabhakar PK, Doble M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes[J]. Phytomedicine,2009,16(12): 1119-1126.
    [32]吴玉娟.黄连多糖的提取及活性研究[D].成都:西南交通大学硕士学位论文,2007,12-20.
    [33]MIYAZAWAM, KAWATA J, YAMAFUJIC. Components of Essential Oil from Rootstock of Coptis chinensis[J]. Natural medicines,2004,58(5):222-225.
    [34]李备,周岐新.黄连抗消化性溃疡的药理学研究进展[J].中国药房,2005,16(14):1107-1109.
    [35]李备,潘永全.刘华蓉,等.黄连总碱对乙醇致大鼠胃黏膜损伤的保护作用及其机制研究[J].中成药,2006,28(1):72-78.
    [36]贺丽,陈宏,吴桂芝.黄连在消化系统疾病中的应用[J].中医药信息,2001,18(6):38-39.
    [37]HIRANO H, OSAWA E, YAMAOKA Y, YOKOI T. Gastric-mucous membrane protection activity of coptisine derivatives, Biological and Pharmaceutical Bulletin,2001,24(11): 1277-1281.
    [38]Hirano H.黄连对胃粘膜的保护作用[J].国外医学:中医中药分册,1998,20(6):31-31.
    [39]张明发,沈雅琴.非处方药小檗碱抗腹泻作用的再评价[J].中国医院用药评价与分析,2003,3(3):148-152.
    [40]顾立立综述,李宁审校.小檗碱对消化道疾病治疗的进展[J].医学研究生学报,2008,21(3):38-39.
    [41]Liu F, Ng TB. Antioxidative and free radical scavenging activities of selected medicinal herbs[J]. Life Sciences,2000,66(8):725-735.
    [42]Schinella GR, Tournier HA, Prieto JM. Antioxidant activity of anti-inflammatory plant extracts[J]. Life Sciences,2002,70(9):1023-1028.
    [43]Hirano H, Takashi T, ToshioY. Isolation of free radicals eavenger from Coptidis Rhizoma[J]. Natural Medicines,1997,51(6):539-540.
    [44]Jung HA, Min BS, Yokozawa T, et al. Anti-Alzheimer and Antioxidant Activities of Coptidis Rhizoma Alkaloids[J]. Biological & Pharmaceutical Bulletin,2009,32(8):1433-1438.
    [45]陈芳正.硫酸黄连素治疗绵羊乳房炎[J].青海畜牧业,2002,(1):45-48.
    [46]张文仙.黄连汤加味治疗慢性萎缩性胃炎97例[J].国医论坛,2005,20(6):7-8.
    [47]Zhang Qian, Piao XiangLan, Piao XiangShu, Lu Ting, et al. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides[J]. Food and Chemical Toxicology,2011,49(1):61-69.
    [48]Kuo Chi-Li, Chi Chin-Wen, Liu Tsung-Yun. The anti-inflammatory potential of berberine in vitro and in vivo[J]. Cancer Letters,2004,203(2):127-137.
    [49]蒋激扬,耿东升,吐尔逊江·托卡依.黄连素的抗炎作用及其机制[J].中国药理学通报,1998,14(5):434-437.
    [50]Song G, Du Q. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system[J]. Journal of Chromatography A,2010,1217(38):5930-5934.
    [51]Song G, Du Q. Chen, Z. et al. Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay[J]. Journal of Chromatography A,2010,1217(38):5470-5476.
    [52]吴俊芳,刘天培.小檗碱对局灶性脑缺血大鼠血小板聚集及血浆TXB2和6-keto-PGFla水平的影响[J].药学学报,1995,30:98-102.
    [53]叶菲,申竹,谢明智.中药黄连及其复方对实验动物血糖的影响[J].中国实验方剂学杂志,1999,5(3):23-24.
    [54]陈其明,谢明智.黄连及小檗碱降血糖作用的研究[J].药学学报,1986,21(6):401404.
