EBZ135掘进机截割部行减速器的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤炭行业中,煤矿巷道的快速掘进是保证煤炭产量及采掘效率的关键技术,采掘装备及技术水平直接关系到煤矿的生产效率及煤矿安全。目前,国内大中型煤矿的巷道掘进主要的方式是采用掘进机和单体锚杆钻机配套作业,称之为煤巷综合机械化掘进。当前所采用的掘进机械主要是以悬臂式掘进机为主。尽管我国在近年来不断加大对掘进技术的研究力度,并且取得了一些重要成果。但是,与国外的先进设备相比,由国内自主设计生产的掘进机的总体性能参数偏低,在掘进机的控制技术、截割方式、除尘系统及元部件的可靠性等方面还存在着较大的差距。
     EBZ135掘进机是一种悬臂式掘进机,主要用于煤巷、半煤岩巷以及软岩的巷道、隧道掘进。该掘进机通过截割臂和截割减速器将电动机的扭矩和功率传递到截割头,对岩煤进行截割。截割减速器的结构形式、运转情况等各方面的性能指标将会通过影响截割头的运转而直接影响掘进机的采掘效率、生产能力及机体的稳定性等。因此,截割部减速器在EBZ135掘进机的组成结构中具有重要的地位。由于掘进机的工作空间一般比较狭小,要求掘进机的工作机构应该在保证工作性能及使用要求的前提下使结构尺寸最小。对于悬臂式掘进机而言,应该在保证截割臂的强度等各项安全指标使用性能指标的前提下,减轻截割臂的重量,减小其外围直径。由于截割减速器安装在截割臂内,这就使得截割减速器的预留安装空间变的非常有限。因此,有必要对EBZ135掘进机的截割减速器进行以体积最小为目标的参数优化,使得在保证掘进机使用性能及安全性能的前提下,使截割减速器的体积最小。
     EBZ135掘进机截割部减速器采用的是NGW二级行星齿轮减速器,本文通过建立该减速器的数学模型及约束条件,运用MATLAB优化工具箱对其进行了参数优化。通过安全校核计算之后,进一步确认了优化参数后的截割减速器达到了各项安全性能要求,并且优化后减速器体积较优化前缩小了22.3%,大大缩小了减速器的体积,减少了制造成本,改善了截割性能。
     通过运用UG NX7.0对优化后的截割减速器进行实体模型的建立,并对其进行了运动学仿真。通过运动学仿真结果,验证了优化参数后的截割减速器满足实际的使用要求,其各个部件的运动规律符合截割减速器的实际运行轨迹。
     最后,运用ANSYS Workbench12.0对截割部减速器进行了机构静力学的有限元分析。具体分析计算了减速器在最大静力作用下的结构变形、最大应力等,并与之前的安全校核结果及相关技术要求相比较,验证了优化后的减速器满足强度要求及最大变形尺寸要求。
The rapid excavation of the coal tunnel is a key technologies to ensure coal production and extraction efficiency In the coal industry. Mining equipment and technical level is directly related to the productivity and safety of coal mines. At present, the supporting operations of roadheader and th monomer jumbolter is the main roadway excavation way in the Domestic large and medium-sized coal mines,called the coalroad comprehensive mechanized driving,the boomed roadheader is the main Boring machinery. Although our country Continue to increase research efforts on the tunneling technology,and has made some significant achievements in recent years.But, compared with foreign advanced equipment, has the lower overall performance parameters of the roadheader by domestic independent research and develop,and Control Technology、cutting way、dust pelletizing system、the reliability of parts and other aspects, there are still a big gap.
     EBZ135roadheader is a boomed roadheader, mainly used for roadway and tunnel boring of coal, the semi-coal rock and soft rock roadway. The roadheader transmit the motor torque and power to the cutting head by cutting arm and reducer,to cut the rock and coal.The structure and functioning and other aspects of performance index of the cutting reducer Will directly affect the extraction efficiency、production capacity and the stability of the roadheader by the operation of the cutting head.Therefore,the cutting reducer has an important place in the composition of the EBZ135roadheader. Because roadheader's working space is Relatively small, therefore, should make the structure of the roadheader's working part smallest under the premise of guarantee the performance and use requirements.For the boomed roadheader,should reduce the weight and outer diameter of the cutting arm under the premise of guarantee the safety performance index of the cutting arm. As the cutting reducer installed in the cutting arm, which makes reserved installation space of the cutting reducer is very limited.Therefore,the smallest target parameter optimization of EBZ135roadheader's cutting reducer is necessary to make the minimum volume of the roadheader under the premise of guarantee the safety performance index of the roadheader.
     The cutting reducer of EBZ135roadheader used is NGW planetary gear reducer.In this paper, completed on the parameter optimization of the reducer through the establishment of the mathematical model and constraints equations of the reducer, by using the MATLAB optimization toolbox. By the calculation of the safety check, further confirmation of the safety performance indicators of the optimized cutting reducer. The volume of the optimized reducer is reduced by22.3%, significantly reducing the volume of the reducer, reduced manufacturing costs, improved cutting performance.
     Through the use of UG NX7.0established the solid model of the optimized cutting reducer,and conducted kinematics simulation of the solid model.The results of the kinematics simulation verify the optimized cutting reducer to meet the actual requirements, the law of motion of its parts in line with the actual trajectory of cutting reducer.
     Finally,through the use of UG ANSYS Workbench12.0conducted the structure static finite element analysis of the solid model.Specific analsysed and calculated the structure deformation and maximum stress of the reducer under the action of the maximum static,and Verify the optimized reducer to meet the strength requirements and the maximum deformation of size requirements by compared with the security check results and related technical requirements.
