Nrf2/ARE信号通路在ALS转基因小鼠模型中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1993年,Rosen DR等发现,部分家族性肌萎缩侧索硬化(fALS)的发病与编码铜/锌超氧化物歧化酶(Cu/Zn SOD)的SOD1基因突变有关。该发现为我们提供了一个明确的运动神经元死亡的原因。到目前为止,已确定在20%fALS和4%的散发性肌萎缩侧索硬化(sALS)中有SOD1基因突变,其突变数目已超过100种。其中,93位的甘氨酸(Gly)突变为丙氨酸(Ala)为常见的突变之一。转染了人突变SOD1基因的转基因小鼠具有与ALS病人相同的临床表现,现已成为国际公认的研究ALS的理想模型。
     在ALS病人及转基因动物模型内均存在蛋白质、脂质和核酸这些生物大分子氧化损伤的证据,提示氧化应激是疾病进程中的一个重要方面,但是机体自身的抗氧化系统是否在疾病的进展过程中起到了保护作用,是否随疾病的进展发挥更高的保护作用,我们不清楚。目前文献报道Nrf2/ARE信号通路的激活可在多种组织中诱导一系列内源性的细胞保护基因上调,其中包括抗氧化酶、抗氧化蛋白、抗炎和解毒的蛋白,它们的活化可以对机体起到保护作用。本试验目的:探讨不同时期B6SJL-TgN(SOD1G93A)1Gur转基因小鼠(携带人突变SOD1基因)与同窝野生型小鼠和B6SJL-TgN(SOD1)2Gur转基因小鼠(携带正常人SOD1基因)相比,脊髓组织中是否存在Nrf2和抗氧化酶HO-1、NQO1表达的差异,了解不同时期机体抗氧化能力的变化情况,也为深入研究转基因小鼠中Nrf2/ARE通路提供前期基础。
     方法:
     1、转基因鼠的繁殖
     所有动物均饲养在恒温(25-27℃)、恒湿和无菌条件的(Specific pathogen free, SPF)环境中,喂以灭菌的SPF级颗粒型鼠类饲料。为维持B6SJL-TgN (SOD1G93A)1 Gur转基因小鼠突变基因稳定下传,将B6SJL SOD1G93A/+半合子雄鼠与B6SJLF1/J半合子雌鼠交配繁殖.子代鼠经基因鉴定确定是否带有人突变的基因
     2、实验分组
     研究对象共分为三个时期:症状前期(80天)、症状早期(120天)、终末期。每个时期组除了选择SOD1G93A小鼠及同窝野生型小鼠外,还选取一组同龄hSOD1小鼠作对照,为排除小鼠脊髓中人超氧化物岐化酶表达增多对实验结果的干扰。
     3、Nrf-2蛋白水平的测定
     提取脊髓组织的浆蛋白,用Synergy-HT多功能酶标仪测量OD数值,可检测样本蛋白浓度,计算100蛋白上样量。走SDS-PAGE电泳,100V 4度转膜2小时、5%脱脂奶粉封闭1小时;一抗孵育,4oC,过夜;TPBS震荡漂洗5min×5次;荧光二抗孵育,室温,2h;TPBS震荡漂洗5min×5次;Odyssey Infrared Imaging System检测分析。
     4、HO-1、NQO1基因表达水平的测定
     取脊髓组织6mg,提取总RNA。用Synergy-HT多功能酶标仪测量OD260/O Odyssey Infrared Imaging System检测分析。D280比值,可检测RNA的纯度和含量,选用OD260/OD280比值为1.8-2.0的RNA用作反转录,合成cDNA。扩增HO-1、NQO1、nrf-2目的基因,在1.5%琼脂糖凝胶(含Goldview染料)上电泳,用GBOX-HR全自动凝胶成像系统拍摄打印实验结果,用凝胶图像分析系统分析结果。
     结果:与两组对照组相比,转基因小鼠在发病前期脊髓中Nrf-2蛋白水平及抗氧化酶HO-1、NQO1的基因表达无明显变化;症状期、终末期转基因小鼠脊髓中Nrf-2蛋白水平下降及抗氧化酶HO-1、NQO1基因表达明显升高。
     结论:本实验在肌萎缩侧索硬化转基因小鼠模型的基础上,发现疾病症状早期和终末期存在着Nrf-2激活及下游抗氧化酶基因表达上调的现象。但这些酶的含量很低,对机体的保护作用还需进一步研究。
Objectives: In 1993, Rosen DR found that some of the familial amyotrophic lateral sclerosis have mutation of gene coding copper / zinc superoxide dismutase (Cu / Zn SOD) of the SOD1. The discovery provides us with a clear reason for motor neuron death. So far, 20 percent of fALS and 4% Sporadic amyotrophic lateral sclerosis (sALS) have the SOD1 gene mutation and more than 100 kinds of mutation have been identified. Among them, glycine (Gly) mutation for alanine (Ala) located site 93 in the gene is the most common. Transgenic mice transfected with mutant SOD1 gene have the same clinical manifestations with ALS patients,which has been internationally recognized as the ideal model for ALS research.
