真菌漆酶高产菌株的发酵产酶及酶促降解有机染料的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白腐菌是对木质素降解能力最强的木腐真菌,是目前已知的能在一定条件下将木质素彻底降解为CO2和H2O的唯一一类微生物。白腐菌分泌的木素降解酶主要包括木质素过氧化物酶、锰过氧化物酶和漆酶。其中漆酶是一种含铜的多酚氧化酶,具有非常广泛的底物范围,可以催化氧化酚类和芳胺类化合物脱去羟基上的电子或质子,形成自由基,导致酚类及木素类化合物降解,同时分子氧被还原为水。在某些小分子化合物作为介体存在的条件下,漆酶还能够氧化非酚型木质素结构。近几年,随着研究的不断深入,白腐菌漆酶对木质素和与木质素结构相似的许多环境污染物的降解作用越来越受到科研工作者的关注,特别是在纸浆生物漂白、工业废水处理、有机染料脱色和高分子催化合成等方面,表现出了很大的研究价值和应用潜力。但是国内外至今还尚未有漆酶规模化生产的研究报道,漆酶的产量还远远不能满足上述工业应用的需要,并且价格比较昂贵。因此,目前需要解决的一个关键性问题是如何在控制成本的前提下提高漆酶的产量。
     白腐菌Panus conchatus(贝壳状革耳菌)是一种常见的可食用和药用的野生真菌,对木质素的降解具有较强的选择性。本研究将白腐菌P. conchatus漆酶的生产由实验室摇瓶培养扩大到7.5L机械搅拌式发酵罐中,并对搅拌转速、通气量、温度等影响液体深层发酵的关键因素进行了考察和优化。结果表明,麦麸和硫酸铜能够显著提高摇瓶发酵中白腐菌P. conchatus漆酶的产量,缩短发酵周期,发酵液中漆酶活力最高可达196.1U/mL。通气量、培养温度和搅拌转速对白腐菌P. conchatus在机械搅拌式发酵罐中的产酶效率影响较大,最佳发酵条件为通气量1.0vvm,温度30°C,转速300rpm,漆酶活力在发酵22d时达到最大值约200U/mL,保持了和摇瓶发酵相同的产酶水平。Logistic模型能够较为准确的描述和预测白腐菌P. conchatus产漆酶的动力学过程,酶活测定值与方程计算值的线性相关系数R2达到了0.95以上。将该漆酶用于芦苇浆的生物漂白,纸浆经漆酶/介体系统处理后,卡伯值降低,可漂性有所提高,有利于后续漂白工段对纸浆中残余木素的脱除,提高漂白浆的白度。
     以农业加工副产物和蔗渣酸法蒸煮废液为基础,研究用于白腐菌培养和漆酶生产的廉价原材料。结果表明,豆粕最适宜作为发酵底物进行漆酶的生产,液体培养基中漆酶最高活力达到476.7U/mL。木糖是蔗渣酸法蒸煮废水中最主要的单糖类物质,白腐菌Panus conchatus,Flammulina velutipes和Psathyrella candolleana都可在未经脱毒处理的废水制备的产酶培养基中生长,其中F. velutipes对废水毒性的抵抗力较强,其生物量和最高漆酶活力分别达到26.3g/L和200U/L。
     通过盐析、超滤、离子交换色谱和凝胶过滤色谱等方法,将白腐菌P. conchatus漆酶纯化至电泳纯级别,其比活力达到912.3U/mg,比原始粗酶液中漆酶比活力提高了6.77倍,总酶活得率为74.1%。该漆酶的分子量约为65kDa,纯化后漆酶显蓝色,其紫外可见光谱学特征表明该漆酶为典型的真菌漆酶。漆酶对底物ABTS的米氏常数Km为5.7μ2,最大反应速度Vmax为31.06mM/(QMR),最适反应温度和pH值分别为60oC和2.5,漆酶活性在4oC,pH8.0的环境中具有较好的稳定性,保存26d后,漆酶活力还能够保持为初始酶活的约97.9%。白腐菌P. conchatus漆酶可直接对蒽醌染料活性亮蓝RBBR和偶氮染料甲基橙进行脱色,粗酶液处理RBBR0.5h后,染料脱色率达到95.2%;处理甲基橙2h后,脱色率为84.1%。在介体HOBT存在的条件下,三苯甲烷类染料酸性品红可被粗酶液在1h内完全脱色。
     白腐菌P. conchatus漆酶可有效降解蒽醌染料RBBR,反应条件为温度30°C,pH值4.0,RBBR初始浓度100mg/L,漆酶用量1U/mL时,反应15min后RBBR降解率即达到90%以上。根据降解过程中RBBR降解率与时间、温度、染料浓度以及漆酶用量等的关系,建立了白腐菌P. conchatus漆酶降解RBBR的酶促反应经验模型,该模型对RBBR降解率的预测值与实验实测值具有较好的线性关系,相关系数R2为0.97,能够较为准确的描述和预测漆酶降解RBBR的动力学过程。
     漆酶/介体系统可有效降解三苯甲烷类染料酸性品红,反应条件为温度30°C,pH值4.0,酸性品红初始浓度100mg/L,漆酶用量2U/mL,介体HOBT浓度0.05%(w/v)时,反应40min后酸性品红降解率即达到90%以上。根据降解过程中酶促反应速率与时间、温度、染料浓度以及漆酶和介体用量等的关系,建立了白腐菌P. conchatus漆酶降解染料的动力学数学模型,并利用该模型详细研究和考察了漆酶降解染料过程中各反应条件对酶促反应速率的影响。
     自制了一种新型气升式生物反应器,该系统可有效进行白腐菌P. conchatus漆酶对多批次染料的连续降解,并通过流动管路利用连续光谱法建立了在线实时监测反应器中染料降解过程的方法。根据多批次RBBR和酸性品红降解过程中染料降解率与时间、反应批次数等的关系,建立了白腐菌P. conchatus漆酶连续降解多批次染料的动力学数学模型,该模型对RBBR和酸性品红降解率的预测值与实验实测值具有较好的线性关系,相关系数R2都能达到0.999以上,能够较为准确的描述和预测漆酶连续降解多批次染料的动力学过程。利用该模型研究和考察了多批次染料连续降解过程中漆酶的重复利用对酶促反应速率的影响,结果表明,漆酶连续降解多批次染料的反应初速度与反应批次数呈线性关系,反应初速度随反应批次的增加有所降低,但是反应初速度下降较慢,表明处理过程中白腐菌P. conchatus漆酶具有较好的稳定性。
Laccase is a multicopper enzyme that can oxidize phenols or aromatic amines by reducingmolecular oxygen to water. This enzyme is remarkably non-specific regarding substrates, andits zone of application can be widened even further in the presence of the aromatic electrontransfer or radical-forming mediators. Laccase has the potential to be implemented in variousindustrial fields, such as pulp biobleaching, discoloration of textile dye, wastewater treatment,polymer syntheses, etc. However, a major limitation for successful industrial application oflaccase in the bioremediation processes mentioned above is the high costs of laccaseproduction. The development of approaches for reducing the costs of laccase production withhigh efficiency and environmental friendliness by optimising the fermentation medium andcondition is a top priority.
