戊型肝炎病毒在家禽、家畜中的流行及其ORF3蛋白与人肝细胞蛋白相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
戊型肝炎病毒(Hepatitis E Virus, HEV)是戊型肝炎的病原体,是一种重要的传染因子。逐渐积累起来的研究结果显示戊型肝炎是一种人兽共患病,自然界存在HEV的动物宿主。我国是戊型肝炎的流行区,既有爆发流行也有散发病例,近年来散发病例报告数持续增加,可能与动物源性HEV的传播有关。了解HEV在我国动物中的流行情况,对于预防和控制戊型肝炎的流行、减少发病具有重要意义。在本研究中,我们从不同省份采集我国主要饲养动物的血清,对HEV在各种动物中的感染率、感染水平进行了调查分析,并对HEV基因型、基因亚型的分布进行了分析研究。为了进一步探索HEV感染、致病以及不同基因型别HEV宿主差异的分子机制,我们应用酵母双杂交系统对人肝cDNA文库进行筛选,筛选了与HEV ORF3蛋白有相互作用的蛋白分子,并对不同基因型HEV ORF3蛋白与肝细胞蛋白的相互作用进行比较;通过对这些蛋白分子的生物学信息分析,对ORF3蛋白的功能及其对宿主细胞生物过程可能产生的影响进行了分析、推测。
     1.HEV在我国家畜、家禽中流行情况的调查
     从我国的27个省(市)共采集了猪、牛、羊、家兔、鸡和鸭血清6329份,应用EIA方法测定血清中HEV抗体和抗原。结果显示,猪、牛、羊和家兔的平均HEV抗体阳性率分别为82.2%、28.2%、10.4%和15.4%,猪HEV抗体阳性率明显高于牛、羊和家兔。鸡和鸭的抗体阳性率分别为3.58%和7.1%,二者都明显低于猪、牛羊和家兔。来源于不同省份的动物HEV抗体的阳性率有明显差异,猪、牛、羊和家兔HEV抗体阳性率范围分别为10.9%-100%、0~92.9%、0~48%和0-53.4%。大约1.9%的猪、0.8%的牛、1.6%的羊以及3.8%的兔血清样本为HEV抗原阳性。鸡和鸭的抗原阳性率分别为1.79%和1.43%。
     应用Nested RT-PCR在15份猪血清和22份不同品种的家兔的血清中检测到了HEV RNA,而牛、羊、鸡和鸭血清中未检测到HEV RNA。通过对ORF2区域304bp长的核苷酸序列进行比对和进化树分析,15株猪HEV均属于基因4型。在进化树上,这15株4型HEV被分在不同的四组,分别为4a、4d及两个新的亚型。综合分析表明,我国猪群中流行的HEV主要为基因4型HEV,包括4a,4b,4d,4f,4g以及本研究新发现的两个亚型。从家兔中分离到的22株HEV均属于兔HEV,在进化树上,兔HEV又进一步分成了3组,很可能代表三个基因亚型。
     本研究表明HEV在我国家畜、家禽中普遍流行,猪HEV感染率最高,我国流行的猪HEV主要为基因4型,包括4a,4b,4d,4f,4g以及两个新亚型。证实了兔HEV在我国不同地区不同品种的家兔中均有流行,支持兔HEV属于一个新基因型的观点。牛、羊、鸡和鸭血清样本中都检测到了HEV抗原,但未能检测出HEVRNA,仍需进一步研究。
     2. HEV ORF3蛋白与肝细胞蛋白相互作用的研究
     本研究以基因1型和4型HEV ORF3蛋白为诱饵,通过酵母配对杂交实验对人肝cDNA文库进行筛选,筛选结果应用酵母杂交共转化实验进行验证。经过三次实验,筛选出了32种与ORF3蛋白有相互作用的肝细胞蛋白。其中4种蛋白(4/32,12.5%)已经有报告能够与ORF3蛋白结合。进一步应用哺乳动物细胞内化学发光免疫共沉淀实验对酵母杂交实验的筛选结果的可靠性进行评估,显示筛选结果的可信度比较高。
     生物信息学分析发现这32种相互作用蛋白在细胞核、细胞质、细胞膜、细胞外基质、以及线粒体、内涵体膜中均有分布,大多数蛋白定位于细胞的多个部位。这些蛋白分别参与细胞代谢、细胞免疫、细胞黏附等多个生物学过程。因此推测ORF3蛋白可能通过与这些蛋白相互作用,发挥多重作用。通过对蛋白功能富集聚类分析,发现分别有显著多数量的相互作用蛋白参与血液凝固、氧化应激和铁代谢过程。结合戊型肝炎临床表现和肝组织的病理特征进行分析,推测ORF3可能通过与宿主细胞蛋白的相互作用,影响凝血、脂质代谢以及铁代谢,而引发相应的病理过程。
     通过酵母杂交共转化实验分别检测基因1型HEV、4型HEV、兔HEV以及禽HEV ORF3蛋白与以基因4型和1型HEV ORF3为诱饵筛选到的这32种人肝细胞蛋白是否有相互作用。结果显示,基因1型、4型和兔HEV的ORF3蛋白都能够与这些蛋白结合,然而禽HEV的ORF3蛋白只与其中的13种蛋白有相互作用。因此,禽HEV对人肝细胞的影响作用可能不同于哺乳动物HEV,这种蛋白相互作用的差别是否与禽HEV与哺乳动物HEV宿主范围等的差别有关联,还需要进一步研究。
     这些发现为我们进一步研究ORF3蛋白的致病作用,以及研究HEV感染、复制和宿主限制性的分子机制提供了线索和方向。
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important public health concern in many countries. Accumulating evidences indicate that hepatitis E is a zoonotic disease, which means that the HEV virus exists in natural animal reservoirs. HEV infection is known to be endemic in China. Increasing reports of sporadic hepatitis E cases are likely related to animal origins. Fully understanding the molecular prevalence of HEV in animals is significant important for the control and prevention of hepatitis E. In this study, we collected animal serum samples from different provinces across the country. The prevalence and the genomic diversity of HEV in these animals were investigated and evaluated. To further investigate the molecular mechanism of host range restriction of different HEV genotypes and the pathogenesis of HEV, yeast two-hybrid system was used to screen a human liver cDNA library for identifying proteins interacting with HEV-ORF3. The molecular functions of ORF3 were analyzed and predicted through bioinformatics analysis of the interacting host proteins.