     In ALS patients and transgenic animal models, there are proof of oxidative damage of some biological macromolecules such as proteins, lipids and nucleic acid. These suggests that oxidative stress involve in the pathogenesis of the disease. whether the body's own antioxidant system plays a protective role in the disease or play a more protective role in the progress of the disease is not sure. Some researchers reported that the activation of Nrf2/ARE signaling pathway can induce an endogenous increase including the antioxidant enzymes, antioxidant proteins, anti-inflammatory and detoxification proteins, all of these can play a protective role. This study will investigate the expression of antioxidant enzymes Nrf2 and HO-1, NQO1 in the spinal cord of B6SJL-TgN (SOD1G93A) 1Gur transgenic mice (Carry mutant SOD1 gene) during the different periods of life and help us to understand the oxidation resistance ability and the Nrf2/ARE pathway in ALS transgenic mouse.
     Methods:
     1 the propagation of transgenic mice
     All animals were kept in constant temperature (25-27℃), hang wet and sterile conditions (Specific pathogen free SPF) environment and fed with the sterilization of SPF rodents feed particles. To maintain B6SJL-TgN (SOD1G93A) 1 Gur transgenic mice under-gene mutation, B6SJL SOD1G93A / + hemizygous males and B6SJLF1 / J hemizygous females were mated , the genetic offspring mice were identified with a mutant gene determination .
     2 the experimental group
     theSOD1G93Amice were divided into three groups Symptomless-stage (80 days), early symptoms (120 days), end-stage. wild-type mice and hSOD1 were the control, hSOD1mice were used to exclude the influence of human SOD.
     3 Nrf-2 protein level determination
     plasma proteins were extracted from Spinal cord tissue and measured by Synergy-HT-Meibiaoyi OD numerical measu- rements, protein concentration , protein of 100 on the sample volume. Take SDS-PAGE electrophoresis, 100 V 4℃to film two hours, 5% skim milk closed one hour; an anti-incubation, 4℃, overnight; TPBS concussion rinsing 5 min×5; fluorescence two-incubated at room temperature for 2 h; TPBS concussion Rinse 5 min×5; Odyssey Infrared Imaging System Analysis. 4 HO-1, NQO1 gene expression level determination
     Spinal cord of 6 mg was isolated for total RNA extraction. OD values were measured by Synergy HT-by-Meibiaoyi measurement. 1.8-2.0 of OD260/OD280 ratio were selected for reverse transcription of RNA and cDNA synthesis. HO-1, NQO1, nrf-2 gene were amplified and took electrophoresis in 1.5% agarose gel (containing Goldview dye). Theresults were printed by Automatic GBOX-HR gel imaging systems and analyzed by the gel image analysis Analysis system.
     Results: Compared with the two control groups, the Nrf-2 protein level and antioxidase HO-1, the NQO1 gene expression of spinal cord from the ALS transgene mouse in Symptomless-stage were not changed; while the Nrf-2 protein level decreased and antioxidase HO-1, the NQO1 gene expression increased during the symptom-stage and end-stage.
     Conclusion: The Experiment was studied in amyotrophic lateral sclerosis transgenic mouse model-ALS SOD1G93A mice. During the early stage and end-stage of diseases, there are activation of Nrf-2 and increase expression of downstream antioxidant enzymes including HO-1 and NQO1 in the spinal cord of transgenic mice. However, the protective effect of these enzymes needs further study.