     In the present paper, the production of laccase by white-rot fungus Panus conchatus insubmerged cultures was investigated. Extracellular laccase formation by P. conchatus can beconsiderably stimulated by the addition of wheat bran and copper sulfate. The maximallaccase activity, approximately196.1U/mL, was obtained in the shake flasks. Submergedculture on larger scale was carried out in a7.5L stirred-tank fermentor, in which the highestactivity of laccase was about200U/mL. The good regression coefficients indicated that theLogistic model was justifiable for the expression and prediction of laccase production by P.conchatus in submerged cultures. Crude laccase of P. conchatus was also used forbiobleaching in LQP1P1sequence with reed pulp. It showed that kappa number, brightness,physical properties and yellowing number of pulp were improved in a certain extent after thebleaching by laccase. The pulp bleachability was increased comparatively after treated bylaccase/mediator system.
     Laccase production by P. conchatus in submerged culture using low-cost medium andcooking liquor of bagasse was investigated. Soybean meal and copper sulfate were shown tobe the excellent supporters and played positive roles in enzyme production with the maximallaccase activity of476.7U/mL in the shake flasks. Xylose was found to be the majority of themonosaccharide in liquor from the cooking with diluted H2SO4. The biomass of white-rotfungi Panus conchatus, Flammulina velutipes and Psathyrella candolleana increased during fermentation in the liquid medium based on the cooking liquor without detoxification, butonly F. velutipes showed excellent enzyme production with the maximal laccase activity ofabout200U/L in the medium.
     Laccase produced by P. conchatus in submerged culture was purified to electrophoretichomogeneity by precipitation, ultrafiltration, ion-exchange chromatography andsize-exclusion chromatography with a final purification fold of6.77and a yield of74.1%. Theenzyme was found to be a typical fungal laccase with molecular mass of65kDa and Kmvalueof5.7μ2for ABTS. The optimum pH and temperature for laccase activity were2.5and60oC, respectively. The purified laccase retained97.9%of its initial activity after26dinculbation at pH8.0and4oC. The extracellular crude laccase was effective in decolorizationof synthetic dyes, decolorizing95.2%of RBBR in0.5h and84.1%of Methyl Orange in2hwithout redox mediators, approximately100%of Fuchsin Acid in1h with the addition of0.1%HOBT as the meditor.
     It was found that anthraquinone dye RBBR could be directely degraded by the crudelaccase of P. conchatus. The degradation of more than90%for100mg/L of RBBR wasobtained in15min with1U/mL of laccase. The relationships between the degradation of dyeand time, pH, temperature, as well as the concentration of laccase were established. Aempirical model of dye degradation was developed based on the experimental results. Thegood regression coefficient indicated that the models were justifiable for the expression andprediction of RBBR degradation.
     A detailed investigation concerning to effects of pH, temperature, concentrations of dye,laccase and mediator on the reaction rate of dye degradation by laccase/mediator system(LMS) was conducted. Triphenylmethane dye Fuchsin Acid could be effectively degraded byLMS. The degradation of more than90%for100mg/L Fuchsin Acid was obtained in40minwith2U/mL of laccase and0.5%of HOBT. A kinetic model of reaction rate of dyedegradation by laccase/HOBT system was developed based on the experimental results. Therewas a good agreement between the calculated and measured data, indicating that the modelwas reasonable expression and predication for the reaction rate during dye degradation.
     An airlift bioreactor was developed and used to degradation of dye by laccase afterrepeated addition of RBBR or Fuchsin Acid. A Uv-vis spectrophotometric method was established for rapid and temporally resolved monitoring the degradation of dye in thebioreactor. The result showed that the activity of P. conchatus laccase was stable in thebioreactor and had good degradation ability for both of the two dyes. The degradations ofmore than90%and60%of RBBR and Fuchsin Acid were obtained, respectively, in every30min with8times of dye additions. A kinetic model of degradation reaction rate with everytime of dyes addition was developed based on the experimental results. The good regressioncoefficient of the calculated and measured data indicated that the model were justifiable forthe expression and predication for the reaction rate during dye degradation in the bioreactor.