     1. The prevalence of and genomic diversity of HEV in domestic animals
     A total of 6,329 domestic animal sera were collected from 27 provinces and detected for HEV-specific antibodies and antigens by enzyme immunoassays. The average antibody positive rates were 82.2%,28.2%,10.4% and 15.4% in pigs, cattle, goats and rabbits respectively. The positive rate of pigs was statistically higher than those of other animal species.3.58% and 7.1% chicken and ducks were also found to be anti-HEV positive although the positive rates of both of these two animals were significantly lower than those of mammalian animals. The prevalence of anti-HEV antibody in animals varied from province to province, ranging from 10.9% to 100% in pigs,0 to 48% in goats and 0 to 92.9% in cattle. The positive rates for HEV antigen were 1.9% in pigs,1.6% in goats,0.8% in cattle and 3.8% in rabbits tested in the study. HEV antigen positive rates of chicken and ducks were 1.79% and 1.43% respectively.
     HEV RNA was detected in 15 swine and 22 rabbit samples of various breeds. Phylogenetic analysis of the 304-bp sequences within the viral ORF2 classified all of the 15 swine HEV isolates into HEV Genotype 4, which were further divided into four different subtypes,4a,4b, and two new subtypes. Thus far,4a,4b,4d,4f,4g and the two new subgenotypes were found to be circulating in pigs across the country. All the 22 isolates from rabbit sera were belonged to rabbit HEV-associated genotypes. The rabbit HEV strains were genetically heterogeneous entities, commonly divided into divergent genetic groups.
     These results indicated that HEV is widely prevalent in domestic animals in China. The highest rate of HEV infection was found in pigs among the tested animals. Genotype 4 HEV as the most common swine HEV is highly diverse, including 4a,4b,4d,4f,4g and two new subgenotypes, which are prevalent in pigs in China. We first demonstrated that rabbit HEV with considerable genetic diversity are prevalent in various breeds of fanned rabbits in China. The view that rabbit HEV belongs to a new genotype was supported by the results of this study. Goats, cattle, chicken and ducks also may be infected with HEV and further studies are needed.
     2. Analysis of HEV ORF3 protein and host protein interactions
     Screenings for host proteins that interact with ORF3 protein derived from genotype 1 HEV W2 strain and genotype 4 W3 strian were performed by using yeast mating hybrid assays. Interactomes were further characterized by co-transforming the ORF3 bait plasmid with each of positive prey plasmids into competent yeast cells. Thirty two genes encoding proteins that interact with the HEV-ORF3 protein were identified. Four of them were reported previously to be the interacting partners of ORF3 protein. The rest of 28 proteins were new HEV-ORF3 binding partners identified in this study. The screening result was further evaluated by a chemiluminescent co-immunoprecipitation assay.
