CD163/HO-1信号通路与人脑出血后血肿周围组织炎症反应的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑出血(intracerebral hemorrhage, ICH)占所有卒中类型的15%-20%,脑出血患者的死亡率和病残率均高于其他亚型卒中患者,目前起发病机制尚未完全清楚。CD163/HO-1途径是血红蛋白代谢的主要途径,可能起到抗炎、抗氧化的作用。研究CD163和HO-1在脑出血后血肿周围组织中的动态表达,并研究其表达与组织炎症反应之间的关系。本研究选取高血压脑出血行血肿清除术的患者27例,取靠近血肿旁1cm左右脑组织作为试验组,将入路中远离血肿处的脑组织取12例作为对照。按发病到手术取标本的时间分为≤6h组,6~24h组、24~72h组和>72h组4个亚组。通过HE染色观察血肿周围脑组织的病理变化,TUNEL阳性细胞检测观察凋亡情况,免疫组化染色检测TNF-α、IL-1和IL-10的表达水平;应用RT-PCR、western blot法和免疫组化方法从基因及蛋白质水平上检测CD163的水平。并将其与TNF-α、IL-1和IL-10表达进行相关性分析;应用RT-PCR、western blot法和免疫组化方法从基因及蛋白质水平上检测HO-1的水平。并将其与TNF-α、IL-1表达进行相关性分析;对CD163表达和HO-1表达进行相关性分析。HE染色发现对照组脑组织细胞排列整齐紧密,神经细胞胞体大、胞核淡染大且圆(偶见核深染浓缩);神经胶质细胞胞体小、核深染。试验组脑组织可见细胞排列不规则且疏松,在神经细胞、神经胶质细胞周围可见空泡(一般为脑组织水肿造成),有多处软化灶及出血水肿;神经细胞(胞体大、胞核深染浓缩)变性坏死数量减少;神经胶质细胞(胞体小、核深染)可见增生。试验组TUNEL染色阳性细胞在脑出血6~24h出现,后凋亡细胞数明显增多,24~72h组达到高峰,>72h逐渐减少,但均较对照组明显升高,差异显著(p<0.05)。试验组TNF-α和IL-1表达6~24h开始升高,后明显增多,24~72h组达到高峰,>72h逐渐减少,在6~24h、24~72h和>72h时明显高于对照组(p<0.05)。试验组IL-10表达6~24h时高于对照组(p<0.05),24~72h开始下降,>72h最低,在24~72h和>72h时低于对照组(p<0.05)。试验组CD163mRNA于6~24h开始升高,>72h仍呈上升趋势,在6~24h、24~72h和>72h时与对照组有显著差异(p<0.05)。免疫组化检测试验组CD163表达6~24h开始升高,>72h仍呈上升趋势,在6~24h、24~72h和>72h时与对照组有显著差异(p<0.05)。相关性分析提示:脑出血血肿周围组织CD163mRNA含量和TNF-α、IL-1蛋白表达均负相关(p<0.01);CD163蛋白表达和IL-10蛋白表达呈正相关(p<0.01)。试验组HO-1mRNA于6~24h开始升高,>72h仍呈上升趋势,在6~24h、24~72h和>72h时与对照组有显著差异(p<0.05)。免疫组化检测试验组HO-1表达6~24h开始升高,>72h仍呈上升趋势,在6~24h、24~72h和>72h时与对照组有显著差异(p<0.05)。相关性分析提示:脑出血血肿周围组织HO-1mRNA含量和TNF-α、IL-1蛋白表达均负相关(p<0.01)。相关性分析提示:试验组CD163mRNA和HO-1mRNA,CD163蛋白和HO-1蛋白表达均呈正相关。根据以上结果,我们得出结论:人脑出血血肿周围组织存在炎症反应和细胞凋亡,IL-1、IL-10和TNF-α是参与脑出血血肿周围炎症反应的重要细胞因子;CD163表达在人脑出血后血肿周围脑组织表达增高,与TNF-α和IL-1的表达负相关,与IL-10表达正相关,其在脑出血后起到抗炎作用;HO-1表达在人脑出血后血肿周围脑组织表达增高,与TNF-α和IL-1的表达负相关,在脑出血后起到抗炎作用;CD163与HO-1表达呈正相关,功能上起到相互促进、相互协调的作用,共同构成脑出血后Hb的代谢通路。
Intracerebral hemorrhage accounted for15%-20%of all type of stroke and themortality and invalid rate are higher than other subtypes. at present, thepathogenesis is not entirely clear.CD163/HO-1pathway was thought to the mainmetabolic pathway of hemoglobin and may have a potential antiinflammatory andantioxidant role. Thus, we established this experiment to study the dynamicexpression of CD163and HO-1in around the hematoma tissue after intracerebralhemorrhage, and detect the relationship between their expression and theinflammatory response. In this study, we selected27patients with hypertensivecerebral hemorrhage who were all under craniotomy and hematoma removal, andtook brain tissue from about1cm near to the hematoma as a experimental group andbrain tissue away from the hematoma as controls during the approach.All Specimenswere divided into three sub-groups:≤6h group,6~24h group,24~72h group and>72h group according to the time interval between onset to taking samples. HE staining,TUNEL staining and immunohistochemical method were used to observe thepathological changes, apoptosis and detect the expression of TNF-α, IL-1and IL-10.RT-PCR, western blot and immunohistochemical methods respectively, were used todetect the expression of CD163on gene and protein levels, and analysed correlationof CD163with TNF-α, IL-1and IL-10expression. RT-PCR, western blot andimmunohistochemical methods respectively, were used to detect the expression ofHO-1on gene