引文
[1]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005
    [2] Kirk T. K., Farrell R. L. Enzymatic" combustion": the microbial degradation oflignin[J]. Annual Reviews in Microbiology,1987,41(1):465-501
    [3] Evans W. C., Fuchs G. Anaerobic degradation of aromatic compounds[J]. AnnualReviews in Microbiology,1988,42(1):289-317
    [4]詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2009
    [5]林鹿,詹怀宇.制浆漂白生物技术[M].北京:中国轻工业出版社,2002
    [6]谢来苏.制浆造纸的生物技术[M].北京:化学工业出版社,2003
    [7]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005
    [8] Martínez á. T., Speranza M., Ruiz-Due as F. J., et al. Biodegradation oflignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack oflignin[J]. International Microbiology,2005,8(3):195-204
    [9]付时雨,詹怀字,周毅,等.漆酶/介体体系生物漂白的影响因素及漂白效果[J].中国造纸学报,2000,15(B12):59-67
    [10]刘梦茹,付时雨,詹怀宇,等.漆酶用于硫酸盐竹浆TCF漂白[J].纸和造纸,2007,26(2):28-32
    [11] Fenice M., Giovannozzi Sermanni G., Federici F., et al. Submerged and solid-stateproduction of laccase and Mn-peroxidase by Panus tigrinus on olive millwastewater-based media[J]. Journal of Biotechnology,2003,100(1):77-85
    [12] Eugenio M., Carbajo J., Terrón M., et al. Bioremediation of lignosulphonates bylignin-degrading basidiomycetous fungi[J]. Bioresource technology,2008,99(11):4929-4934
    [13] Lorenzo M., Moldes D., Sanromán M. á. Effect of heavy metals on the production ofseveral laccase isoenzymes by Trametes versicolor and on their ability to decolourisedyes[J]. Chemosphere,2006,63(6):912-917
    [14] Hou H., Zhou J., Wang J., et al. Enhancement of laccase production by Pleurotusostreatus and its use for the decolorization of anthraquinone dye[J]. ProcessBiochemistry,2004,39(11):1415-1419
    [15]周攀登,付时雨.漆酶催化对苯基苯酚的聚合[J].高分子学报,2004,4:614-616
    [16] Crawford R. L. Lignin biodegradation and transformation[M]. Wiley New York,1981
    [17]莫佳琳.产漆酶菌种的筛选、鉴定及其脱木素和漂白研究[D].广州:华南理工大学,2007
    [18] Ohkuma M., Maeda Y., Johjima T., et al. Lignin degradation and roles of white rotfungi: Study on an efficient symbiotic system in fungus-growing termites and itsapplication to bioremediation[J]. Riken Review,2001:39-42
    [19]刘浩,付时雨,刘梦茹,等.白腐菌胞外酶降解木素的机制及其协同作用[J].中国造纸学报,2007,22(4):96-101
    [20] Kersten P., Cullen D. Extracellular oxidative systems of the lignin-degradingBasidiomycete Phanerochaete chrysosporium[J]. Fungal Genetics and Biology,2007,44(2):77-87
    [21] Regalado C., García-Almendárez B. E., Duarte-Vázquez M. A. Biotechnologicalapplications of peroxidases[J]. Phytochemistry Reviews,2004,3(1):243-256
    [22]2FVX RI A. T. Molecular biology and structure-function of lignin-degrading hemeperoxidases[J]. Enzyme and Microbial Technology,2002,30(4):425-444
    [23] Kersten P. J., Kirk T. K. Involvement of a new enzyme, glyoxal oxidase, inextracellular H2O2production by Phanerochaete chrysosporium[J]. Journal ofbacteriology,1987,169(5):2195-2201
    [24] Bermek H., Li K., Eriksson K.-E. L. Studies on mediators of manganese peroxidasefor bleaching of wood pulps[J]. Bioresource technology,2002,85(3):249-252
    [25] Baldrian P. Fungal laccases–occurrence and properties[J]. FEMS Microbiologyreviews,2005,30(2):215-242
    [26] Thurston C. F. The structure and function of fungal laccases[J]. Microbiology,1994,140(1):19-26
    [27] Call H., Mücke I. History, overview and applications of mediated lignolytic systems,especially laccase-mediator-systems (Lignozym-process)[J]. Journal ofBiotechnology,1997,53(2):163-202
    [28] Mayer A. M., Staples R. C. Laccase: new functions for an old enzyme[J].Phytochemistry,2002,60(6):551-565
    [29] Widsten P., Kandelbauer A. Laccase applications in the forest products industry: areview[J]. Enzyme and Microbial Technology,2008,42(4):293-307
    [30] Madhavi V., Lele S. Laccase: properties and applications[J]. BioResources,2009,4(4):1694-1717
    [31]2SVS SZF4.,8LYQFOSZMHL., SVGFHLIZF2., IX FP.“BPYI” PFHHFWIW[].Biochemistry (Moscow),2007,72(10):1136-1150
    [32] Solano F., Lucas‐P S5., López‐Serrano D., et al. Dimethoxyphenol oxidaseactivity of different microbial blue multicopper proteins[J]. FEMS microbiologyletters,2006,204(1):175-181
    [33] Zeng G., Yu M., Chen Y., et al. Effects of inoculation with Phanerochaetechrysosporium at various time points on enzyme activities during agricultural wastecomposting[J]. Bioresource technology,2010,101(1):222-227
    [34] Membrillo I., Sánchez C., Meneses M., et al. Effect of substrate particle size andadditional nitrogen source on production of lignocellulolytic enzymes by Pleurotusostreatus strains[J]. Bioresource technology,2008,99(16):7842-7847
    [35] Rosales E., Rodríguez Couto S., Sanromán M. A. Increased laccase production byTrametes hirsuta grown on ground orange peelings[J]. Enzyme and MicrobialTechnology,2007,40(5):1286-1290
    [36] Levin L., Melignani E., Ramos A. M. Effect of nitrogen sources and vitamins onligninolytic enzyme production by some white-rot fungi. Dye decolorization byselected culture filtrates[J]. Bioresource technology,2010,101(12):4554-4563
    [37] Elisashvili V., Penninckx M., Kachlishvili E., et al. Use of Pleurotus dryinus forlignocellulolytic enzymes production in submerged fermentation of mandarin peelsand tree leaves[J]. Enzyme and Microbial Technology,2006,38(7):998-1004
    [38]莫佳琳,付时雨,詹怀宇.贝壳状革耳菌诱变提高产漆酶能力及其生物漂白的研究[J].中国造纸学报,2007,21(4):29-33