    [55]陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响[J].药学学报,1987,22(3):161-165.
    [56]马翠兰,吴杰,等.三黄制剂降血糖作用研究[J].时珍国医国药,2001,12(9):775-778.
    [57]代培良,于得海.黄连解毒汤降血糖作用的实验研究[J].河南中医学院学报,2004,19(2):36-37.
    [58]马燕,袁月新,张俊梅,等.黄连相关中药复方治疗糖尿病及其并发症的研究概况[J].中国实验方剂学杂志,2011,17(12):272-275.
    [59]喇孝瑾,梁静,丰兆勇,等.黄连散、二甲双胍及参芪降糖颗粒降糖作用的对比实验研究[J].中国煤炭工业医学杂志,2010,13(5):769-771.
    [60]李素迎,姚运纬,伍忍.盐酸小檗碱对链脲霉素致大鼠离体胰岛B细胞损伤的影响[J].中国现代医学杂志,2002,12(18):6-8.
    [61]Iizuka N, Hazama S, Yoshimura K. Anticachectic effects of the natural herb Coptidis rhizoma and Berberine on mice bearing colon26/clone20 adenocarcinoma[J]. Int J Cancer,2002, 99(2):286.
    [62]Jantova S, Cipak L, Cernakova M, et al. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells[J]. J. Pharm. Pharmacol.,2003,55(8):1143-1149.
    [63]辛莉,施江,刘素云,郭永新,郁飞燕.高速逆流色谱及其在天然产物分离中的研究进展[J].食品工业科技,2009,30(11):335-338.
    [64]戴德舜,王义明,罗国安.高速逆流色谱研究进展[J].分析化学,2001,29(5):586-591.
    [65]高荫榆,魏强,范青生,陈秀霞.高速逆流色谱分离提取天然产物技术研究进展[J].食品科学,2008,29(2):461465.
    [66]李艳,肖凯军,郭祀远,王兆梅.高效逆流色谱研究进展—在天然产物有效成分分离方面的应用[J].现代食品与药品杂志,2006;16(4):78-80.
    [67]Ito Y, Conway WD. High-speed countercurrent chromatography[M],1986.
    [68]毛立新,刘诚,杨小兰.高速逆流色谱在保健食品功能成分纯化中的应用[J].Biotechnology Letters,2004,26(4):1341-1345.
    [69]Ito Y. Efficient preparative counter-current chromatography with a coil planet centrifuge[J]. Journal of Chromatography A,1981,214(1):122-125.
    [70]曹学丽.高速逆流色谱分离技术及应用[M].化学工业出版社,2005.
    [71]Oka F, Oka H, Ito Y. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography[J]. Journal of Chromatography A,1991,538(1):99-108.
    [72]吴建平,丁霄霖.食品蛋白质降血压肽的研究进展[J].中国粮油学报,1998,13(5):10-14.
    [73]陈吉球.血管紧张素转化酶[J].桂林医学院学报,1997,10(1):131-134.
    [74]Ferreira S. A bradykinin-potentiating factor present in the venom of Bothrops jararaca[J]. British journal of pharmacology and chemotherapy,2012,24(1):163-169.
    [75]明智强.菊花降血压有效部位的筛选及相关实验研究[D].西南大学硕士论文,2008.
    [76]Murray B, FitzGerald R. Angiotensin converting enzyme inhibitory peptides derived from food proteins:biochemistry, bioactivity and production[J]. Current pharmaceutical design, 2007,13(8):773-791.
    [77]Cushman DW, Cheung H, Sabo E, Ondetti M. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids[J]. Biochemistry,1977,16(25):5484-5491.
    [78]齐福权,张丽慧,赵建波.卡托普利临床应用新进展[J].杭州师范学院学报:医学版2005,2:81-83.
    [79]王国庆.浅谈胃脘痛的辨证与治疗[J].中医研究,2009,22(6):52-54.