     We proceeded to map these interactions onto an overall visualized interaction network that comprised a repertoire of connections potentially required for ORF3 protein linked up with the components of the host cellular networks. We then analyzed the biological information of these proteins and tried to understand the context of their connections with ORF3 protein in HEV pathogens. According to "GO DATABASE", the subcellular locations of the 32 proteins include extracellular space, extracellular parts, extracellular region, membrane fraction, mitochondrion, cytoplasmic part, etc. Most of the proteins have multiple locations. These proteins involved in the biological processes of apoptosis, cell adhesion, cell communication, immune system process, ect,. Thus, ORF3 protein may function in multiple ways via interacting with these proteins. The analysis of the interaction network revealed an enrichment of canonical pathways (p<0.05) encompassing blood coagulation, oxidative stress, cellular iron ion homeostasis. Considering the clinical manifestations of hepatitis E and the biological analysis results may suggested that ORF3 likely affect these biological pathways by direct interacting with hub proteins and then trigger the corresponding pathological processes.
     Tested by yeast two hybrid co-transformation, the binding capacities of ORF3 proteins from 1,3 and rabbit HEV with the 32 host proteins has no significant difference. In comparison, only 13 of the 32 human liver proteins preyed by genotype 1 ORF3 protein were found to interact with the ORF3 protein of avian HEV. Whether the host ranges variation among avian HEV and mammalian HEVs is related to the difference of ORF3 interacting capacity with host proteins is needed further investigation.
     This is the first report to predict the physiological function of the ORF3 protein. The results provide us a critical clue to further study the HEV pathogenesis.
引文
[1]Purcell RH, Emerson SU. Hepatitis E:an emerging awareness of an old disease. Journal of hepatology 2008; 48(3):494-503.
    [2]Kamar N, Selves J, Mansuy JM, Ouezzani L, Peron JM, Guitard J, et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. The New England journal of medicine 2008; 358(8):811-7.
    [3]Dalton HR, Bendall RP, Keane FE, Tedder RS, Ijaz S. Persistent carriage of hepatitis E virus in patients with HIV infection. The New England journal of medicine 2009; 361(10):1025-1027.
    [4]Meng XJ. Hepatitis E virus:animal reservoirs and zoonotic risk. Veterinary microbiology 2010; 140(3-4):256-265.
    [5]Meng XJ. Recent advances in Hepatitis E virus. Journal of viral hepatitis 2010; 17(3):153-161.
    [6]Song DY, Zhuang H, Li Z. [Hepatitis E in Hetian city. Analysis of 562 cases]. Zhonghua nei ke za zhi [Chinese journal of internal medicine] 1992; 31(5):275-277'.
    [7]Balayan MS, Andjaparidze AG, Savinskaya SS, Ketiladze ES, Braginsky DM, Savinov AP, et al. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology 1983; 20(1):23-31.
    [8]Reyes GR, Purdy MA, Kim JP, Luk KC, Young LM, Fry KE, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science (New York, NY 1990; 247(4948):1335-1339.
    [9]Mushahwar IK. Hepatitis E virus:molecular virology, clinical features, diagnosis, transmission, epidemiology, and prevention. Journal of medical virology 2008; 80(4): 646-658.
    [10]Agrawal S, Gupta D, Panda SK. The 3'end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 2001; 282(1): 87-101.
    [11]Koonin EV, Gorbalenya AE, Purdy MA, Rozanov MN, Reyes GR, Bradley DW. Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus:delineation of an additional group of positive-strand RNA plant and animal viruses. Proceedings of the National Academy of Sciences of the United States of America 1992; 89(17):8259-8263.
    [12]Tsarev SA, Emerson SU, Reyes GR, Tsareva TS, Legters LJ, Malik IA, et al. Characterization of a prototype strain of hepatitis E virus. Proceedings of the National Academy of Sciences of the United States of America 1992; 89(2):559-563.
    [13]Huang FF, Sun ZF, Emerson SU, Purcell RH, Shivaprasad HL, Pierson FW, et al. Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV. The Journal of general virology 2004; 85(Pt 6):1609-1618.
    [14]Krawczynski K. Hepatitis E. Hepatology 1993; 17(5):932-941.
    [15]Reyes GR, Huang CC, Yarbough PO, Tam AW. Hepatitis E virus. Comparison of 'New and Old World'isolates. Journal of hepatology 1991; 13(Suppl 4):S155-161.
    [16]Graff J, Torian U, Nguyen H, Emerson SU. A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. Journal of virology 2006; 80(12): 5919-5926.
    [17]Surjit M, Jameel S, Lal SK. The ORF2 protein of hepatitis E virus binds the 5'region of viral RNA. Journal of virology 2004; 78(1):320-328.
    [18]Jameel S, Zafrullah M, Ozdener MH, Panda SK. Expression in animal cells and characterization of the hepatitis E virus structural proteins. Journal of virology 1996; 70(1): 207-216.