    [39] Osma J. F., Toca-Herrera J. L., Rodríguez-Couto S. Cost analysis in laccaseproduction[J]. Journal of environmental management,2011,92(11):2907-2912
    [40] Borràs E., Blánquez P., Sarrà M., et al. Trametes versicolor pellets production:Low-cost medium and scale-up[J]. Biochemical Engineering Journal,2008,42(1):61-66
    [41] Huang W.-T., Tai R., Hseu R.-S., et al. Overexpression and characterization of athermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatumlaccase in Pichia pastoris[J]. Process Biochemistry,2011,46(7):1469-1474
    [42] Couto S. R., Toca-Herrera J. L. Laccase production at reactor scale by filamentousfungi[J]. Biotechnology advances,2007,25(6):558-569
    [43] J nsson L. J., Saloheimo M., Penttil M. Laccase from the white-rot fungus Trametesversicolor: cDNA cloning of lcc1and expression in Pichia pastoris[J]. Currentgenetics,1997,32(6):425-430
    [44] Yoshitake A., Katayama Y., Nakamura M., et al. N-linked carbohydrate chains protectlaccase III from proteolysis in Coriolus versicolor[J]. Journal of General Microbiology,1993,139(1):179-185
    [45]岑沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社,2000
    [46]黄乾明,谢君,张寒飞,等.漆酶高产菌株的诱变选育及其产酶条件[J].菌物学报,2006,25(2):263-272
    [47] Revankar M. S., Lele S. Enhanced production of laccase using a new isolate of whiterot fungus WR-1[J]. Process Biochemistry,2006,41(3):581-588
    [48] Birhanli E., Yesilada O. Increased production of laccase by pellets of Funalia trogiiATCC200800and Trametes versicolor ATCC200801in repeated-batch mode[J].Enzyme and Microbial Technology,2006,39(6):1286-1293
    [49] Papinutti V., Forchiassin F. Lignocellulolytic enzymes from Fomes sclerodermeusgrowing in solid-state fermentation[J]. Journal of food engineering,2007,81(1):54-59
    [50] Levin L., Herrmann C., Papinutti V. L. Optimization of lignocellulolytic enzymeproduction by the white-rot fungus Trametes trogii in solid-state fermentation usingresponse surface methodology[J]. Biochemical Engineering Journal,2008,39(1):207-214
    [51]吴香波,谢益民,冯晓静.白腐菌Coriolus versicolor的培养及产漆酶条件的研究[J].纤维素科学与技术,2009,17(2):12-19
    [52] Gassara F., Brar S. K., Tyagi R., et al. Screening of agro-industrial wastes to produceligninolytic enzymes by Phanerochaete chrysosporium[J]. Biochemical EngineeringJournal,2010,49(3):388-394
    [53] Bhattacharya S. S., Garlapati V. K., Banerjee R. Optimization of laccase productionusing response surface methodology coupled with differential evolution[J]. NewBiotechnology,2011,28(1):31-39
    [54] Fu K., Fu S., Zhan H., et al. A newly isolated wood-rot fungus for laccase productionin submerged cultures[J]. BioResources,2013,8(1):1385-1397
    [55] Rodríguez-Couto S. Production of laccase and decolouration of the textile dyeRemazol Brilliant Blue R in temporary immersion bioreactors[J]. Journal of hazardousmaterials,2011,194:297-302
    [56] Karp S. G., Faraco V., Amore A., et al. Characterization of laccase isoforms producedby Pleurotus ostreatus in solid state fermentation of sugarcane bagasse[J]. Bioresourcetechnology,2012,
    [57] Sun W., Xu M., Xia C., et al. Enhanced production of laccase by Coriolus hirsutususing molasses distillery wastewater[J]. Frontiers of Environmental Science&Engineering,2012:1-11
    [58] Liu J., Cai Y., Liao X., et al. Efficiency of laccase production in a65-liter air-liftreactor for potential green industrial and environmental application[J]. Journal ofCleaner Production,2013,39:154-160
    [59] Gomaa O. M. Ethanol induced response in Phanerochaete chrysosporium and its rolein the decolorization of triarylmethane dye[J]. Annals of Microbiology,2012,62(4):1403-1409
    [60] Tlecuitl-Beristain S., Sánchez C., Loera O., et al. Laccases of Pleurotus ostreatusobserved at different phases of its growth in submerged fermentation: production of anovel laccase isoform[J]. Mycological research,2008,112(9):1080-1084
    [61] Fonseca M. I., Shimizu E., Zapata P. D., et al. Copper inducing effect on laccaseproduction of white rot fungi native from Misiones (Argentina)[J]. Enzyme andMicrobial Technology,2010,46(6):534-539
    [62] Galhaup C., Wagner H., Hinterstoisser B., et al. Increased production of laccase by thewood-degrading basidiomycete Trametes pubescens[J]. Enzyme and MicrobialTechnology,2002,30(4):529-536
    [63] Kurtz M. B., Champe S. P. Purification and characterization of the conidial laccase ofAspergillus nidulans[J]. Journal of bacteriology,1982,151(3):1338-1345
    [64] Pandey A., Selvakumar P., Soccol C. R., et al. Solid state fermentation for theproduction of industrial enzymes[J]. Current science,1999,77(1):149-162
    [65] Robinson T., Nigam P. Bioreactor design for protein enrichment of agriculturalresidues by solid state fermentation[J]. Biochemical Engineering Journal,2003,13(2):197-203
    [66] Rodriguez Couto S., Sanromán M. A. Application of solid-state fermentation toligninolytic enzyme production[J]. Biochemical Engineering Journal,2005,22(3):211-219
    [67]埃拉.工业酶:制备与应用(第二版)[M].北京:化学工业出版社,2005
    [68] Shin M., Nguyen T., Ramsay J. Evaluation of support materials for the surfaceimmobilization and decoloration of amaranth by Trametes versicolor[J]. Appliedmicrobiology and biotechnology,2002,60(1):218-223
    [69] Vassilev N., Vassileva M. Production of organic acids by immobilized filamentousfungi[J]. Mycological research,1992,96(7):563-570