    [80]钟娃,阚方巨,李庆明.急性胃黏膜病变与胃黏膜保护研究进展[J].现代消化及介入诊疗,2006,11(2):109-113.
    [81]张红梅,刘晓伟,曲宏达,等.左金丸对应激性溃疡大鼠下丘脑室旁核c-fos及HPA轴的调节作用[J].中国中西医结合急救杂志,2004,11(5):276-280.
    [82]徐萍,卡阿凤.大黄提取液对实验性大鼠胃粘膜细胞保护作用的研究[J].中华消化杂志,1992,1(1):62-62.
    [83]彭建农,彭腊珍.玄参的现代研究进展[J].中华现代临床医学杂志,2008,6(9):786-787.
    [84]黄雄,黄嬛.中药玄参的研究进展[J].中医药导报,2007,13(10):103-105.
    [85]张德胜.重庆南川区玄参产业发展对策研究[J].中国园艺文摘,2012,28(1):32-33.
    [86]李备,刘华蓉,潘永全,等.黄连总生物碱对乙醇致大鼠胃黏膜损伤的保护作用及其机制探讨[J].中国中药杂志,2006,31(1):51-54.
    [87]Bhutada P, Mundhada Y, Bansod K, et al. Inhibitory effect of berberine on the motivational effects of ethanol in mice[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010,34(8):1472-1479.
    [88]PAN L, Tang Q, Fu Q, HU B, XIANG J, QIAN J. Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer micel[J]. Acta Pharmacologica Sinica,2005, 26(11):1334-1338.
    [89]Cheng ZF, Zhang YQ, Liu FC. Berberine against gastrointestinal peptides elevation and mucous secretion in hyperthyroid diarrheic rats[J]. Regulatory peptides,2009,155(1):145-149.
    [1]张德胜.重庆南川区玄参产业发展对策研究[J].中国园艺文摘,2012,28(1):32-33.
    [2]张刘强,李医明.近10年玄参属植物化学成分和药理作用研究进展[J].中草药,2011,42(11):2360-2368.
    [3]李爱峰,刘宁宁,柳仁民.高速逆流色谱原理及其在天然产物化学成分分离中的应用研究进展[J].理化检验:化学分册,2008,44(5):481-487.
    [4]曹学丽,高速逆流色谱分离技术及应用[M].化学工业出版社,2005.
    [5]毛立新,刘诚,杨小兰.高速逆流色谱在保健食品功能成分纯化中的应用[J].Biotechnology Letters,2004,26:1341-1345.
    [6]Ito,Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography[J]. J Chromatogr A,2005,1065(2):145-168.
    [7]赵军,闫明,黄毅,刘涛,赵昱.紫花列当水溶性成分的研究[J].天然产物研究与开发,2009(004):619-621.
    [8]Li L, Tsao R, Liu Z, Liu S, Yang R, Young JC, et al. Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography[J]. Journal of Chromatography A,2005,1063(1):161-169.
    [9]Lei L, Yang F, Zhang T, Tu P, Wu L, Ito Y. Preparative isolation and purification of acteoside and 2'-acetyl acteoside from Cistanches salsa (CA Mey.) G. Beck by high-speed counter-current chromatography[J]. Journal of Chromatography A,2001,912(1):181-185.
    [10]韩忠明,王云贺,韩梅,赵淑杰,杨利民.高速逆流色谱分离纯化防风中升麻素苷和5-O-甲基维斯阿米醇苷[J].分析化学,2009,37(011):1679-1682.
    [11]李从军,陈迪华.中药升麻的化学成分[J].中草药,1995,26(6):288-289.
    [12]孙小花,沈光明,田瑄.细穗玄参的化学成分研究-Ⅱ[J].西北植物学报,2006, 26(002):412-415.
    [13]Davini E, Javarone C, Trogolo C, Aureli P, Pasolini B. The quantitative isolation and antimicrobial activity of the aglycone of aucubin[J]. Phytochemistry,1986,25(10):2420-2422.
