大面积高精度衍射光栅刻划机结构优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大面积高精度衍射光栅是大型空天地观测仪器的核心光学器件,由于其大尺寸高精度的要求,机械式刻划是其唯一的制造方式。光栅刻划机的整体精度要求极高,而机械结构和控制技术是其精度的决定性因素,二者关系紧密,不可分割,因此机械结构和控制技术也就成为了光栅刻划机研究的核心,进行光栅刻划机结构优化理论和控制理论的研究也是提高光栅刻划机制造技术水平的关键。随着各项大型天文物理项目的不断开展,对大面积高精度的衍射光栅制造精度提出了更高的要求。光栅刻线密度、刻线质量(直线度、槽型)由光栅刻划机定位精度和刀尖轨迹直接决定。因此,定位精度和刀尖轨迹是影响光栅光学性能的主要因素。本论文以衍射光栅刻划机作为实验和应用对象,对影响其精度的核心——刻划系统和分度系统两方面进行结构优化和控制研究。
     由于光栅刻划机的零部件的加工精度要求高、制造难度大、周期长且造价昂贵,无法在结构优化过程中反复进行样机的试制,因而需要采用基于CAD/CAE集成技术的优化设计手段进行光栅刻划机结构优化的研究。首先探索了基于Parasolid的CAD参数化设计方法、CAE技术特点,同时研究CAD/CAE集成技术和设计模式,结合以上理论提出一个开发效率高,可移植性和可扩展性很强的通用CAD/CAE集成软件框架系统。同时为了进行机械结构CAE分析以及优化工作,着重分析光栅刻划机的刻划系统和分度系统机械结构,基于CAD参数化建模技术建立了光栅刻划机整体虚拟样机模型,并进行了光栅刻划的运动学仿真研究。
     光栅划机机作为典型的超精密光机电一体化机械系统,其设计与优化需要一个综合的性能分析作为指导,本文中研究了光栅成像理论、计算傅里叶光学理论以及有限元模态分析,将其结合用于光栅刻划机刻划系统的振动问题分析,找出了刻划系统造成刻线误差的主要因素——刀架导轨的振动,并提出结构的改进和优化方案,取得了良好的优化效果。
     考虑到分度系统定位工作台的结构特点和精度要求,开展了基于遗传算法的多目标优化理论研究工作,为了提高多目标优化的准确性,提出了基于Pro/E-Matlab集成优化技术的集成优化平台,运用Pro/E平台进行精确的实体模型CAE分析,基于分析结果在Matlab平台进行多目标最优解搜索,以光栅刻划机分度系统定位工作台为实例进行了多目标结构优化,通过仿真实验验证了优化平台的正确性。
     最后进行了光栅刻划机分度系统的控制研究以及刻线误差分析,从状态空间角度分析了光栅刻划机控制模型可控性和可观性,提出将基于BP神经网络的PID控制方法用于光栅刻划机定位系统控制,并进行控制实验调试,最终获得了5nm以下的控制定位精度,而且刻线的质量取得了较大的改进。经过对采集的大量测试数据进行批量的数据统计分析,进行刻线的误差分析,验证了光栅刻划机机械结构优化以及控制算法的有效性。
The diffraction grating of large area and high precision is the core optical device of large observational instruments which are applied to various fields. Because of the characteristics of large size and high precision, the grating can only be manufactured by mechanical characterization. Since the high precision of the grating ruling machine is decided by such factors as mechanical structure and control technique, both of which are inseparable from each other, the core of the research of the grating ruling machine is to study the two factors. Thus, the crux of improving the manufacturing technology of the grating ruling machine is the research of its structure optimization theory and its control theory. With the developing of various large-scale astrophysics projects, the diffraction grating of large area and high precision needs higher manufacturing precision. The grating's groove density and groove quality (straightness and shape of the groove) are directly determined by the positioning accuracy and the tip trajectory of grating ruling machine. Therefore, the main factors that influence the optical function of the grating are the positioning accuracy and the tip trajectory. This paper focuses on the structure optimization and the control of the two factors which influence the precision of the diffraction grating ruling machine-the scribing system and the indexing system.