引文
[1]唐经世.隧道与地下工程机械—掘进机[M].北京:中国铁道出版社,1998:19-35.
    [2]李天成.现代矿山采矿机械设备实用技术手册[M].北京:北京矿业出版社,2006:13-42.
    [3]丛铁军.巷道掘进机[M].北京:煤炭工业出版社,1986:7-19.
    [4]王道斌.悬臂式掘进机巷道断面成形控制的研究[D].重庆:重庆大学,2009.
    [5]黄日恒.悬臂式掘进机[M].北京:中国矿业大学出版社,1996:5-23.
    [6]张国瑞.行星传动技术[M].上海:上海交通大学出版社,1989:1-30.
    [7]Kahraman A.Load Sharing Characteristics of Planetary Transmissions [J]. Mechanism and Machine Theory,1994a,29.
    [8]张少名.行星传动[M].西安:陕西科学技术出版社,2011:1-97.
    [9]K.Umezawa.The Developed Simulator and The Performance Diagrams For The Helical Gear[J].Proc.Inter.Conf.On Gears, Zhengzhou, China,1988:659-663.
    [10]李迪.NGW型行星齿轮传动的优化设计研究[D],南京,南京航空航天大学,2009.
    [11]马从谦.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1987:1-73.
    [12]张立君.大功率行星齿轮减速器填补国内空白[N].北京:中国建材报,2002,9.
    [13]蒋卫良.水泥磨用大功率(28000KW)行星齿轮减速器的研制[J],上海:传动技术,2003:1-5.
    [14]陈世刚.基于Pro/E的渐开线行星齿轮减速器三维参数化CAD系统[D],大连:大连交通大学,2005.
    [15]于娜.多级圆柱齿轮减速器参数化设计[D].大连:大连铁道学院,2003.
    [16]李亚强.行星减速器虚拟装配与动力学研究特性[D].武汉:武汉理工大学,2005.
    [17]陈令国.行星齿轮传动系统的建模与仿真研究[D].阜新:辽宁工程技术大学,2007.
    [18]李亚强.行星减速器虚拟装配与动力学研究特性[D].武汉:武汉理工大学,2009.
    [19]阳明盛MATLAB基础及数学软件[M],大连:大连理工大学出版社,2003.13-132.
    [20]求是科技MATLAB7.0从入门到精通[M],北京:人民邮电出版社,2006,53-203.
    [21]韩林山.机械优化设计[M],郑州:黄河水利出版社,2003,1-57.
    [22]万耀青.机械优化设计建模与优化方法评价,北京:北京理工大学出版社,1995,1-157.
    [23]鲍和云.基于MATLAB的两级行星齿轮传动的优化设计[J],杭州:工程设计学报,2005,12(4):232-235.
    [24]中华人民共和国煤炭行业标准MTT 1139-2011悬臂式掘进机切割机构减速器,北京:国家安全生产监督管理局,2011:1-14.
    [25]祝海林.工程机械行星减速器最小体积优化设计[J],天津:工程机械,2009,40:43-47.
    [26]江耕华.机械传动设计手册[M],北京:煤炭工业出版社,1982:53-96.
    [27]邱宣怀.机械设计[M],北京:高等教育出版社,2007:33-85.
    [28]成大先.机械设计手册[M],北京:化学工业出版社,2002:135-235.
    [29]沈慧芬.煤矿机械行星齿轮传动理论与实践[M],北京:煤炭工业出版社,1995:41-99.
    [30]麓山文化UG NX7从入门到精通[M],北京:中国铁道出版社,2011:13-170.
    [31]陈云.大功率矿用行星减速器优化设计及三维特征建模的研究[D],阜新:辽宁工程技术大学,2006.
    [32]吕洋波UG NX7.0动力学与有限元分析从入门到精通[M],北京:机械工业出版社,2010:19-190.
    [33]A.Kaharman.Nonlinear Dynamics of a Spur Gear.Journal of Sound and Vibration, 1990,103 (2):447-459.
    [34]SAS Inc.ANSYS Elements Reference Manual ANSYS Release 6.1 [M].American:SAS Inc,1997::1-32.
    [35]SAS Inc.ANSYS/LS-DYNA User's Guide ANSYS Release 6.1 [M]. American:SAS Inc, 1997::40-58.
    [36]徐芝纶.弹性力学简明教程[M],北京:高等教育出版社,2007:5-57.
    [37]Saeed Moaveni著,欧阳宇译.Finite Analysis:Theory and Aoolication With ANSYS.北京:电子工业出版社,2003.
    [38]张红松ANSYS 12.0有限元分析从入门到精通[M],北京:机械工业出版社,2010.
    [39]王金龙ANSYS 12.0有限元分析与范例解析[M],北京:机械工业出版社,2010:9-130.
    [40]周钊.基于ANSYS Workbench的直齿轮接触分析[J],十堰:湖北汽车工业学院学报,2011,25(4):77-80.
    [41]Lin J, Parker R,G.Parametric Instabilities in Planetary Gears under Mesh Stiffness Variations[J] Journal of Vibration and Acoustic,2000d, in preparation.
    [42]仇亚萍.基于ANSYS的有限元网格划分方法[J].机械管理开发,2007,(6):76-77.
    [43]刘雪艳.基于ANSYS的渐开线直齿行星齿轮有限元分析[D],杨凌:西北农林科技大学,2009.
    [44]Kahraman A.Static Load Sharing Characteristic of Transmission Planetary Gear Sets, Model and Experiment[J], Transimission and Driveline Systems Symposium.SAE paper 1999,01,1050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700