    [14]李发荣,杨建雄,李宝林,张尊听,李伟.太白参中桃叶珊瑚苷的分离鉴定和提取工艺研究[J].中草药,2003,34(9):802-803.
    [15]Li YM, Jiang SH, Gao WY, Zhu DY. Iridoid glycosides from Scrophularia ningpoensis[J]. Phytochemistry,1999,50(1):101-104.
    [16]邹臣亭,杨秀伟.玄参中一个新的环烯醚萜糖苷化合物[J].中草药,2000,31(4):241-243.
    [17]宋兆辉,王保德,巴杭,童孝田,朱大元,蒋福祥.新疆芍药化学成分的研究[J].中国中药杂志,2004,29(008):748-751.
    [18]El-Naggar LJ, Beal JL. Iridoids. A review[J]. Journal of Natural Products,1980,43(6): 649-707.
    [19]姜守刚,蒋建勤,祖元刚.玄参的化学成分研究[J].植物研究,2008,28(2):254-256.
    [20]TONG S, YAN J, LOU, a.J. Preparative isolation and purification of harpagoside from Scrophularia ningpoensis hemsley by high-speed counter-current chromatography[J]. Phytochemical Analysis,2006,17(8):406-408
    [21]Ihsan Calis G-AG, Otto Stichera. Two phenylpropanoid glycosides from Scrophularia scopolii[J]. Phytochemistry,1988,27(5):1465-1468.
    [22]张艮红.马蹄莲中烷烃的分离与结构鉴定[J].怀化医专学报,2009,7(2):19-21.
    [1]余园媛,王伯初,彭亮,等.黄连的药理研究进展[J].重庆大学学报(自然科学版),2006,29(2):106-107.
    [2]邹晨辉,申竹芳.黄连生物碱抗糖尿病机制的研究进展[J].中草药,2004,35(11):附2-5.
    [3]李爱峰,刘宁宁,柳仁民.高速逆流色谱原理及其在天然产物化学成分分离中的应用研究进展[J].理化检验:化学分册,2008,44(5):481-487.
    [4]陈红英.黄连化学成分的分离及其降糖活性研究[D].西南大学博士论文,2012.
    [5]Zhang S, Wang M, Wang C. Preparative separation and purification of alkaloids from Rhizoma coptidis by high-speed counter-current chromatography[J]. Separation and Purification Technology,2011,75(3):428-431.
    [6]X. Yang, J. Wang, J. Luo, L. Kong, One-step large-scale preparative isolation of isoquinoline alkaloids from rhizoma coptidis chinensis by polyamide column chromatography and their quantitive structure-retention relationship analysis [J]. Journal of Liquid Chromatography & Related Technologies,2012,35(13):1842-1852.
    [7]Chen H-Y, Ye X-L, Cui X-L, He K, Jin Y-N, Chen Z, et al. Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells[J]. Fitoterapia,2012,83(1): 67-73.
    [8]毛宇昂.岩黄连化学成分和活性的研究[D].广西医科大学,硕士毕业论文,2006.
    [9]马红梅,陈刚,李文,范雪梅,李志峰,裴月湖,黄连化学成分的分离与鉴定[J].沈阳药科 大学学报,2011,28(2):695-699.
    [10]王奇光,张惠迪,陈耀祖,药根碱的分子结构和晶体结构测定[J].兰州大学学报(自然科学版),1989,25(3):3944.
    [1]钱荣立.中华医学会糖尿病学会,糖尿病临床指南[M],北京医科大学出版社,2000.
    [2]钱荣立.关于糖尿病的新诊断标准与分型[J].中国糖尿病杂志,2000,8(1):5-6.
    [3]王芬,何华亮,刘铜华.抗糖尿病中药活性成分及其作用机制的研究进展[J].时珍国医国 药,2008,19(3):766-767.
    [4]朱芸,刘金荣,张伟.降血糖药用植物资源概述[J].中西医结合学报,2004,2(1):67-68.