    [19]Zafrullah M, Ozdener MH, Kumar R, Panda SK, Jameel S. Mutational analysis of glycosylation, membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein. Journal of virology 1999; 73(5):4074-4082.
    [20]Zhang H, Dai X, Shan X, Meng J. The Leu477 and Leu613 of ORF2-encoded protein are critical in forming neutralization antigenic epitope of hepatitis E virus genotype 4. Cellular & molecular immunology 2008; 5(6):447-456.
    [21]Li SW, Zhang J, He ZQ, Gu Y, Liu RS, Lin J, et al. Mutational analysis of essential interactions involved in the assembly of hepatitis E virus capsid. The Journal of biological chemistry 2005; 280(5):3400-3406.
    [22]Tsarev SA, Tsareva TS, Emerson SU, Kapikian AZ, Ticehurst J, London W, et al. ELISA for antibody to hepatitis E virus (HEV) based on complete open-reading frame-2 protein expressed in insect cells:identification of HEV infection in primates. The Journal of infectious diseases 1993; 168(2):369-378.
    [23]Li TC, Yamakawa Y, Suzuki K, Tatsumi M, Razak MA, Uchida T, et al. Expression and self-assembly of empty virus-like particles of hepatitis E virus. Journal of virology 1997; 71(10):7207-7213.
    [24]Li TC, Takeda N, Miyamura T, Matsuura Y, Wang JC, Engvall H, et al. Essential elements of the capsid protein for self-assembly into empty virus-like particles of hepatitis E virus. Journal of virology 2005; 79(20):12999-13006.
    [25]Tyagi S, Jameel S, Lal SK. The full-length and N-terminal deletion of ORF2 protein of hepatitis E virus can dimerize. Biochemical and biophysical research communications 2001; 286(1):214-221.
    [26]Xiaofang L, Zafrullah M, Ahmad F, Jameel S. A C-Terminal Hydrophobic Region is Required for Homo-Oligomerization of the Hepatitis E Virus Capsid (ORF2) Protein. Journal of biomedicine & biotechnology 2001; 1(3):122-128.
    [27]Zafrullah M, Ozdener MH, Panda SK, Jameel S. The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. Journal of virology 1997; 71(12): 9045-9053.
    [28]Tyagi S, Jameel S, Lal SK. Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein. Journal of virology 2001; 75(5):2493-2498.
    [29]Tyagi S, Korkaya H, Zafrullah M, Jameel S, Lal SK. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. The Journal of biological chemistry 2002; 277(25):22759-22767.
    [30]Takahashi M, Yamada K, Hoshino Y, Takahashi H, Ichiyama K, Tanaka T, et al. Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Archives of virology 2008; 153(9):1703-1713.
    [31]Pavio N, Meng XJ, Renou C. Zoonotic hepatitis E:animal reservoirs and emerging risks. Veterinary research 2010; 41(6):46.
    [32]Korkaya H, Jameel S, Gupta D, Tyagi S, Kumar R, Zafrullah M, et al. The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. The Journal of biological chemistry 2001; 276(45):42389-42400.
    [33]Kar-Roy A, Korkaya H, Oberoi R, Lal SK, Jameel S. The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. The Journal of biological chemistry 2004; 279(27):28345-28357.
    [34]Chandra V, Kar-Roy A, Kumari S, Mayor S, Jameel S. The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. Journal of virology 2008; 82(14):7100-7110.
    [35]Ratra R, Kar-Roy A, Lal SK. ORF3 protein of hepatitis E virus interacts with the Bbeta chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells. The Journal of general virology 2009; 90(Pt 6):1359-1370.
    [36]Moin SM, Panteva M, Jameel S. The hepatitis E virus Orf3 protein protects cells from mitochondrial depolarization and death. The Journal of biological chemistry 2007; 282(29): 21124-21133.
    [37]Chandra V, Kalia M, Hajela K, Jameel S. The ORF3 protein of hepatitis E virus delays degradation of activated growth factor receptors by interacting with CIN85 and blocking formation of the Cbl-CIN85 complex. Journal of virology2010; 84(8):3857-3867.
    [38]Emerson SU, Nguyen H, Torian U, Purcell RH. ORF3 protein of hepatitis E virus is not required for replication, virion assembly, or infection of hepatoma cells in vitro. Journal of virology 2006; 80(21):10457-10464.
    [39]Emerson SU, Nguyen HT, Torian U, Burke D, Engle R, Purcell RH. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. Journal of virology2010; 84(18):9059-9069.
    [40]Yamada K, Takahashi M, Hoshino Y, Takahashi H, Ichiyama K, Nagashima S, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. The Journal of general virology 2009; 90(Pt 8):1880-1891.