and protein levels, and analysed correlation of HO-1with TNF-α andIL-1expression. Correlation between CD163and HO-1expression was analysed.We found Significant difference between experimental group and control group fromHE stain. TUNEL-positive cells in the experimental group in the cerebralhemorrhage appeared during6~24h, reached the peak during24~72h, decreasedwhen it was after72h, but significantly higher than those in the control group(P<0.05). TNF-α, IL-1expression of experimental group also began to increase during6~24h, reached the peak during24~72h, decreased when it was after72h, butsignificantly higher than those in the control group (P<0.05). IL-1expression ofexperimental group increased during6~24h,(P<0.05). Then its expression decreasedduring24~72h and>72h, showed a lower levels than those in the control group(P<0.05). Expression of CD163mRNA and CD163protein in the experimental groupbegan to increase during6~24h, still increased when it was after72h, significantlyhigher than those in the control group (P<0.05). Correlation analysis showed that:CD163mRNA and TNF-α, IL-1protein expression were negatively correlated(P<0.01); CD163protein expression and IL-10expression always made a positivecorrelation (P<0.01). Expression of HO-1mRNA and HO-1protein in theexperimental group began to increase during6~24h, still increased when it was after72h, significantly higher than those in the control group (P<0.05). Correlationanalysis showed that: HO-1mRNA and TNF-α, IL-1protein expression werenegatively correlated (P<0.01). Correlation analysis showed that: CD163mRNA andHO-1mRNA, CD163protein and HO-1protein expression were positivelycorrelated (P<0.01). We concluded that perihematoma tissue after CerebralHemorrhage existed inflammation and apoptosis. TNF-α, IL-1and IL-10wereimportant cytokines involved in inflammation of intracerebral hemorrhage.Expression of CD163in human brain tissue in intracerebral hemorrhage increasedsignificantly, and made a negative correlation with TNF-α and IL-1expression,while there is a positive correlation between CD163and IL-10. CD163played animportant role in anti-inflammatory reactions in perihematoma tissue after CerebralHemorrhage. Expression of HO-1in human brain tissue in intracerebral hemorrhageincreased significantly, and made a negative correlation with TNF-α and IL-1expression. HO-1also played an important role in anti-inflammatory reactions inperihematoma tissue after cerebral Hemorrhage. CD163and HO-1expression werepositively correlated and associated in the function promoting each other, and play acoordination work together to form the metabolic pathways of Hb after intracerebralhemorrhage.
引文
[1] Zurasky JA, Aiyagari V, Zazulia AR, et al. Early mortality followingspontaneous intracerebral hemorrhage[J].Neurology,2005,64(4):725-727.
    [2] Naval NS,Nyquist P,Carhuapoma JR.ICH aspiration and thrombolysis[J].Neurol Sci,2007,261(1):80-83.
    [3] Kazui S, Naritomi H, Yamamoto H, et al. Enlargement of spontaneousintracerebral hemorrhage[J]. Stroke,1996,27(10):1783-1787.
    [4] Niizuma H, Hiroshi, Suzuki J. Stereotactic aspiration of putaminal hemorrhage using adouble track Aspiration technique[J]. Neurosurgery,1988,22(2):432-436.