     Because of the high precision, difficulty, long cycle and high cost of machining parts of the grating ruling machine and because it is impossible to repeatedly trial-produce prototype in the structure optimization process, the optimization design method based on the CAD/CAE integrated technology is adopted in the research of structure optimization of the grating machine. CAD parametric design method based on Parasolid and CAE technical characteristics are studied firstly. At the same time, CAD/CAE integrated technology and design patterns are studied. Based on the combination of these studies, an integrated CAD/CAE software framework system which has high development efficiency and strong portability and extendibility is put forward. In the meanwhile, based on CAD parametric modeling, the virtual prototype model of the grating machine is established to carry through CAE analysis and structure optimization, especially that of the scribing system and the indexing system. Besides, the grating kinematics simulation is conducted.
     The design and optimization of the grating ruling machine which is a typical ultra-precision optical and electrical integration of mechanical system should be guided by an integrated performance analysis. In this paper, the study of grating imaging theory, computational Fourier optics theory and finite element modal analysis is used to analyze the vibration of the scribing system of the grating machine. The main error caused by scribing system---the vibration of the turret guide---has been found out. Then, the scheme of improving and optimizing the structure, which achieved good optimization effects, has been proposed.
     Considering the structure features and the accuracy requirements of the positioning table in the indexing system, the multi-objective optimization theory research which is based on genetic algorithm is conducted. In order to improve the accuracy of multi-objective optimization, an integration optimization platform which is based on Pro/E-Matlab integrated optimization technology is proposed. Accurate CAE analysis based on3D model is conducted in the Pro/E platform and based on the results of the analysis, the search of optimum solution is conducted in the Matlab platform. Then, a multi-objective structural optimization is conducted in the positioning table of the indexing system, and the correctness of the optimization platform is verified through the simulation experiments.
     At last, the present research studied the control of the indexing system of the grating ruling machine and analyzed errors of the groove. Controllability and observability of grating ruling machine's control model are analyzed from the perspective of the state space. PID feedback control based on neural network is utilized to the indexing system. Experiment results reveal the efficient and robust of the control scheme and show that the positional accuracy has been readily achieved within5nm and quality of the groove has made great improvements. After collecting a large number of experiment data, statistical analysis and error analysis of the groove is carried out to verify the validity of structure optimization and control algorithms.
引文
[1]George R. Harrison and George W. Stroke, Interferometric control of grating ruling with continuous carriage advance[J], J. Opt. Soc. Am.,45(2):112-121 (1955).
    [2]George R. Harrison, The production of diffraction gratings I. Development of the ruling art[J]. J. Opt. Soc. Am.,39(6):413-426 (1949).
    [3]George R. Harrison, The Production of Diffraction Gratings:II. The Design of Echelle Gratings and Spectrographs[J]. J. Opt. Soc. Am.39,522-527 (1949)
    [4]Erwin G. Loewen and Evgeny Popov, Diffraction Gratings and Applications[M], Marcel Dekker(1997).
    [5]C. Palmer, Diffraction Grating Handbook[M]. Richardson Grating Laboratory,4th edition(2000).
    [6]Antoine Labeyrie and Jean Flamand, Spectrographic performance of holographically made diffraction gratings[J]. Opt. Comm., 1(1):5-8 (1969).
    [7]Erwin G. Loewen, What's new in gratings? [J]. Instrumentation for Ground-Based Optical Astronomy, Present and Future, L.B. Robinson, editor, pp.118-123, Springer-Verlag (1987).
    [8]J. M. Lemer, Diffraction gratings ruled and holographic-a review[C]. Proc. SPIE,240:82-88, (1980).
    [9]R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry and Lifeng Li, High-efficiency metallic diffraction gratings for laser applications [J]. Applied Optics, 34(10):1697-1706 (1995).
    [10]Paul Thomas Konkola, Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D]. Ph.D. dissertation, Massachusetts Institute of Technology, Department of Mechanical Engineering, June 2003.