    [41]Graff J, Nguyen H, Yu C, Elkins WR, St Claire M, Purcell RH, et al. The open reading frame 3 gene of hepatitis E virus contains a cis-reactive element and encodes a protein required for infection of macaques. Journal of virology 2005; 79(11):6680-6689.
    [42]Huang YW, Opriessnig T, Halbur PG, Meng XJ. Initiation at the third in-frame AUG codon of open reading frame 3 of the hepatitis E virus is essential for viral infectivity in vivo. Journal of virology 2007; 81(6):3018-3026.
    [43]Nagashima S, Takahashi M, Jirintai, Tanaka T, Yamada K, Nishizawa T, et al. A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. The Journal of general virology 2011; 92(Pt 2):269-278.
    [44]Emerson SU, Purcell RH. Hepatitis E virus. Reviews in medical virology 2003; 13(3): 145-154.
    [45]Okamoto H. Genetic variability and evolution of hepatitis E virus. Virus research 2007; 127(2):216-228.
    [46]Lu L, Li C, Hagedorn CH. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Reviews in medical virology 2006; 16(1):5-36.
    [47]Purcell RH. Hepatitis viruses:changing patterns of human disease. Proceedings of the National Academy of Sciences of the United States of America 1994; 91(7):2401-2406.
    [48]Meng XJ, Halbur PG, Haynes JS, Tsareva TS, Bruna JD, Royer RL, et al. Experimental infection of pigs with the newly identified swine hepatitis E virus (swine HEV), but not with human strains of HEV. Archives of virology 1998; 143(7):1405-1415.
    [49]Meng XJ, Purcell RH, Halbur PG, Lehman JR, Webb DM, Tsareva TS, et al. A novel virus in swine is closely related to the human hepatitis E virus. Proceedings of the National Academy of Sciences of the United States of America 1997; 94(18):9860-9865.
    [50]Halbur PG, Kasorndorkbua C, Gilbert C, Guenette D, Potters MB, Purcell RH, et al. Comparative pathogenesis of infection of pigs with hepatitis E viruses recovered from a pig and a human. Journal of clinical microbiology 2001; 39(3):918-923.
    [51]Meng XJ, Halbur PG, Shapiro MS, Govindarajan S, Bruna JD, Mushahwar IK, et al. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. Journal of virology 1998; 72(12):9714-9721.
    [52]Balayan MS, Usmanov RK, Zamyatina NA, Djumalieva DI, Karas FR. Brief report: experimental hepatitis E infection in domestic pigs. Journal of medical virology 1990; 32(1):58-59.
    [53]Arankalle VA, Chobe LP, Chadha MS. Type-IV Indian swine HEV infects rhesus monkeys. Journal of viral hepatitis 2006; 13(11):742-745.
    [54]Wang YC, Zhang HY, Xia NS, Peng G, Lan HY, Zhuang H, et al. Prevalence, isolation, and partial sequence analysis of hepatitis E virus from domestic animals in China. Journal of medical virology 2002; 67(4):516-521.
    [55]Meng XJ. Swine hepatitis E virus:cross-species infection and risk in xenotransplantation. Current topics in microbiology and immunology 2003; 278:185-216.
    [56]Yazaki Y, Mizuo H, Takahashi M, Nishizawa T, Sasaki N, Gotanda Y, et al. Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. The Journal of general virology 2003; 84(Pt 9):2351-2357.
    [57]Feagins AR, Opriessnig T, Guenette DK, Halbur PG, Meng XJ. Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA. The Journal of general virology 2007; 88(Pt 3):912-917.
    [58]Bouwknegt M, Lodder-Verschoor F, van der Poel WH, Rutjes SA, de Roda Husman AM. Hepatitis E virus RNA in commercial porcine livers in The Netherlands. Journal of food protection 2007; 70(12):2889-2895.
    [59]Bouwknegt M, Frankena K, Rutjes SA, Wellenberg GJ, de Roda Husman AM, van der Poel WH, et al. Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Veterinary research 2008; 39(5):40.
    [60]Li W, She R, Wei H, Zhao J, Wang Y, Sun Q, et al. Prevalence of hepatitis E virus in swine under different breeding environment and abattoir in Beijing, China. Veterinary microbiology 2009; 133(1-2):75-83.
    [61]Meng XJ, Wiseman B, Elvinger F, Guenette DK, Toth TE, Engle RE, et al. Prevalence of antibodies to hepatitis E virus in veterinarians working with swine and in normal blood donors in the United States and other countries. Journal of clinical microbiology 2002; 40(1):117-122.
    [62]Haqshenas G, Shivaprasad HL, Woolcock PR, Read DH, Meng XJ. Genetic identification and characterization of a novel virus related to human hepatitis E virus from chickens with hepatitis-splenomegaly syndrome in the United States. The Journal of general virology 2001; 82(Pt 10):2449-2462.