    [5] Fujii Y,Takeeuchi S,Sasaki O,et al.Multivariate analysis of predictors of hematomaenlargement in spontaneous intracerebral hemorrhage[J]. Stroke,1998,29(6):1160-1166.
    [6]刘青蕊,王新存,崔鹏,等。脑出血患者早期血肿扩大相关危险因素的临床分析[J].脑与神经疾病杂志,2009,17(2):1332-1341.
    [7] Tanaka Y, Marumo T, Shibuta H, et al. Serum S100B,brain edema, andhematoma formation in a rat model of collagenase-induced hemorrhagicstroke[J]. Brain Res Bull,2009,78(425):158-163.
    [8] Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebralhemorrhage[J]. Lancet Neurol,2006,5(1):53-63.
    [9] Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms,treatment options, management strategies, and operative indications[J].Neurosurgical Focus,2007,22(5): E6.
    [10] Lee KR, Kawai N, Jorish D, et al. Mechanisms of edema formation after ICH:Effects of thrombin on cerebral blood flow, blood-brain permeability and cellsurvival in a rat model[J]. Neurosurg,1997,86(2):272-278
    [11] Hua Y, Keep RF, Hoff JT, et al. Brain injury after intracerebral hemorrhage: therole of thrombin and iron[J]. Stroke,2007,38(2):759-762.
    [12] Levine JM, Snider R, Finkelstein D, et al. Early edema in warfarin2relatedintracerebral hemorrhage[J]. Neurocrit Care,2007,7(1):58-63.
    [13] Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors inischemic, hemorrhagic and traumatic brain injury: deleterious or protective[J].Neurochem,2003,84(1):3-9.
    [14] Ryter SW,Otterbein LE.Carbon monoxide in biology and medicine[J].Bioessays,2004,26(3):270-280.
    [15] Huang FP,Xi G, Keep RF, et al. Brain edema after experimental intracerebralhemorrhage: role of hemoglobin degeneration products[J]. Neurosurg,2002,96(2):287-93.
    [16] Hua Y, Xi G, Keep RF, et al. Complement activation in the brain afterexperimental intracerebral hemorrhage[J]. Neurosurg,2000,92(6):1016-1022.
    [17] Wagner KR, Hua Y, CourtenMyers GM, et al. Tin-mesoporphyrin, a potentheme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivoand in vitro studies[J]. Cell Mol Biol (Noisy-le-grand),2000,46(3):597-608.
    [18] Henett SA, Tenniswood M, Chen JH, et a l. Chronic cerebral hypoperfusionelicits neuronal apoptosis and behavioral impairment[J]. Neuroreport,1998,9(1):161-166.
    [19] Yamamoto N, Yoneda K, Asai K, et al. Alternation in the expression of theAQP family in cultured rat astrocytes during hypoxia and reoxygenation[J].Brain Res Mol Brain Res,2001,90(1):26-38.
    [20]李文,包仕尧,李根华,等.大鼠ICH后脑血流和脑水含量变化的研究[J].中风与神经疾病杂志,1997,10(5):286-288.
    [21]郭富强,杨友松,蒋万书.实验性脑出血的缺血性损害及其防治的研究进展[J].国外医学脑血管疾病分册,1998,6(4):231-234.
    [22] Chao G, Richard FK. Acute inflammatory reaction following experimentalintracerebral hemorrhage in rats[J]. Brain Res,2000,871(1):57-65.
    [23] Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimentalintracerebral hemorrhage in rats[J]. Brain Res,2000,871(1):57-65.
    [24] Xue M, Del Bigio M R. Intracortical hemorrhage injury in rats relationshipbetween blood fractions and brain cell death[J]. Stroke,2000,31(7):1721-1727.
    [25] Del Bigio MR,Yan HJ,Buist R, et al. Experimental intracerebral hemorrhage inrats, magnetic resonance imaging and histopathological correlates[J]. Stroke,1996,27(12):2312-2320.
    [26]张久之,罗祖明.抗白细胞药物治疗急性脑出血的随机对照研究[J].华西医学,2002,17(2):209-210.
    [27]李光勤,董为伟.大鼠脑出血周围区白细胞浸润及强力霉素效果的研究[J].中华神经科杂志,1999,32(1):58-59.
    [28] Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood inrats:time course of inflammation and cell death[J]. Neursci Lett,2000,283(3):230-232.