    [5]汪宁,朱荃,周义维,童黄锦.蜂王浆冻干粉对HepG2细胞葡萄糖消耗作用及对糖尿病小鼠降糖作用的实验研究[J].食品科学,2006,27(09):233-235.
    [6]齐峰,邱昌龙,杨晓溪,赵舒,喇孝瑾,王志文.加味桂枝人参汤对胰岛素抵抗HepG2细胞葡萄糖消耗量的影响[J].中国中医基础医学杂志,2012,18(004):373-375.
    [7]李玉洁,郑晓珂,冯卫生.卷柏降糖作用的实验研究[J].2008年中国药学会学术年会暨第八届中国药师周论文集,2008.
    [8]Zheng X-k, Li Y-j, Zhang L, Feng W-s, Zhang X. Antihyperglycemic activity of SelagineLla tamariscina (Beauv.) Spring[J]. Journal of Ethnopharmacology,2011,133(2):531-537.
    [1]张彤,邓红,苏宁,刘必成,刘东风.茶多酚对高糖所致人肾小球系膜细胞活性氧产生的影响[J].东南大学学报:医学版,2003,22(3):151-154.
    [2]王凯,邓红,赵龙,张彤,李海浪,刘必成.高糖环境下肾小球系膜细胞和内皮细胞相互作用对活性氧产生的影响以及茶多酚的干预作用[J].东南大学学报:医学版,2004,23(3):151-154.
    [3]侯瑞英.丹参乙酸镁对高糖诱导的细胞内氧化损伤的保护作用及其机制研究[D].中南大学,2010.
    [4]王蕾,吴和平,舒筱灿,舒旭,伍世挥,罗海p47phox向胞膜移位调节高糖导致的内皮细胞内活性氧升高[J].医学研究杂志,2011,40(7):65-67.
    [5]耿予欢,李国基,魏东,李琳.荧光探针法测定极地雪藻自由基含量的研究[J].现代食品 科技,2008,24(4):381-383.
    [6]曾华武,李医明.玄参提取物的抗炎和抗氧活性[J].第二军医大学学报,1999,20(009):614-616.
    [7]金雷,薛宏宇,金礼吉,徐永平.桃叶珊瑚苷对糖尿病大鼠线粒体的抗氧化作用[J].山东医药,2008,48(4):16-18.
    [1]Lee J-E, Bae IY, Lee HG, Yang C-B. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica) [J]. Food Chemistry, 2006,99(1):143-148.
    [2]曹晓钢,于刚,叶小利,王立军,李学刚.中药提取物及活性部位抑制血管紧张素转化酶 活性的研究[J].食品与药品,2009;11(1):20-23.
    [3]X. Xiao, X. Luo, B. Chen, S. Yao, Determination of angiotensin converting enzyme inhibitory activity by high-performance liquid chromatography/electrospray-mass spectrometry[J]. Journal of Chromatography B,2006;834(1):48-54.
    [4]陈洪源,明智强,李学刚,牛小花.苍术提取物对血管紧张素转化酶的抑制活性[J].重庆工商大学学报:自然科学版,2008;25(4):419-422.
    [5]张建春,朱建美.玄参的化学成分与药理活性研究进展[J].山东医药工业,2003;22(1):25-27.
    [6]李小多,李学刚,张波,宋尚华,刘旭晶,叶小利.抑制血管紧张素转化酶的中药及活性成分的研究[J].食品工业科技,2013,34(1):49-52.
    [1]Bucciarelli A, Minetti A, Milczakowskyg C, Skliar M. Evaluation of gastroprotective activity and acute toxicity of Solidago chilensis Meyen (Asteraceae) [J]. Pharmaceutical Biology,2010, 48(9):1025-1030.
    [2]Chaturvedi A, Kumar MM, Bhawani G, Chaturvedi H, Kumar M, Goel R. Effect of ethanolic extract of Eugenia jambolana seeds on gastric ulceration and secretion in rats[J]. Indian journal of physiology and pharmacology,2007,51(2):131-135.