    [11]L. Berger, Grating interferometry for positioning the X-Y stages of a wafer stepper[C]. Proc.SPIE,503:130-134 (1984).
    [12]George R. Harrison and Erwin G. Loewen, Ruled gratings and wavelength tables [J]. AppliedOptics,15(7):1744-1747 (1976).
    [13]Christopher Palmer. Diffrcation Grating Handbook[M]. Newport corporation, USA,2005.
    [14]Toshiaki Kita, Tatsuo Harada. Ruling engine using a piezoelectric device for large and high-groove desity gratings [J]. Applied Optics.1992,31(10), p1399-1406.
    [15]时轮,郝德阜,齐向东.高精度的光电式衍射光栅刻划机[J].仪器仪表学报,p103-104,2001(22).
    [16]魏巍,张连洪,徐彦伟,刘德全.机床结构CAD/CAE集成分析与逐步回归建模方法[J].农业机械学报,Vo16,pp187-192,2010.
    [17]郑燕萍,冯谦,邵海等.基于CAD/CAE的自行臂架式高空作业平台伸缩臂设计方法[J].起重运输机械.2008(12),36-39.
    [18]Lee, Sang Hun, A CAD-CAE integration approach using feature-based multi-resolution and multi-abstraction modelling techniques[J]. CAD Computer Aided Design, Vol 37, pp941-955, 2005.
    [19]Hong-Seok Park, Xuan-Phuong Dang. Structural optimization based on CAD-CAE integration and metamodeling techniques [J]. Computer Aided Design,42(10),889-902,2010.
    [20]Inoue Masato, Nahm Yoon-Eui, Okawa Soshi. Design support system by combination of 3D-CAD and CAE with preference set-based design method [J]. Concurrent Engineering Research and Applications,18(1),41-53,2010.
    [21]Lin Bor-Tsuen, Kuo Chun-Chih. Application of an integrated CAD/CAE/CAM system for stamping dies for automobiles [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,35(9-10),1000-1013,2008.
    [22]Keun Park, Kim Y.S, Kim C.S. Integrated application of CAD/CAM/CAE and RP for rapid development of a humanoid biped robot [J]. Journal of Materials Processing Technology,187-188, 609-13,2007.
    [23]史小辉,许明恒,王思明等.汽车悬架弹簧的CAE研究[J].中国工程机械学报,08(4):432-435,2010.
    [24]王伟伟,汪中厚,梁景兵等.基于CAE的直线电机试验台整机动态优化设计[J].机械设计,27(12):66-70,2010.
    [25]刘细芬,黄华艳,张洪锐等.基于CAE技术的汽车覆盖件拉延模具设计[J].机械设计与制造,(4):242-244,2010,.
    [26]Saman Khalilpourazary, Abdolrahman Dadvand, Taher Azdast and Mohammad Hossein Sadeghi. Design and manufacturing of a straight bevel gear in hot precision forging process using finite volume method and CAD/CAE technology[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2011,56(1-4),87-95.
    [27]Joon-Seong Lee, Ho-Jung Lee. An automated CAE system for multidisciplinary structural design:its application to micro accelerometer [J]. Journal of Mechanical Science and Technology, 24(9),1875-83,2010.
    [28]Dong-Chan Lee, Chang-Soo Han. CAE (computer aided engineering) driven durability model verification for the automotive structure development [J]. Finite Elements in Analysis and Design, 45(5),324-32,2009.
    [29]李艳聪,张连洪,刘占稳等.刚度和质量驱动的预紧组合框架式液压机多目标优化设计[J].机械工程学报,46(1):140-146,2010.
    [30]谢然,兰凤崇,陈吉清等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报,47(4):117-124,2011.
    [31]张干清,龚宪生,王欢欢等.基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J].机械工程学报,46(23):135-145,2010.