    [29] Gong Y, Hua Y, Keep RF, et al. Intracerebral hemorrhage: effects of aging onbrain edema and neurological deficits[J]. Stroke,2004,35(11):2571-5.
    [30] Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia tointracerebral hemorrhage[J]. Neurocrit Care,2005,3(1):77-85.
    [31] Gong C, Hoff JT, Keep RF. Acute inflammatory reaction followingexperimental intracerebral hemorrhage in rat[J]. Brain Res,2000,871(1):57-65.
    [32] Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhagetreatment: experience from preclinical studies[J]. Neurological Research,2005,27(3):268-79.
    [33] Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage inducesmacrophage activation and matrix metalloproteinases[J]. Ann Neurol,2003,53(6):731-742.
    [34] Holmin S, Mathiese T. Intracerebral administration of interleukin-1β andinduction of inflammation, apoptosis and vasogenic edema[J]. Neurosurg,2000,92(1):108-120.
    [35] Carhuapoma JR, Barker PB, Hanley DF, et al. Human brain hemorrhage:quantification of perihematoma edema by use of diffusion weighted MRimaging[J]. Am J Neuroradiol,2002,23(8):1322-1326.
    [36] Henrich Noack P, Prehn JH, Krieglstein J, et al. Transforming growth factorbeta1protects hippocampal neurons against degeneration caused by transientglobal ischemic. Dose2response relationship and potential neuropretectivemechanisms[J]. Stroke,1996,27(9):1609-1615.
    [37] Giralt M,Penkowa M, Lago N, et al. Metallothionein-1protect the CNS after afocal brain injury[J]. Exp Neurol,2002,173(1):114-128.
    [38] Fassbender K, Rossol S, Kammer T, et al. Proinflammatory cytokines in serumof patients with acute cerebral ischemia:kinetics of secretion and relation to theextent of brain damage and outcome of disease[J]. Neurol Sci,1994,122(2):135-139.
    [39] Kim JS, Yoon SS, Kim Y H, et al. Serial measurement of Interleukin-6,transforming growth factor beta, and S-100protein in patients with acutestroke[J]. Stroke,1996,27(9):1553-1557.
    [40] Castillo J, Davalos A, AIvarezsabin J, et al. Molecular signatures of braininjury after intracerebral hemorrhage[J]. Neurology,2002,58(4):624-629.
    [41] Saito K, Suyama K, Nishida K, et al. Early increase in TNA-α, IL-6and IL-1βlevels following transient cerebral ischemia in gerbil brain[J]. Neurosci Lett,1996,206(223):149-152.
    [42] Fang HY, Ko WJ, Lli CY. Inducible heat shock protein70, interleukin-18, andtumor necrosis factor-alpha correlate with outcomes of spontaneousintracerebral hemorrhage[J]. Clin Neurosci,2007,14(5):435-441.
    [43] Du C,Fang M,Li Y,et al. Smac,a mitochondrial protein that promotescytochrome C dependent Caspase activation by eliminating Lap inhibition[J].Cell,2000,102(1):33-42.
    [44] Grilli M,Barbieri I,Basudev H,et al. Interleukin-10modulates neuronalthre-Shold of vulnerability to ischemic damage[J]. Eur J Neurosci,2000,12(7):2265-2272.
    [45] Hickenbottom S, Grotta J, Strong R, et al. Nuclear factor B and celldeath after experimental intracerebral hemorrhage in rats[J]. Stroke,1999,30(11):2472-477.
    [46] Yamamoto M, Takeda K. Role of nuclear I kappa B proteins in the regulationof host immune responses[J]. Infect Chemother,2008,14(4):265-269.
    [47] YANG DG, HU CL, WU BH, et al. The intervension study of apretininintracerebral hemorrhage[J]. Journal of Brain and Nervous Disease,2005,13(3):179-181.
    [48] Hickenbottom SL, Grotta JC, Strong R, et al.Nuclear factor kappa B and celldeath after experimental intracerebral hemorrhage in rats[J]. Stroke,1999,30(11):2472-2427.
    [49] POWER C, HENRY S, MARC R, et al. Intracerebral hemorrhage iducesmacrophage activation and matrix Metalloproteinases[J]. Ann Neurol,2003,53(6):731-742.
    [50] NOUE K, SLATON J W, KIM S J, et al. Interleukin8expression regulatestumor genicity and metastasis in human bladder cancer[J]. Cancer Res,2000,60(8):2290-2299.