    [3]Ji CX, Fan DS, Li W, Guo L, Liang ZL, Xu RM, et al. Evaluation of the anti-ulcerogenic activity of the antidepressants duloxetine, amitriptyline, fluoxetine and mirtazapine in different models of experimental gastric ulcer in rats[J]. European journal of pharmacology,2012, 69(1-3):46-51.
    [4]Klopell F, Lemos M, Sousa J, Comunello E, Maistro E, Bastos J, et al. an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae) [J]. ZEITSCHRIFT FUR NATURFORSCHUNG C,2007,62(7/8):537-541.
    [5]Rasheed N, Ahmad A, Singh N, Singh P, Mishra V, Banu N, et al. Differential response of A 68930 and sulpiride in stress-induced gastric ulcers in rats[J]. European journal of pharmacology,2010,643(1):121-128.
    [6]Salim AS. Stimulation of healing by free radical scavengers of ischemia-induced acute gastric mucosal injury in the rat[J]. Journal of pharmaceutical sciences,1992,81(11):1095-1097.
    [7]Santos Cerqueira G, dos Santos e Silva G, et al. Effects of hecogenin and its possible mechanism of action on experimental models of gastric ulcer in mice[J]. European journal of pharmacology,2012,683(1-3):260-269.
    [8]刘环清.香连丸抗消化性溃疡(胃脘痛)及其作用机理的实验研究[D].硕士毕业论文,黑龙江中医药大学,2008.
    [9]李备.黄连总碱对实验性胃溃疡的作用研究[D].硕士毕业论文,重庆医科大学,2005.
    [10]HIRANO H, OSAWA E, YAMAOKA Y, YOKOI T. Gastric-mucous membrane protection activity of coptisine derivatives[J]. Biological and Pharmaceutical Bulletin,2001,24(11): 1277-1281.
    [11]Bhutada P, Mundhada Y, et al. Inhibitory effect of berberine on the motivational effects of ethanol in mice[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2010, 34(8):1472-1479.
    [12]PAN L, Tang Q, Fu Q, et al. Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer mice[J]. Acta Pharmacologica Sinica,2005,26(11):1334-1338.
    [13]Cheng ZF, Zhang YQ, Liu FC. Berberine against gastrointestinal peptides elevation and mucous secretion in hyperthyroid diarrheic rats[J]. Regulatory peptides,2009,155(1):145-149.
    [14]陈韶华,厉有名.酒精性胃粘膜损伤的研究进展[J].国际消化病杂志,2006,26(4):249-250.
    [15]Bienia, A. Sodolski, W. Luchowska, E. The effect of chronic alcohol abuse on gastric and duodenal mucosa, Annales Universitatis Mariae Curie-Sklodowska[J]. Sectio D:Medicina, 2002,57(2):570-582.
    [16]李冀,柴剑波,赵伟国.吴茱萸汤抗大鼠幽门结扎型胃溃疡作用机理的实验研究[J].中医药信息,2008,24(6):53-54.
    [17]谭永港,张永锋.健胃汤对大鼠实验性胃溃疡治疗作用及其机理研究[J].中国中医药信息杂志,2001,8(8):29-30.
    [18]杨晓轩,潘莉,程卯生. H+/K+-ATP酶抑制剂苯并咪唑类衍生物的研究Ⅱ[J].中国药物化学杂志,2000,10(002):107-109.
    [19]李阳,雍定国,耿宝琴.胃H+/K+-ATP酶与胃酸分泌及酶抑制剂[J].国外医药:合成药.生化药.制剂分册,1992,13(1):15-19.
    [20]Yong Y, Xiao-li Y, Xue-gang L, Jing Z, Baoshun Z, Lujiang Y. Synthesis and antimicrobial activity of 8-alkylberberine derivatives with a long aliphatic chain[J]. Planta Medica-Natural Products and Medicinal Plant Research,2007,73(6):602-604.