    [70] Prasad K. K., Mohan S. V., Bhaskar Y. V., et al. Laccase production using Pleurotusostreatus1804immobilized on PUF cubes in batch and packed bed reactors: influenceof culture conditions[J]. Journal of Microbiology,2005,43(3):301-307
    [71]7SHV KYI CSYXS8.,8FRVSQáR2. A., SJIV D., IX FP.8XFMRPIWW WXIIP WTonge: a novelcarrier for the immobilisation of the white-rot fungus Trametes hirsuta fordecolourization of textile dyes[J]. Bioresource technology,2004,95(1):67-72
    [72] Hess J., Leitner C., Galhaup C., et al. Enhanced formation of extracellular laccaseactivity by the white-rot fungus Trametes multicolor[J]. Applied biochemistry andbiotechnology,2002,98(1):229-241
    [73] Fenice M., Giovannozzi Sermanni G., Federici F., et al. Submerged and solid-stateproduction of laccase and Mn-peroxidase by Panus tigrinus on olive millwastewater-based media[J]. Journal of Biotechnology,2003,100(1):77-85
    [74]2SLSV M2., VMIHVMHL.,5FZOS A. DIHSPSVFXMSR SJ XLI HMF S H]I7IFHXMZI BPFHO5by immobilised Bjerkandera adusta in a stirred tank bioreactor[J]. Acta ChimicaSlovenica,2004,51(4):619-628
    [75] Tavares A. P., Coelho M. A., Agapito M. S., et al. Optimization and modeling oflaccase production by Trametes versicolor in a bioreactor using statisticalexperimental design[J]. Applied biochemistry and biotechnology,2006,134(3):233-248
    [76] Ryan D. R., Leukes W. D., Burton S. G. Fungal bioremediation of phenolicwastewaters in an airlift reactor[J]. Biotechnology progress,2005,21(4):1068-1074
    [77] Rodríguez Couto S., López E., Sanroman M. Utilisation of grape seeds for laccaseproduction in solid-state fermentors[J]. Journal of food engineering,2006,74(2):263-267
    [78] Olivieri G., Marzocchella A., Salatino P., et al. Olive mill wastewater remediation bymeans of Pleurotus ostreatus[J]. Biochemical Engineering Journal,2006,31(3):180-187
    [79]7SHV KYI CSYXS8.,2SPHIW D., MéGFRFW A., IX FP. RZIWXMKFXMSR SJ WIZIVFP GMSVIFHXSVconfigurations for laccase production by Trametes versicolor operating in solid-stateconditions[J]. Biochemical Engineering Journal,2003,15(1):21-26
    [80] Rivela I., Rodríguez Couto S., Sanromán A. Extracellular ligninolytic enzymeproduction by Phanerochaete chrysosporium in a new solid-state bioreactor[J].Biotechnology letters,2000,22(18):1443-1447
    [81] Boehmer U., Suhardi S., Bley T. Decolorizing Reactive Textile Dyes with White-RotFungi by Temporary Immersion Cultivation[J]. Engineering in Life Sciences,2006,6(4):417-420
    [82]8XFNM2.,5IVWO]., VMIWIQ D., IX FP. JJIHX SJ HMJJIVIRX HFVGSR FRH RMXVSKIR WSYVHIWon laccase and peroxidases production by selected Pleurotus species[J]. Enzyme andMicrobial Technology,2006,38(1):65-73
    [83]燕红,杨谦.地衣芽孢杆菌对麦麸降解作用的研究[J].林产化学与工业,2007,27(4):97-102
    [84] Maes C., Delcour J. Structural characterisation of water-extractable andwater-unextractable arabinoxylans in wheat bran[J]. Journal of Cereal Science,2002,35(3):315-326
    [85] Rybka K., Sitarski J., Raczynska-Bojanowska K. Ferulic acid in rye and wheat grainand grain dietary fiber[J]. Cereal chemistry,1993,70(1):55-59
    [86] Winquist E., Moilanen U., Mett l A., et al. Production of lignin modifying enzymeson industrial waste material by solid-state cultivation of fungi[J]. BiochemicalEngineering Journal,2008,42(2):128-132
    [87]陈宁.酶工程[M].北京:中国轻工业出版社,2005
    [88]陆健.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005
    [89] Palmieri G., Cennamo G., Faraco V., et al. Atypical laccase isoenzymes from coppersupplemented Pleurotus ostreatus cultures[J]. Enzyme and Microbial Technology,2003,33(2):220-230
    [90] Okamoto K., Yanagi S. O., Sakai T. Purification and characterization of extracellularlaccase from Pleurotus ostreatus[J]. Mycoscience,2000,41(1):7-13
    [91] Cambria M., Cambria A., Ragusa S., et al. Production, Purification, and Properties ofan Extracellular Laccase from Rigidoporus lignosus[J]. Protein expression andpurification,2000,18(2):141-147
    [92] Shin K.-S., Lee Y.-J. Purification and characterization of a new member of the laccasefamily from the white-rot basidiomycete Coriolus hirsutus[J]. Archives ofBiochemistry and Biophysics,2000,384(1):109-115
    [93] Das N., Chakraborty T., Mukherjee M. Purification and characterization of laccase-1from Pleurotus florida[J]. Folia microbiologica,2000,45(5):447-451
    [94] Xiao Y., Tu X., Wang J., et al. Purification, molecular characterization and reactivitywith aromatic compounds of a laccase from basidiomycete Trametes sp. strainAH28-2[J]. Applied microbiology and biotechnology,2003,60(6):700-707
    [95] Marques de Souza C. G., Peralta R. M. Purification and characterization of the mainlaccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solidstate medium[J]. Journal of basic microbiology,2003,43(4):278-286
    [96]黄乾明,杨婉身,陈华萍.粗毛栓菌诱变菌株SAH-12漆酶的分离纯化及酶学性质研究[J].菌物学报,2007,26(4):539-548
    [97] Litthauer D., van Vuuren M. J., van Tonder A., et al. Purification and kinetics of athermostable laccase from Pycnoporus sanguineus (SCC108)[J]. Enzyme andMicrobial Technology,2007,40(4):563-568
    [98] Minussi R. C., Miranda M. A., Silva J. A., et al. Purification, characterization andapplication of laccase from Trametes versicolor for colour and phenolic removal ofolive mill wastewater in the presence of1-hydroxybenzotriazole[J]. African Journal ofBiotechnology,2010,6(10)
    [99]傅恺,付时雨,张丽,等.亚热带木腐真菌产漆酶及其酶学性质[J].华南理工大学学报:自然科学版,2011,39(9):152-157