    [63]Peralta B, Biarnes M, Ordonez G, Porta R, Martin M, Mateu E, et al. Evidence of widespread infection of avian hepatitis E virus (avian HEV) in chickens from Spain. Veterinary microbiology 2009; 137(1-2):31-36.
    [64]Guo H, Zhou EM, Sun ZF, Meng XJ, Halbur PG. Identification of B-cell epitopes in the capsid protein of avian hepatitis E virus (avian HEV) that are common to human and swine HEVs or unique to avian HEV. The Journal of general virology 2006; 87(Pt 1): 217-23.
    [65]Haqshenas G, Huang FF, Fenaux M, Guenette DK, Pierson FW, Larsen CT, et al. The putative capsid protein of the newly identified avian hepatitis E virus shares antigenic epitopes with that of swine and human hepatitis E viruses and chicken big liver and spleen disease virus. The Journal of general virology 2002; 83(Pt 9):2201-2209.
    [66]Bilic I, Jaskulska B, Basic A, Morrow CJ, Hess M. Sequence analysis and comparison of avian hepatitis E viruses from Australia and Europe indicate the existence of different genotypes. The Journal of general virology 2009; 90(Pt 4):863-873.
    [67]Marek A, Bilic I, Prokofieva I, Hess M. Phylogenetic analysis of avian hepatitis E virus samples from European and Australian chicken flocks supports the existence of a different genus within the Hepeviridae comprising at least three different genotypes. Veterinary microbiology2010; 145(1-2):54-61.
    [68]Sun ZF, Larsen CT, Huang FF, Billam P, Pierson FW, Toth TE, et al. Generation and infectivity titration of an infectious stock of avian hepatitis E virus (HEV) in chickens and cross-species infection of turkeys with avian HEV. Journal of clinical microbiology 2004; 42(6):2658-2662.
    [69]Zhang W, Shen Q, Mou J, Yang ZB, Yuan CL, Cui L, et al. Cross-species infection of hepatitis E virus in a zoo-like location, including birds. Epidemiology and infection 2008; 136(8):1020-1026.
    [70]Vitral CL, Pinto MA, Lewis-Ximenez LL, Khudyakov YE, dos Santos DR, Gaspar AM. Serological evidence of hepatitis E virus infection in different animal species from the Southeast of Brazil. Memorias do Instituto Oswaldo Cruz 2005; 100(2):117-122.
    [71]Li TC, Chijiwa K, Sera N, Ishibashi T, Etoh Y, Shinohara Y, et al. Hepatitis E virus transmission from wild boar meat. Emerging infectious diseases 2005; 11(12):1958-1960.
    [72]Tei S, Kitajima N, Takahashi K, Mishiro S. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 2003; 362(9381):371-373.
    [73]Tei S, Kitajima N, Ohara S, Inoue Y, Miki M, Yamatani T, et al. Consumption of uncooked deer meat as a risk factor for hepatitis E virus infection:an age-and sex-matched case-control study. Journal of medical virology 2004; 74(1):67-70.
    [74]Takahashi K, Kitajima N, Abe N, Mishiro S. Complete or near-complete nucleotide sequences of hepatitis E virus genome recovered from a wild boar, a deer, and four patients who ate the deer. Virology 2004; 330(2):501-505.
    [75]Kabrane-Lazizi Y, Fine JB, Elm J, Glass GE, Higa H, Diwan A, et al. Evidence for widespread infection of wild rats with hepatitis E virus in the United States. The American journal of tropical medicine and hygiene 1999; 61(2):331-335.
    [76]Johne R, Plenge-Bonig A, Hess M, Ulrich RG, Reetz J, Schielke A. Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR. The Journal of general virology2010; 91(Pt3):750-758.
    [77]Zhao C, Ma Z, Harrison TJ, Feng R, Zhang C, Qiao Z, et al. A novel genotype of hepatitis E virus prevalent among farmed rabbits in China. Journal of medical virology 2009; 81(8):1371-1379.
    [78]Geng J, Wang L, Wang X, Fu H, Bu Q, Zhu Y, et al. Study on prevalence and genotype of hepatitis E virus isolated from Rex Rabbits in Beijing, China. Journal of viral hepatitis 2010. [Epub ahead of print] PMID:20609076
    [79]Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE, et al. Hepatitis E virus (HEV):molecular cloning and sequencing of the full-length viral genome. Virology 1991; 185(1):120-131.
    [80]Mansuy JM, Legrand-Abravanel F, Calot JP, Peron JM, Alric L, Agudo S, et al. High prevalence of anti-hepatitis E virus antibodies in blood donors from South West France. Journal of medical virology 2008; 80(2):289-293.