    [21]Tan PV, Nditafon NG, Yewah MP, Dimo T, Ayafor FJ. Eremomastax speciosa:effects of leaf aqueous extract on ulcer formation and gastric secretion in rats[J]. Journal of Ethnophannacology,1996,54(2):139-142.
    [22]Lakshmanan H, Raman J, Nanjian R. Gastroprotective effect of Senecio candicans DC on experimental ulcer models[J]. Journal of Ethnopharmacology,2012,140(l):145-150.
    [23]Shay, H. A simple method for the uniform production of gastric ulceration in the rat[J]. Gastroenterology,1945,4:43-61.
    [24]Malfertheiner P, Chan FK, McColl KE. Peptic ulcer disease[J]. The Lancet,2009,374(9699): 1449-1461.
    [25]Heeba GH, Hassan M, Amin RS. Gastroprotective effect of simvastatin against indomethacin-induced gastric ulcer in rats:role of nitric oxide and prostaglandins[J]. European journal of pharmacology,2009,607(1-3):188.
    [26]李龙华,张金良.中医药保护胃黏膜损伤的研究进展[J].山西中医学院学报,2008,9(4):60-60.
    [27]Masuda E, Kawano S, et al. Endogenous NOS modulates ethanol-induced gastric mucosal injury in rats[J]. Gastroenterology,1995,108(1):58-64.
    [28]Jimenez D, Martin MJ, Pozo D, Alarcon C, Esteban J, Bruseghini L, et al.Mechanisms involved in protection afforded by L-arginine in ibuprofen-induced gastric damage:role of nitric oxide and prostaglandins[J]. Digestive diseases and sciences,2002,47(1):44-53.
    [1]Kupeli E, Kosar M, Yesilada E, Baser KHC. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species[J]. Life Sciences,2002,72(6):645-657.
    [2]Chang YL, Usami S, Hsieh MT, Jiang MJ. Effects of palmatine on isometric force and intracellular calcium levels of arterial smooth muscle[J]. Life Sciences,1999,64(8):597-606.
    [3]Shi H, Clegg D. Sex differences in the regulation of body weight[J]. Physiology & behavior, 2009,97(2):199-204.
    [4]Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake[J]. NATURE-LONDON,2000,404(6778):661-671.
    [5]Erlanson-Albertsson C. The role of uncoupling proteins in the regulation of metabolism[J]. Acta physiologica scandinavica,2003,178(4):405-412.
    [6]Yoon Y, Park BL, Cha MH, Kim KS, Cheong HS, Choi YH, et al. Effects of genetic polymorphisms of UCP2 and UCP3 on very low calorie diet-induced body fat reduction in Korean female subjects[J]. Biochemical and biophysical research communications,2007, 359(3):451-456.
    [7]Coelho MS, Passadore MD, Gasparetti AL, et al. High-or low-salt diet from weaning to adulthood:effect on body weight, food intake and energy balance in rats[J]. Nutrition, metabolism and cardiovascular diseases,2006,16(2):148-155.
    [8]Baptista T, Araujo dBE, Ying KN, et al. Comparative effects of the antipsychotics sulpiride or risperidone in rats. I:bodyweight, food intake, body composition, hormones and glucose tolerance[J]. Brain Research,2002,957(1):144-148.
    [9]Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance[J]. Gender medicine,2009,6(1):60-75.
    [10]Chen K, Zhang Q, Wang J, et al. Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction[J]. Brain Research,2009, 1279:131-138.
    [11]M. Ruzicka, E. Skobisova, A. Dlaskova, J. Santorova, K. Smolkova, T. Spacek, M. Zackova, M. Modriansky, P. Jezek, Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction[J]. The international journal of biochemistry & cell biology, 2005,37(4):809-821.
    [12]庄成君,王力,王冬梅,田余祥.解偶联蛋白2的研究进展[J].大连医科大学学报,2007,29(1):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700