    [100] Zucca P., Rescigno A., Olianas A., et al. Induction, purification, and characterizationof a laccase isozyme from Pleurotus sajor-caju and the potential in decolorization oftextile dyes[J]. Journal of Molecular Catalysis B: Enzymatic,2011,68(2):216-222
    [101] Wang Z.-X., Cai Y.-J., Liao X.-R., et al. Purification and characterization of twothermostable laccases with high cold adapted characteristics from Pycnoporus sp.SYBC-L1[J]. Process Biochemistry,2010,45(10):1720-1729
    [102] Ko E.-M., Leem Y.-E., Choi H. Purification and characterization of laccase isozymesfrom the white-rot basidiomycete Ganoderma lucidum[J]. Applied Microbiology andBiotechnology,2001,57(1):98-102
    [103]王习文,詹怀宇,何为.金属离子对漆酶活性的影响[J].中华纸业,2003,24(6):33-35
    [104] Neifar M., Jaouani A., Ellouze-Ghorbel R., et al. Purification, characterization anddecolourization ability of Fomes fomentarius laccase produced in solid medium[J].Journal of Molecular Catalysis B: Enzymatic,2010,64(1):68-74
    [105] Ducros V., Brzozowski A. M., Wilson K. S., et al. Crystal structure of the type-2Cudepleted laccase from Coprinus cinereus at2.2resolution[J]. Nature Structural&Molecular Biology,1998,5(4):310-316
    [106] Garavaglia S., Teresa Cambria M., Miglio M., et al. The structure of Rigidoporuslignosus laccase containing a full complement of copper ions, reveals an asymmetricalarrangement for the T3copper pair[J]. Journal of molecular biology,2004,342(5):1519-1531
    [107] Matera I., Gullotto A., Tilli S., et al. Crystal structure of the blue multicopper oxidasefrom the white-rot fungus Trametes trogii complexed with p-toluate[J]. InorganicaChimica Acta,2008,361(14):4129-4137
    [108] Piontek K., Antorini M., Choinowski T. Crystal structure of a laccase from the fungusTrametes versicolor at1.90-resolution containing a full complement of coppers[J].Journal of Biological Chemistry,2002,277(40):37663-37669
    [109]胡平平,付时雨.漆酶催化活性中心结构及其特性研究进展[J].林产化学与工业,2001,21(3):69-75
    [110] Claus H. Laccases: structure, reactions, distribution[J]. Micron,2004,35(1):93-96
    [111] Riva S. Laccases: blue enzymes for green chemistry[J]. Trends in biotechnology,2006,24(5):219-226
    [112] Torres J., Svistunenko D., Karlsson B., et al. Fast reduction of a copper center inlaccase by nitric oxide and formation of a peroxide intermediate[J]. Journal of theAmerican Chemical Society,2002,124(6):963-967
    [113] Paice M., Bourbonnais R., Archibald F., et al. Delignification mechanisms for thebleaching of kraft pulps with the enzymes laccase and manganese peroxidase[J].Proceedings of10thInternational Symposium on Wood and Pulping Chemistry,1999,3:60-63
    [114] Li K., Xu F., Eriksson K.-E. L. Comparison of fungal laccases and redox mediators inoxidation of a nonphenolic lignin model compound[J]. Applied and environmentalmicrobiology,1999,65(6):2654-2660
    [115] Fu S., Zhan H., He W. Degradation of residual lignin in kraft pulp by laccase andkediator system[J]. Journal of South China University of Technology (NaturalScience),2002,30(12):30-36
    [116] Soares G., De Amorim M., Costa-Ferreira M. Use of laccase together with redoxmediators to decolourize Remazol Brilliant Blue R[J]. Journal of Biotechnology,2001,89(2):123-129
    [117] Zeng X., Cai Y., Liao X., et al. Decolorization of synthetic dyes by crude laccase froma newly isolated Trametes trogii strain cultivated on solid agro-industrial residue[J].Journal of hazardous materials,2011,187(1):517-525
    [118] Scott G., Akhtar M., Swaney R., et al. Recent developments in biopulping technologyat Madison, WI[J]. Progress in biotechnology,2002,21:61-71
    [119] Dyer T., Ragauskas A. Laccase: a harbinger to kraft pulping[J]. ACS symposium series,2004,889:339-362
    [120] Petit-Conil M., Semar S., Niku-Paavola M.-L., et al. Potential of laccases insoftwood-hardwood high-yield pulping and bleaching[J]. Progress in biotechnology,2002,21:193-201
    [121] Stanko J., Angus R. Paper manufacture and its impact on the aquatic environment[J].Reviews of environmental contamination and toxicology,2006,185:67-92
    [122]付时雨,詹怀宇.漆酶/介体系统漂白尾叶桉硫酸盐浆的初步研究[J].中国造纸,2000,2:8-12
    [123] Paice M., Bourbonnais R., Renaud S., et al. Pilot plant bleaching trials with laccaseand mediator[J]. Progress in biotechnology,2002,21:203-211
    [124]闵江马,付时雨,刘梦茹,等.硫酸盐竹浆LMS生物漂白的研究[J].中国造纸,2006,24(10):74-75
    [125] Wong K. K., Anderson K. B., Kibblewhite R. P. Effects of the laccase-mediator systemon the handsheet properties of two high kappa kraft pulps[J]. Enzyme and MicrobialTechnology,1999,25(1):125-131
    [126] Lund M., Felby C. Wet strength improvement of unbleached kraft pulp throughlaccase catalyzed oxidation[J]. Enzyme and Microbial Technology,2001,28(9):760-765
    [127] Yamaguchi H., Maeda Y., Sakata I. Bonding among woody fibers by use of enzymaticphenol dehydrogenative polymerization: mechanism of generation of bondingstrength[J]. Journal of the Japan Wood Research Society,1994,40:185-190
    [128] Camarero S., Ibarra D., Martinez A. T., et al. Paper pulp delignification using laccaseand natural mediators[J]. Enzyme and Microbial Technology,2007,40(5):1264-1271
    [129] Dec J., Bollag J. M. Dehalogenation of chlorinated phenols during oxidativecoupling[J]. Environmental science&technology,1994,28(3):484-490
    [130] Milstein O., Haars A., Majcherczyk A., et al. Removal of chlorophenols andchlorolignins from bleaching effluent by combined chemical and biologicaltreatment[J]. Water Science&Technology,1988,20(1):161-170