    [81]Wang Y, Ling R, Erker JC, Zhang H, Li H, Desai S, et al. A divergent genotype of hepatitis E virus in Chinese patients with acute hepatitis. The Journal of general virology 1999; 80 (Pt 1):169-177.
    [82]Zhai L, Dai X, Meng J. Hepatitis E virus genotyping based on full-length genome and partial genomic regions. Virus research 2006; 120(1-2):57-69.
    [83]Tai AL, Cheng PK, Ip SM, Wong RM, Lim WW. Molecular epidemiology of hepatitis E virus in Hong Kong. Journal of medical virology2009; 81(6):1062-1068.
    [84]Li X, Zhao C, Harrison TJ, Song A, Fan J, Zhang J, et al. Investigation of hepatitis E virus infection in swine from Hunan province, China. Journal of medical virology 2008; 80(8):1391-1396.
    [85]Geng Y, Wang C, Zhao C, Yu X, Harrison TJ, Tian K, et al. Serological prevalence of hepatitis E virus in domestic animals and diversity of genotype 4 hepatitis E virus in China. Vector borne and zoonotic diseases 2009; 10(8):765-770.
    [86]Yu Y, Sun J, Liu M, Xia L, Zhao C, Harrison TJ, et al. Seroepidemiology and genetic characterization of hepatitis E virus in the northeast of China. Infect Genet Evol 2009; 9(4): 554-561.
    [87]Wang Y, Zhang H, Li Z, Gu W, Lan H, Hao W, et al. Detection of sporadic cases of hepatitis E virus (HEV) infection in China using immunoassays based on recombinant open reading frame 2 and 3 polypeptides from HEV genotype 4. Journal of clinical microbiology 2001; 39(12):4370-4379.
    [88]Lam WY, Chan RC, Sung JJ, Chan PK. Genotype distribution and sequence variation of hepatitis E virus, Hong Kong. Emerging infectious diseases 2009; 15(5):792-794.
    [89]Masuda J, Yano K, Tamada Y, Takii Y, Ito M, Omagari K, et al. Acute hepatitis E of a man who consumed wild boar meat prior to the onset of illness in Nagasaki, Japan. Hepatol Res 2005; 31(3):178-183.
    [90]Wu JC, Chen CM, Chiang TY, Tsai WH, Jeng WJ, Sheen IJ, et al. Spread of hepatitis E virus among different-aged pigs:two-year survey in Taiwan. Journal of medical virology 2002; 66(4):488-492.
    [91]Ning H, Niu Z, Yu R, Zhang P, Dong S, Li Z. Identification of genotype 3 hepatitis E virus in fecal samples from a pig farm located in a Shanghai suburb. Veterinary microbiology 2007; 121(1-2):125-130.
    [92]Ning H, Yu S, Zhu Y, Dong S, Yu R, Shen S, et al. Genotype 3 hepatitis E has been widespread in pig farms of Shanghai suburbs. Veterinary microbiology 2008; 126(1-3): 257-263.
    [93]Zhang F, Li X, Li Z, Harrison TJ, Chong H, Qiao S, et al. Detection of HEV antigen as a novel marker for the diagnosis of hepatitis E. Journal of medical virology 2006; 78(11): 1441-1448.
    [94]Fu H, Li L, Zhu Y, Wang L, Geng J, Chang Y, et al. Hepatitis E virus infection among animals and humans in Xinjiang, China:possibility of swine to human transmission of sporadic hepatitis E in an endemic area. The American journal of tropical medicine and hygiene 2010; 82(5):961-966.
    [95]Ma Z, Feng R, Zhao C, Harrison TJ, Li M, Qiao Z, et al. Seroprevalence and distribution of hepatitis E virus in various ethnic groups in Gansu province, China. Infect Genet Evol 2010; 10(5):614-619.
    [96]Xia YG, Li YT, Lu YH, Ren H, Hu AQ, Zhu JF, et al. [Phylogenetic analysis of sporadic hepatitis E virus in Eastern China.]. Zhonghua liu xing bing xue za zhi 2009; 30(12):1269-1272.
    [97]Zhang W, He Y, Wang H, Shen Q, Cui L, Wang X, et al. Hepatitis E virus genotype diversity in eastern China. Emerging infectious diseases2010; 16(10):1630-1632.
    [98]Ma H, Zheng L, Liu Y, Zhao C, Harrison TJ, Ma Y, et al. Experimental infection of rabbits with rabbit and genotypes 1 and 4 hepatitis E viruses. PloS one2010; 5(2):e9160.