引文
1 Rowland LP, Shneider NA. Medical progress: amyotrophic lateral sclerosis. N Eng J Med, 2001, 344:1689~1695
    2 Figlewicz DA, Orrell RW, The genetics of motor neuron diseases. Amyotroph Lateral Scler. Other Mot. Neuron Disord. 2003,4:225~231
    3 Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn- superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362:59~62
    4 Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994 Jun 17;264:1772~1775
    5 Barneoud P, Lolivier J, Sanger DJ, et al. Quantitative motor assessment in fALS mice: a longitudinal study. Neuro report. 1997, 8: 2861~2865
    6 Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci, 1997, 152 Suppl 1:S67~73
    7 Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor- 2(Nrf2), a NF-E2- like basic leucine zipper transcriptional activator that binds to the tandem NF - E2/ AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA, 1994, 91: 9926~9930
    8 Talalay P, Dinkova-Kostova AT, Holtzclaw WD.Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv Enzyme Regul, 2003, 43:121~134
    9 Giudice A, Montella M. Activation of the Nrf2/ARE signaling pathway: a promising strategy in cancer prevention. Bioessays, 2006, 28:169~181
    10 Cho HY, Jedlicka AE, Reddy SP, et al. Role of NRF2 in protection against hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol. 2002, 26:175~182
    11 Fahey JW, Haristoy X, Dolan PM, et al.Sulforaphane inhibits extracellular, intracellular, and antibioticres-istantstrains of Helicobacter pylori and prevents benzo-[a]pyrene-induced stomach tumors. Proc Natl Acad Sci USA, 2002, 99:7610~7615
    12 Jakel RJ, Kern JT, Johnson DA, et al. Induction of theprotective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci, 2005, 87(1):176~186
    13 Li J, Lee JM, Johnson J, et al. Microarray analysis reveals an antioxidant responsive element- driven gene set involved in conferring protection from an oxidative stressinduced apoptosis in IMR-32 cells. J Biol Chem, 2002, 277(1):388~394
    14 Wasserman WW, Fahl WE. Functional antioxidant responsive element. Proc Natl Acad Sci USA, 1997,94(10):5361~5366
    15 Li J, Lee JM, Johnson J, et al. Microarray analysis reveals an antioxidant responsive element- driven gene set involved in conferring protection from an oxidative stressinduced apoptosis in IMR-32 cells. J Biol Chem 2002, 277(1):388~394
    16 Lee JM, Shih AY, Murphy TH, et al. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem, 2003, 278(39):37948~37956
    17 Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2- dependent antioxidant response element activation by tert- butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J Neurosci, 2004,24(5):1101~1112
    18 Lee JM, Shih AY, Murphy TH. NF-E2-related Factor-2 Mediates Neuroprotection against Mitochondrial Complex I Inhibitors and Increased Concentrations of Intracellular Calcium in Primary Cortical Neurons. J Biol Chem, 2003, 278(39): 37948~37956
    19 Shih AY, Imbeault S, Barakauskas V, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem, 2005,280:22925~22936
    20 Gebicki J M. Protein hydroperoxides as new reactive oxygen species. Redox Report , 1997 , 3 (2) : 99-110
    21 Smith M A , Sayre L M , Monnier V M , et al . Radical aging in Alzheimerps disease. Trends Neurosci , 1995 , 18 ( 4 ) : 172 ~176
    22 Burn DJ. Curr Opin Neurol,2006,19(6): 572-579
    1 Rowland LP, Shneider NA. Medical progress: amyotrophic lateral sclerosis. N Eng J Med, 2001, 344(22):1689~1695
    2 Figlewicz DA, Orrell RW, The genetics of motor neuron diseases. Amyotroph Lateral Scler. Other Mot. Neuron Disord. 2003,4:225~231
    3 Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362:59~62
    4 Gebicki JM. Protein hydroperoxides as new reactive oxygen species. Redox Report, 1997,3(2):99~110
    5 Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor 2(Nrf2), a NF-E2- like basic leucine zipper transcriptional activator that binds to the tandem NF - E2/ AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA, 1994, 91(21): 9926~9930
    6 Talalay P, Dinkova-Kostova AT, Holtzclaw WD.Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv Enzyme Regul, 2003, 43:121~134
    7 Giudice A, Montella M. Activation of the Nrf2/ARE signaling pathway: a promising strategy in cancer prevention. Bioessays, 2006, 28(2):169~181