    [51] Hua Y, Xi G, Keep RF, et al. Complement activation in the brain afteexperimental intracerebral hemorrhage[J]. Neurosurg,2000,92(6):1016-1022.
    [52] Kraus J, Oschmann P, Leis S, et al. High concentrations of sVCAM-l andsICAM-l in the cerebrospinal fluid of patients with intracerebral haemorrhageare associated with poor outcome[J]. Neurol Neurosurg Psychiatry,2002,73(3):346-347.
    [53] Castillo J, Davalos A, Alvarez-Sabin J, et al. Molecular signatures of brain injuryafter intracerebral hemorrhage[J]. Neurology,2002,58(4):624-629.Matsushita K,
    [54] Mayne M, Ni W, Yan HJ, et al. Antisense oligodeoxy nucleotide inhibition oftumor necrosis factor-α expression is neuroprotective after intracerebralhemorrhage[J]. Stroke,2001,32(1):240-248.
    [55] Meng W, Wang X, et al. Evidence for apoptosis after intercerebral hemorrhagein rat striatum[J]. Cereb Blood Flow Metab,2000,20(2):396-404.
    [56] Hua Y, Xi G, Keep RF, et al. Complement activation in the brain afterexperimenml intracerebral hemorrhage[J]. Neurosurg,2000,92(6):1016-1022.
    [57] Robert M, Friedlander MD. Apoptosis and Caspases in NeurodegenerativeDiseases[J]. The new England journal of medicine,2003,348(14):1365-75.
    [58] Li T, Hu J, Thomas JA, et al. Differential induction of apoptosis by LPS andtaxol in monocytic cells[J]. Mol Immunol,2005,42(9):1049-55.
    [59] Rosenberg GA, Mun-Bryce S, Wesky M, et al. Collagenase-inducedintracereral hemorrhage in rats[J]. Stroke.1990,21(5):80l-807.
    [60] H gger P, Dreier J, Droste A, Buck F, Sorg C. Identification of the integralmembrane protein RM3/1on human monocytes as a glucocorticoid-induciblemember of the scavenger receptor cysteine-rich family (CD163)[J]. Immunol.1998;161(4):1883-90.
    [61] Droste A, Sorg C, H gger P. Shedding of CD163, a novel regulatorymechanism for a member of the scavenger receptor cysteine-rich family[J].Biochem Biophys Res Commun,1999,256(1):110-3.
    [62] Hyung SY, Joo YL, Katherine AF, et al. Specific Inhibition ofHO-1-Independent Signaling Pathways of TLR3and CD163by ResveratrolMolecular Targets Are TBK1and RIP1in TRIF[J]. Complex.Immunology,2005,175(5):3339-46.
    [63] Fitzgerald KA, Rowe DC, Barnes BJ, et al. LPS-CD163signaling to IRF-3/7and NF-κB involves the Toll adaptors TRAM and TRIF[J]. Exp Med2003,198(7):1043–55.
    [64] Sánchez C, Doménech N, Vázquez J, Alonso F, Ezquerra A, Domínguez J.The porcine2A10antigen is homologous to human CD163and related tomacrophage differentiation[J]. Immunol.1999,162(9):5230-7.
    [65] Buehler PW, D'Agnillo F, Schaer DJ. Hemoglobin-based oxygen carriers:From mechanisms of toxicity and clearance to rational drug design[J]. TrendsMol Med.2010,16(10):447-57.
    [66] Grant RL, Haney J, Curry AL, Honeycutt M. The porcine2A10antigen ishomologous to human CD163and related to macrophage differentiation[J].Toxicol Environ Health B Crit Rev.2010,13(6):460-75.
    [67] Genomic organization and chromosomal localization of the human CD163(M130) gene: a member of the scavenger receptor cysteine-rich superfamily[J].Biochem Biophys Res Commun.1999,260(2):466-74.
    [68] H gger P, Beelen RH. Regulation of CD163on human macrophages:cross-linking of CD163induces signaling and activation[J]. Leukoc Biol.1999,66(5):858-66.
    [69] Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulationof scavenger receptor CD163expression in human monocytes andmacrophages by pro-and antiinflammatory stimuli[J]. Leukoc Biol.2000,67(1):97-103.
    [70] Ritter M, Buechler C, Langmann T, Orso E, Klucken J, Schmitz G. Thescavenger receptor CD163: regulation, promoter structure and genomicorganization[J]. Obiology1999;67(5-6):257-61.