    [131] Forss K., Jokinen K., Savolainen M., et al. Utilization of enzymes for effluenttreatment in the pulp and paper industry[J]. Paperi ja puu,1989,71(10):1108-1112
    [132] Selvam K., Swaminathan K., Rasappan K., et al. Deinking of waste papers by whiterot fungi Fomes lividus, Thelephora sp. and Trametes versicolor[J]. Nature,Environment and Pollution Technology,2005,4(3):399-404
    [133] Grassi E., Scodeller P., Filiel N., et al. Potential of Trametes trogii culture fluids andits purified laccase for the decolorization of different types of recalcitrant dyes withoutthe addition of redox mediators[J]. International Biodeterioration&Biodegradation,2011,65(4):635-643
    [134] Ciullini I., Gullotto A., Tilli S., et al. Enzymatic decolorization of spent textile dyeingbaths composed by mixtures of synthetic dyes and additives[J]. Applied Microbiologyand Biotechnology,2012:1-11
    [135] Telke A. A., Kagalkar A. N., Jagtap U. B., et al. Biochemical characterization oflaccase from hairy root culture of Brassica juncea L. and role of redox mediators toenhance its potential for the decolorization of textile dyes[J]. Planta,2011,234(6):1137-1149
    [136] Anastasi A., Prigione V., Varese G. C. Industrial dye degradation and detoxification bybasidiomycetes belonging to different eco-physiological groups[J]. Journal ofhazardous materials,2010,177(1):260-267
    [137] YFVSTSPSZ A.,8OSVSGSKFX’ S4., VFVXFRSZ8., IX FP. FHHFWI: TVSTIVXMIW, HFXFP]XMHmechanism, and applicability[J]. Applied biochemistry and biotechnology,1994,49(3):257-280
    [138] Levin L., Viale A., Forchiassin A. Degradation of organic pollutants by the white rotbasidiomycete Trametes trogii[J]. International Biodeterioration&Biodegradation,2003,52(1):1-5
    [139] YFVSTSPSZ A.,8OSVSGSKFX’ S4., VFVXFRSZ8., IX FP. Laccase properties, catalyticmechanism, and applicability[J]. Applied biochemistry and biotechnology,1994,49(3):257-280
    [140]谢宗万,梁爱华.全国中草药汇编[M].北京:人民卫生出版社,1996
    [141]王彩华,余惠生,付时雨.贝壳状革耳菌和黄孢平革菌固体培养酶系比较[J].微生物学报,1999,39(2):127-131
    [142] Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates: an expanded rolefor laccase in lignin biodegradation[J]. FEBS letters,1990,267(1):99-102
    [143] Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical chemistry,1959,31(3):426-428
    [144]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003
    [145]杜继煜,白岚.茶叶的主要化学成分[J].农业与技术,2003,23(1):53-55
    [146]莫重文,黄岗.固态发酵法生产发酵豆粕的研究[J].中国油脂,2007,32(7):38-40
    [147] Leonowicz A., Trojanowski J. Induction of laccase in basidiomycetes: thelaccase-coding messenger[J]. Acta Biochim Pol,1978,25(2):147-156
    [148] Lundell T., Leonowicz A., Rogalski J., et al. Formation and action of lignin-modifyingenzymes in cultures of Phlebia radiata supplemented with veratric acid[J]. Applied andenvironmental microbiology,1990,56(9):2623-2629
    [149]郭海蓉,李志春.甘蔗糖蜜发酵生产维生素B12的动力学模型[J].广西大学学报(自然科学版),2011,36(5):823-829
    [150]吴坤.杂色云芝(Coriolus versicolor)和杂色云芝漆酶及其对环境污染物降解的研究[D].杭州:浙江大学,2002
    [151]莫佳琳,詹怀宇,付时雨.一种产漆酶真菌的鉴定及其漆酶在生物漂白中的应用[J].中国造纸学报,2008,23(2):10-14
    [152]付时雨.尾叶桉硫酸盐浆漆酶-介体体系生物漂白及脱木素机理研究[D].广州:华南理工大学,2000
    [153] Sharma R. K., Arora D. S. Production of lignocellulolytic enzymes and enhancementof in vitro digestibility during solid state fermentation of wheat straw by Phlebiafloridensis[J]. Bioresource technology,2010,101(23):9248-9253
    [154] CSYXS8.7. K., YRH R2. a., Lorenzo M., et al. Screening of supports and inducersfor laccase production by Trametes versicolor in semi-solid-state conditions[J].Process Biochemistry,2002,38(2):249-255
    [155] Reddy G., Ravindra Babu P., Komaraiah P., et al. Utilization of banana waste for theproduction of lignolytic and cellulolytic enzymes by solid substrate fermentation usingtwo Pleurotus species (P. ostreatus and P. sajor-caju)[J]. Process Biochemistry,2003,38(10):1457-1462
    [156] Cardona C., Quintero J., Paz I. Production of bioethanol from sugarcane bagasse:status and perspectives[J]. Bioresource technology,2010,101(13):4754-4766
    [157] Jackson de Moraes Rocha G., Martin C., Soares I. B., et al. Dilute mixed-acidpretreatment of sugarcane bagasse for ethanol production[J]. Biomass and Bioenergy,2011,35(1):663-670
    [158] Camassola M., Dillon A. J. Biological pretreatment of sugar cane bagasse for theproduction of cellulases and xylanases by Penicillium echinulatum[J]. Industrial Cropsand Products,2009,29(2):642-647
    [159]程合丽.玉米秆半纤维素的分离表征及硫酸酯化改性的研究[D].广州:华南理工大学,2011
    [160] SVIR S2.,2SPHIW D.,7SHV KYI CSYXS8., et al. Improving laccase production byemploying different lignocellulosic wastes in submerged cultures of Trametesversicolor[J]. Bioresource technology,2002,82(2):109-113
    [161] Arora D. S., Gill P. K. Laccase production by some white rot fungi under differentnutritional conditions[J]. Bioresource technology,2000,73(3):283-285
    [162]王志新.血红密孔菌的筛选,鉴定及其发酵产漆酶的研究[D].无锡:江南大学,2010
    [163]任大军.白腐菌对氮杂环化合物的降解及机理研究[D].武汉:华中科技大学,2006
    [164] Tian S., Luo X., Yang X., et al. Robust cellulosic ethanol production fromSPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiaewithout detoxification[J]. Bioresource technology,2010,101(22):8678-8685
    [165] Sassner P., M rtensson C.-G., Galbe M., et al. Steam pretreatment ofH2SO4-impregnated Salix for the production of bioethanol[J]. Bioresource technology,2008,99(1):137-145