    8 Cho HY, Jedlicka AE, Reddy SP, et al. Role of NRF2 in protection against hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol. 2002, 26:175~182
    9 Fahey JW, Haristoy X, Dolan PM, et al. Sulforaphane inhibits extracellular,intracellular,and ntibioticresistantstrains of Helicobacter pylori and prevents benzo-[a]pyrene-induced stomach tumors.Proc Natl Acad Sci USA, 2002, 99:7610~7615
    10 Jakel RJ, Kern JT, Johnson DA, et al. Induction of theprotective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci, 2005, 87(1):176~186
    11 Li J, Lee JM, Johnson J, et al. Microarray analysis reveals an antioxidant responsive element- driven gene set involved in conferring protection from an oxidative stressinduced apoptosis in IMR-32 cells. J Biol Chem, 2002, 277(1):388~394
    12 Li J, Lee JM, Johnson J, et al. Microarray analysis reveals an antioxidant responsive element- driven gene set involved in conferring protection from an oxidative stressinduced apoptosis in IMR-32 cells. J Biol Chem 2002, 277(1):388~394
    13 Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2- dependent antioxidant response element activation by tert- butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J Neurosci, 2004,24(5):1101~1112
    14 Lee JM, Shih AY, Murphy TH, et al. NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem, 2003, 278(39):37948~37956
    15 Lee JM, Shih AY, Murphy TH. NF-E2-related Factor-2 Mediates Neuroprotection against Mitochondrial Complex I Inhibitors and Increased Concentrations of Intracellular Calcium in Primary Cortical Neurons. J Biol Chem, 2003, 278(39): 37948~37956
    16 Shih AY, Imbeault S, Barakauskas V, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotectionduring mitochondrial stress in vivo. J Biol Chem, 2005,280:22925~22936
    17 Lee JM, Johnson JA. An important role of Nrf2/ARE pathway in the cellular defense mechanism. J Biochem Mol Biol, 2004, 37(2):139~43
    18 Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 2002, 297:1186~1190
    19 Lu C, Chan SL, Haughey N, et al. Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-Daspartate channels. J Neurochem, 2001, 78:577~589
    20 Shibata N,Nagai R,Miyata S,et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation. Acta Neuropathol. 2000; 100(3):275~284
    21 Shibata N,Yamada S, Uchida K,et al. Accumulation of protein-bound 4-hydroxy-2-hexenal in spinal cords from patients with sporadic amyotrophic lateral sclerosis. Brain Research, 2004, 1019(1-2):170~177
    22 Shibata N, Kawaguchi M, Uchida K, et al. Protein-bound crotonaldehyde accumulates in the spinal cord of superoxide dismutase-1 mutation-associated familial amyotrophic lateral sclerosis and its transgenic mouse model. Neuropathology, 2007, 27(1):49~61
    23 Beckman JS, Carson M, Smith CD, et al. ALS, SOD andperoxinitrite. Nature, 1993:364~584
    24 Beal MF , Ferrante RJ , Browe SE , et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 1997,42(4):644~654
    25 Tohgi H,AbeT, Yamayaki K, et al. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1999, 46(1):129~131
    26 Ferrante RJ ,Shinobu LA ,Schulz JB ,et al. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997 ;42 :326~332
    27 Borchelt DR, Lee MK, Slunt MS, et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 1994; 91: 8292~8296
    28 Borchelt DR, Guarnieri M, Wong PC, et al. Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J Biol Chem 1995; 270: 3234~3238
    29 Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase. Science 1994; 264: 1772~1775 and Science 1995; 269: 149
    30 Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxidedismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995; 92: 689~693
    31 Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105~1116
    32 Bruijn LI, Becher MW, Lee MK, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997; 18: 327~338
    33 Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develope normally but exhibit enhanced cell death after axonal injury. Nat Gen 1996; 13: 43~47
    34 Bruijn LI, Houseweart MK, Kato S, et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild type SOD1. Science 1998; 281: 1851~1854
    35 Wiedau,Pazos M,Goto JJ ,Rabizadeh S, et al. Altered reactivityof superoxide dismutase in familial amyotrophic leteral sclerosis.Science 1996 ;271 :515~521
    36 Estevez,A,Beckman,J, Induction of nitric oxide-dependent apoptosis in motor neurons by Zinc-deficient superoxide dismutase.Science 1999 ,286: 2498~2550