    [71] Gong C, Boulis N, Qian J, et al. Intracerebral hemorrhage induced cellulardeath[J]. Neurosurgery,2001,48(4):875-882.
    [72] Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage:the role of thrombin and iron[J]. Stroke,2007,38(2):759-62.
    [73] Sulahian TH, H gger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C,Droste A, Stehling M, Wallace PK, Morganelli PM, Guyre PM. Humanmonocytes express CD163, which is upregulated by IL-10and identical top155[J]. Cytokine.2000,12(9):1312-21.
    [74] Ritter M, Buechler C, Kapinsky M, Schmitz G. Interaction of CD163with theregulatory subunit of casein kinase II (CKII) and dependence of CD163signaling on CKII and protein kinase C[J]. Eur J Immunol,2001,31(4):999-1009.
    [75] Sulahian TH, Hintz KA, Wardwell K, Guyre PM. Development of an ELISAto measure soluble CD163in biological fluids[J]. Immunol Methods.2001,252(1-2):25-31.
    [76] Schaer DJ, Boretti FS, Hongegger A, Poehler D, Linnscheid P, Staege H,Müller C, Schoedon G, Schaffner A. Molecular cloning and characterization ofthe mouse CD163homologue, a highly glucocorticoid-inducible member ofthe scavenger receptor cysteine-rich family [J]. Immunogenetics,2001,53(2):170-7.
    [77] H gger P, Sorg C. Soluble CD163inhibits phorbol ester-induced lymphocyteproliferation[J]. Biochem Biophys Res Commun,001,288(4):841-3.
    [78] M ller HJ, Peterslund NA, Graversen JH, Moestrup SK. Identification of thehemoglobin scavenger receptor/CD163as a natural soluble protein inplasma[J]. The International Journal of Biochemistry&Cell Biology2002,99(1):378-80.
    [79] Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenginghaptoglobin-hemoglobin complexes from plasma[J]. Int J Biochem CellBiol,2002,34(4):309-14.
    [80] Baeten D, Demetter P, Cuvelier CA, Kruithof E, Van Damme N, De Vos M,Veys EM, De Keyser F. Macrophages expressing the scavenger receptorCD163: a link between immune alterations of the gut and synovialinflammation in spondyloarthropathy[J]. Pathol,2002,196(3):343-50.
    [81] Madsen M, Graversen JH, Moestrup SK. Haptoglobin and CD163: captor andreceptor gating hemoglobin to macrophage lysosomes[J]. Redox Rep,2001,6(6):386-8.
    [82] Cranny A, Crowley P, Whelan A. Effects of human placental lactogen on theexpression of CD163and CD14on human monocytes in culture[J]. Clin ExpImmunol,2002,128(2):275-8.
    [83] Schaer DJ. The macrophage hemoglobin scavenger receptor (CD163) as agenetically determined disease modifying pathway in atherosclerosis[J].Atherosclerosis,2002,163(1):199-201.
    [84] Fonseca JE, Edwards JC, Blades S, Goulding NJ. Macrophage subpopulationsin rheumatoid synovium: reduced CD163expression in CD4+Tlymphocyte-rich microenvironments[J]. Arthritis Rheum,2002,46(5):1210-6.
    [85] Frings W, Dreier J, Sorg C. Only the soluble form of the scavenger receptorCD163acts inhibitory on phorbol ester-activated T-lymphocytes, whereasmembrane-bound protein has no effect[J]. FEBS Lett,2002,526(1-3):93-6.
    [86] Schaer DJ, Boretti FS, Schoedon G, Schaffner A. Induction of theCD163-dependent haemoglobin uptake by macrophages as a novelanti-inflammatory action of glucocorticoids[J]. Br J Haematol,2002,119(1):239-43.
    [87] Schaer DJ, Schoedon G, Schaffner A. Assignment of the CD163antigen(CD163) to mouse chromosome6band F2by radiation hybrid mapping[J].Cytogenet Genome Res,2002,98(2-3):231B.
    [88] Walter RB, B chli EB, Schaer DJ, Rüegg R, Schoedon G. Expression of thehemoglobin scavenger receptor (CD163/HbSR) as immunophenotypic markerof monocytic lineage in acute myeloid leukemia[J]. Blood,2003,101(9):3755-6.