    [99]Huang FF, Haqshenas G, Shivaprasad HL, Guenette DK, Woolcock PR, Larsen CT, et al. Heterogeneity and seroprevalence of a newly identified avian hepatitis e virus from chickens in the United States. Journal of clinical microbiology 2002; 40(11):4197-4202.
    [100]Casas M, Pina S, de Deus N, Peralta B, Martin M, Segales J. Pigs orally inoculated with swine hepatitis E virus are able to infect contact sentinels. Veterinary microbiology 2009; 138(1-2):78-84.
    [101]Tyagi S, Surjit M, Lal SK. The 41-amino-acid C-terminal region of the hepatitis E virus ORF3 protein interacts with bikunin, a kunitz-type serine protease inhibitor. Journal of virology 2005; 79(18):12081-12087.
    [102]Tyagi S, Surjit M, Roy AK, Jameel S, Lal SK. The ORF3 protein of hepatitis E virus interacts with liver-specific alpha1-microglobulin and its precursor alpha1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyte. The Journal of biological chemistry 2004; 279(28):29308-29319.
    [103]Ratra R, Kar-Roy A, Lal SK. The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain Ⅱ. Biochemistry 2008; 47(7):1957-1969.
    [104]Surjit M, Oberoi R, Kumar R, Lal SK. Enhanced alphal microglobulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. The Journal of biological chemistry 2006; 281 (12):8135-8142.
    [105]Ibrahim AS, Alkhal A, Jacob J, Ghadban W, Almarri A. Hepatitis E in Qatar imported by expatriate workers from Nepal:epidemiological characteristics and clinical manifestations. Journal of medical virology 2009; 81(6):1047-1051.
    [106]Patra S, Kumar A, Trivedi SS, Puri M, Sarin SK. Maternal and fetal outcomes in pregnant women with acute hepatitis E virus infection. Annals of internal medicine 2007; 147(1):28-33.
    [107]Jia ZS, Xie YM, Yin GW, Di JR, Guo WP, Huang CX, et al. Successful rescuing a pregnant woman with severe hepatitis E infection and postpartum massive hemorrhage. World J Gastroenterol 2003; 9(3):631-632.
    [108]Khuroo MS, Kamili S. Aetiology, clinical course and outcome of sporadic acute viral hepatitis in pregnancy. Journal of viral hepatitis 2003; 10(1):61-69.
    [109]Waris G, Huh KW, Siddiqui A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Molecular and cellular biology 2001; 21(22):7721-7730.
    [110]Irshad M, Chaudhuri PS, Joshi YK. Superoxide dismutase and total anti-oxidant levels in various forms of liver diseases. Hepatol Res 2002; 23(3):178-184.
    [111]Levent G, Ali A, Ahmet A, Polat EC, Aytac C, Ayse E, et al. Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. Journal of translational medicine 2006; 4:25.
    [112]Dikici I, Mehmetoglu I, Dikici N, Bitirgen M, Kurban S. Investigation of oxidative stress and some antioxidants in patients with acute and chronic viral hepatitis B and the effect of interferon-alpha treatment. Clinical biochemistry 2005; 38(12): 1141-1144.
    [113]Tripathi LP, Kataoka C, Taguwa S, Moriishi K, Mori Y, Matsuura Y, et al. Network based analysis of hepatitis C virus core and NS4B protein interactions. Molecular bioSystems2010; 6(12):2539-2553.
    [114]Kryger P, Christoffersen P. Liver histopathology of the hepatitis A virus infection: a comparison with hepatitis type B and non-a, non-b. Journal of clinical pathology 1983; 36(6):650-654.
    [115]Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388(6641):482-488.
    [116]Wang Y, Zhang H, Ling R, Li H, Harrison TJ. The complete sequence of hepatitis E virus genotype 4 reveals an alternative strategy for translation of open reading frames 2 and 3. The Journal of general virology 2000; 81(Pt 7):1675-1686.
    [117]Billam P, Sun ZF, Meng XJ. Analysis of the complete genomic sequence of an apparently avirulent strain of avian hepatitis E virus (avian HEV) identified major genetic differences compared with the prototype pathogenic strain of avian HEV. The Journal of general virology 2007; 88(Pt 5):1538-1544.
    [118]Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 2009; 139(7):1255-1267.
    [119]Zhang L, Villa NY, Rahman MM, Smallwood S, Shattuck D, Neff C, et al. Analysis of vaccinia virus-host protein-protein interactions:validations of yeast two-hybrid screenings. Journal of proteome research 2009; 8(9):4311-4318.
    [120]Fields S. High-throughput two-hybrid analysis. The promise and the peril. The FEBS journal 2005; 272(21):5391-5399.
    [121]Kannan H, Fan S, Patel D, Bossis I, Zhang YJ. The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. Journal of virology 2009; 83(13):6375-6382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700