    37 Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney ME. Enhanced oxygen radical production in a transgenic mousemodel of familial amyotrophic lateral sclerosis. Ann Neurol 1998; 44: 763~770
    38 Kong J, Xu Z. Peripheral axotomy slows motoneuron degeneration in a transgenic mouse line expressing mutant SOD1 G93A. J Comp Neurol 1999; 412: 373~380
    39 Zhang B, Tu PH, Abtahian F, Trojanowski JQ, Lee VM-Y. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 1997; 139: 1307~1315
    40 Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 1999; 2: 50~56
    41 Warita H, Itoyama Y, Abe K. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res 1999; 819: 120~131
    42 Morrison BM, Gordan JW, Ripps ME, Morrison JH. Quantitative immunocytochemical analysis of the spinal cord in G86R superoxide dismutase transgenic mice: Neurochemical correlates of selective vulnerability. J Comp Neurol 1996; 373: 619~631
    43 Siklos L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH. Intracellular calcium parallels motoneuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol 1998; 57: 571~587
    44 Heizmann CW. Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys 1992; 11: 411~425
    45 Petralia RS, Wang YX, Mayat E, Wenthold RJ. Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol 1997; 385: 456~476
    46 Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeablepha-amino-3-hydroxy-5-methyl-4- isoxaz-ole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997; 42: 200~207
    47 Headley PM, Grillner S. Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sci, 1990, 11:205~211
    48 Cid C, Alvarez-Cermeno JC, Regidor I, et al. Low concentrations of glutamate induce apoptosis in cultured neurons: implications for amyotrophic lateral sclerosis. J Neurol Sci, 2003, 206:91~95
    49 Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve, 2002, 26:438~458
    50 Kawahara Y, Kwak S, Sun H, et al. Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. JNeurochem, 2003, 85:680~689
    51 Trotti D,Rossi D,Gjesdal O,et al. peroxynitrite inhibits glutamate transporter subtypes. J-Biol-Chem, 1996,271(11) :5976~5979
    52 Zhao W,Xie W,Le W. Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism.J Neuropathol Exp Neurol,2004,63(9):964~977
    53 Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidantvulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci, 1998, 19:328~334
    54 Rothstein JD, Van Kammen M, Levey AI, et al. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol, 1995, 38:73~84
    55 Dunlop J, McIlvain HB, She Y, et al. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci, 2003, 23:1688~1696
    56 Rao SD, Yin HZ, Weiss JH. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci, 2003, 23:2627~2633
    57 Kaal EC, Vlug AS, Versleijen MW,et al. Chronic mitochondrial inhibition induces selective motoneuron death in vitro : a new model for amyotrophic lateral sclerosis. J Neurochem 2000 ; 74 :1158~1164
    58 Shibata N ,Nagai R ,Miyata S ,et al. Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation. Acta Neuropathol (Berl) 2000 ;100(3) :275~282
    59 Simonian NA, Coyle JT. Oxidative stress in neurodegenerativedisease. Ann Rev Pharmacol Toxicol 1996 ;36 :83~91
    60 Wong NK, Styong MJ. Nitric oxide sythase expression in cervical spinal cord in sporadic amyotrophic lateral sclerosis. Eur J Cell Biol 1998 ;77 :338~342
    61 Beal MF ,Ferrante RJ ,Browe SE ,et al. Increased 32nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Neurosci Lett 2000 ;291 : 44~51
    62 Tohgi H, Abe T, Yamayaki K, et al. Remarkable increase in cerebrospinal fluid 32nitrotyrosine in patients with amyotrophic lateral sclerosis. Ann Neurol 1999 ;46 :129~135
    63 Aoyama K,Matsubara K,Fujikawa Y,et al. Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitritemediated oxidative stress in neurodegenerative disease. Ann Neurol 2000 ;47 :524~530
    64 Chou SM, Han CY,Wang HS ,et al. A receptor for advanced glycosylaion endproducts (AGEs) is colocalized with neurofilament bound AGEs and SOD1 in motoneurons of ALS: Immunohistochemical study. J Neurol Sci 1999 ;31 :169~174
    65 Noh KM , Hwang JY , Shin HC , et al. A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C,Neurobiol. Dis, 2000,7: 375~383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700