    [89] Horn IR, Nielsen MJ, Madsen M, Jacobsen C, Graversen JH, Moestrup SK.Generation of a haptoglobin-hemoglobin complex-specific Fab antibodyblocking the binding of the complex to CD163[J]. Eur J Haematol,2003,71(4):289-93.
    [90] Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F,Escribano JM, Ezquerra A, Domínguez J. Expression of porcine CD163onmonocytes/macrophages correlates with permissiveness to African swine feverinfection[J]. Arch Virol,2003,148(12):2307-23.
    [91] Anzaldi LL, Skaar EP. Overcoming the heme paradox: heme toxicity andtolerance in bacterial pathogens[J]. Infect Immun,2010,78(12):4977-89.
    [92] Huang TY, Tsai PS, Huang CJ. HO-1overexpression attenuates endotoxineffects on CAT-2isozymes expression[J]. Surg Res,2008,148(2):172-80.
    [93] Takahashi T, Shimizu H, Inoue K, Morimatsu H, Umeda K, Omori E, Akagi R,Morita K. Protective role of HO-1in oxidative tissue injuries[J]. NihonYakurigaku Zasshi,2007,130(4):252-6.
    [94] Batzlsperger CA, Achatz S, Spreng J, Riegger GA, Griese DP. Evidence for apossible inhibitory interaction between the HO-1/CO-and Akt/NO-pathwaysin human endothelial cells[J]. Cardiovasc Drugs Ther,2007,21(5):347-55.
    [95] Prawan A, Keum YS, Khor TO, Yu S, Nair S, Li W, Hu L, Kong AN.Structural influence of isothiocyanates on the antioxidant response element(ARE)-mediated heme oxygenase-1(HO-1) expression[J]. Pharm Res,2008,25(4):836-44.
    [96] Lim HJ, Lee KS, Lee S, Park JH, Choi HE, Go SH, Kwak HJ, Park HY.15d-PGJ2stimulates HO-1expression through p38MAP kinase and Nrf-2pathway in rat vascular smooth muscle cells[J]. Toxicol Appl Pharmacol,2007,223(1):20-7.
    [97] Tracz MJ, Juncos JP, Grande JP, Croatt AJ, Ackerman AW, Rajagopalan G,Knutson KL, Badley AD, Griffin MD, Alam J, Nath KA. Renal hemodynamic,inflammatory, and apoptotic responses to lipopolysaccharide in HO-1-/-mice[J]. Am J Pathol,2007,170(6):1820-30.
    [98] Aziz MT, Al-Asmar MF, Mostafa T, Atta H, Rashed L, Sabry D, Ashour S,Aziz AT. Assessment of heme oxygenase-1(HO-1) activity in the cavernoustissues of sildenafil citrate-treated rats[J]. Asian J Androl,2007,9(3):377-81.
    [99] Schuett H, Eipel C, Maletzki C, Menger MD, Vollmar B. NO counterbalancesHO-1overexpression-induced acceleration of hepatocyte proliferation inmice[J]. Lab Invest,2007,87(6):602-12.
    [100] Gu DN, Chen YP, Lu MQ. Role of CD163/HO-1pathway in a rat acute liverfailure model[J]. Zhonghua Gan Zang Bing Za Zhi,2008,16(12):944-5.
    [101] Akila P, Prashant V, Suma MN, Prashant SN, Chaitra TR. CD163and itsexpanding functional repertoire[J]. Clin Chim Acta,2012,413(7-8):669-74.
    [102] Ij s P, Nuotio K, Saksi J, Soinne L, Saimanen E, Karjalainen-Lindsberg ML,Salonen O, Sarna S, Tuimala J, Kovanen PT, Kaste M, Lindsberg PJ.Microarray analysis reveals overexpression of CD163and HO-1insymptomatic carotid plaques[J]. Arterioscler Thromb Vasc Biol,2007,27(1):154-60.
    [103] Abraham NG, Drummond G. CD163-Mediated hemoglobin-heme uptakeactivates macrophage HO-1, providing an antiinflammatory function[J]. CircRes,2006,99(9):911-4.
    [104] Onofre G, Kolácková M, Jankovicová K, Krejsek J. Scavenger receptor CD163and its biological functions[J]. Acta Medica (Hradec Kralove),2009,52(2):57-61.
    [105] Schaer DJ, Alayash AI, Buehler PW. Gating the radical hemoglobin tomacrophages: the anti-inflammatory role of CD163, a scavenger receptor[J].Antioxid Redox Signal,2007,9(7):991-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700