    [166] Wyman C. E., Dale B. E., Elander R. T., et al. Comparative sugar recovery andfermentation data following pretreatment of poplar wood by leading technologies[J].Biotechnology progress,2009,25(2):333-339
    [167] Bradford M. M. Foreign patent documents[J]. Biochemistry,1976,72:248-254
    [168] Laemmli U. K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. nature,1970,227(5259):680-685
    [169] do Rosário Freixo M., Karmali A., Arteiro J. M. Production, purification andcharacterization of laccase from Pleurotus ostreatus grown on tomato pomace[J].World Journal of Microbiology and Biotechnology,2012,28(1):245-254
    [170] Zhang G.-Q., Tian T., Liu Y.-P., et al. A laccase with anti-proliferative activity againsttumor cells from a white root fungus Abortiporus biennis[J]. Process Biochemistry,2011,
    [171] Guo L.-Q., Lin S.-X., Zheng X.-B., et al. Production, purification and characterizationof a thermostable laccase from a tropical white-rot fungus[J]. World Journal ofMicrobiology and Biotechnology,2011,27(3):731-735
    [172] Nakade K., Nakagawa Y., Yano A., et al. Characterization of an extracellular laccase,PbLac1, purified from Polyporus brumalis[J]. Fungal biology,2010,114(8):609-618
    [173] Haibo Z., Yinglong Z., Feng H., et al. Purification and characterization of athermostable laccase with unique oxidative characteristics from Trametes hirsuta[J].Biotechnology letters,2009,31(6):837-843
    [174]何为,詹怀宇,王习文,等.一种改进的漆酶酶活检测方法[J].华南理工大学学报:自然科学版,2003,31(12):46-50
    [175] Mishra A., Kumar S., Kumar Pandey A. Laccase production and simultaneousdecolorization of synthetic dyes in unique inexpensive medium by new isolates ofwhite rot fungus[J]. International Biodeterioration&Biodegradation,2011,65(3):487-493
    [176] Hadibarata T., Yusoff A. R. M., Kristanti R. A. Decolorization and metabolism ofanthraquionone-type dye by laccase of white-rot fungi Polyporus sp. S133[J]. Water,Air,&Soil Pollution,2012,223(2):933-941
    [177] Osma J. F., Toca-Herrera J. L., Rodríguez-Couto S. Biodegradation of a simulatedtextile effluent by immobilised-coated laccase in laboratory-scale reactors[J]. AppliedCatalysis A: General,2010,373(1):147-153
    [178] Kumar V. V., Sathyaselvabala V., Premkumar M., et al. Biochemical characterizationof three phase partitioned laccase and its application in decolorization and degradationof synthetic dyes[J]. Journal of Molecular Catalysis B: Enzymatic,2012,74(1):63-72
    [179] SOSP V., DSPM OF A., MHLPIVSZá., IX FP. DIHSPSVM FXMSR SJ XI\XMPI H]IW G][LSPIcultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase[J].Enzyme and Microbial Technology,2007,40(7):1673-1677
    [180] Rodríguez Couto S., Toca Herrera J. L. Industrial and biotechnological applications oflaccases: a review[J]. Biotechnology advances,2006,24(5):500-513
    [181] Kim H., Lee S., Ryu S., et al. Decolorization of remazol brilliant blue R by a purifiedlaccase of polyporus brumalis[J]. Applied biochemistry and biotechnology,2012:1-6
    [182] F QF8., IHMOPM8., A]XFV5., IX FP. Decolorization potential of some reactive dyeswith crude laccase and laccase-mediated system[J]. Applied biochemistry andbiotechnology,2011,163(3):346-361
    [183] Mechichi T., Mhiri N., Sayadi S. Remazol Brilliant Blue R decolourization by thelaccase from Trametes trogii[J]. Chemosphere,2006,64(6):998-1005
    [184]侯红漫.白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究[D].大连:大连理工大学,2003
    [185]张海波.粗毛栓菌Trametes hirsuta lg-9非典型漆酶的研究[D].济南:山东大学,2010
    [186] Iandolo D., Amore A., Birolo L., et al. Fungal solid state fermentation onagro-industrial wastes for acid wastewater decolorization in a continuous flowpacked-bed bioreactor[J]. Bioresource technology,2011,102(16):7603-7607
    [187]陈忠源.蒽醌类中间体,染料的结构特性——结构与颜色[J].染料与染色,1983,2:20-27
    [188]张莉.白腐菌漆酶酶学性质及其对酚类化合物的降解特性研究[D].杨凌:西北农林科技大学,2009
    [189]潘峰,朱慧杰.白腐真菌产酶反应器研究进展[J].环境污染治理技术与设备,2006,7(8):12-16
    [190] Khlifi-Slama R., Mechichi T., Sayadi S., et al. Effect of natural mediators on thestability of Trametes trogii laccase during the decolourization of textile wastewaters[J].The Journal of Microbiology,2012,50(2):226-234
    [191] Singh G., Capalash N., Goel R., et al. A pH-stable laccase from alkali-tolerantγ-proteobacterium JB: purification, characterization and indigo carmine degradation[J].Enzyme and Microbial Technology,2007,41(6):794-799
    [192]黄菊洪,周斌.染料在现代造纸工业中的应用之体会(三)——典型造纸湿部用染料的化学结构与性能[J].上海造纸,2007,38(1):47-53
    [193] Kalyani D., Telke A., Surwase S., et al. Effectual decolorization and detoxification oftriphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM2074and its enzyme system[J]. Clean Technologies and Environmental Policy,2012,14(5):989-1001
    [194] Hadibarata T., Yusoff A. R. M., Aris A., et al. Decolorization of azo, triphenylmethaneand anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022[J]. Water,Air,&Soil Pollution,2012,223(3):1045-1054
    [195]罗宗铭,张煜,英德,等.酸性品红分光光度法测定蛋白质的研究[J].光谱实验室,1999,16(5):594-596
    [196]俞英,程晓伟.牛血清白蛋白与酸性品红的结合反应[J].分析化学,2000,28(5):583-586
    [197]韩国民,何兴兵,张鹏,等.多孔菌Trichaptum abietinum1302BG自然条件下对合成染料刚果红和酸性品红的高效降解[J].微生物学通报,2011,38(4):603-614
    [198]彭书传,谢晶晶,庆承松,等.负载TiO2凹凸棒石光催化氧化法处理酸性品红染料废水[J].硅酸盐学报,2006,34(10):1208-1212
    [199]李红,王君,刘振荣,等.二氧化钛催化超声降解酸性品红溶液及纳米锐钛矿型与普通金红石型二氧化钛催化性能的比较[J].染料与染色,2004,41(5):306-312
    [200]梁少晖,张美婷,朱江,等. Fe-Cu-C三元固定床微电解法处理酸性品红染料废水[J].应用化工,2007,36(9):941-943

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700