    [32]Pires E J S, de Moura Oliveira P B, Machad J A T. Multi-objective genetic manipulator trajectory planner[A]. Applications of Evolutionary Computing. Proceedings of Evoworkshops 2004:EvoBIO, EvoCOMNET,EvoHOT,EvolASP,EvoMUSART,and EvoSTOC[C]. Coimbra, Portugal,219-229,2004.
    [33]Krenich S. Multicriteria design optimization of robot gripper mechanisms [A]. IUTAM Symposium on Evolutionary Methods in Mechanics[C]. Boston, London,207-218,2004.
    [34]Pahk HJ, lee DS, Park JH, Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation [J]. International Journal of Machine Tools & Manufacture, p51-63,2001(41).
    [35]Arvid Amthor, Stephan Zschaech, Christoph Ament, High precision position control using an adaptive friction compensation approach[J]. IEEE Transactions on Automatic Control, p274-278, 2010(55).
    [36]Ugur Aridogan, Yingfeng Shan, Kan KL, Design and analysis of discrete-time repetitive control for scanning probe microscopes [J]. Journal of Dynamic Systems, Measurement and Control, p061103,2009(131).
    [37]Chuan, Y., Z. Qiang, et al. Study on intelligent control system of two-dimensional platform based on ultra-precision positioning and large range[J]. Precision Engineering, p627-633, 2010(34).
    [38]Liu, Y.-T., K.-M. Chang, et al. Model reference adaptive control for a piezo-positioning system[J]. Precision Engineering, p62-69,2010(34).
    [39]Sung, W. J., S. C. Lee, et al. Ultra-precision positioning using adaptive fuzzy-Kalman filter observer[J], Precision Engineering, p195-199,2010(34).
    [40]Kato, T, K. Kawashima, et al. Active control of a pneumatic isolation table using model following control and a pressure differentiator[J]. Precision Engineering, p269-275,2007(31).
    [41]Miyajima T, T Fujita, et al. Development of a digital control system for high-performance pneumatic servo valve[J]. Precision Engineering, p156-161,2007(31).
    [42]刘恒,虞烈,谢有柏.现代设计方法与新产品开发[J].中国机械工程,10(1):p81-83,1999.
    [43]庄晓,周雄辉,许文斌,阮雪榆.虚拟环境中的快速产品装配建模[J].中国机械工程, 10(2):185-187,1999.
    [44]卢愕,杨洪波,王延风,等.产品研制开发CAD/CAE/CAM技术路线与应用[J].光学精密工程,5(6):1—9,1997.
    [45]叶南海,李源,贺晓华等.基于CAD/CAE的铝型材挤压模具智能设计[J].湖南大学学报(自然科学版),2009 36(6):28-31.
    [46]Raghavan Kunigahalli, Jeffrey S. Russell. Framework for development of CAD/CAC systems [J], Automation in Construction 3 (1995) 327-340.
    [47]B. Bettig, J. Shah. An object-oriented program shell for integrating CAD software tools[J]. Advances in Engineering Software 30 (1999) 529-541.
    [48]A. Albers, N. Leon-Rovira, H. Aguayo, T. Maier. Development of an engine crankshaft in a framework of computer-aided innovation [J]. Computers in Industry 60 (2009) 604-612.
    [49]P. Bourdot, T. Convard, F. Picon, M. Ammi, D. Touraine, J.-M. Vezien. VR_CAD integration: Multimodal immersive interaction and advanced haptic paradigms for implicit edition of CAD models[J]. Computer-Aided Design Volume 42, Issue 5, (2010) 445-461.
    [50]Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns[M]. America: Addison-Wesley Professional; 1 edition (November 10,1994).
    [51]李军,徐波等译OpenGL编程指南第七版[M].北京:机械工业出版社,2010.
    [52]王定标,郭茶秀,向飒CAD/CAE/CAM技术与应用[M].北京:化学工业出版社,2005.
    [53]Kunwoo lee著,袁清珂,张湘伟等译CAD/CAM/CAE系统原理[M].北京:电子工业出版社,2006.
    [54]Farid Amirouche著,崔洪斌,郭彦书译.计算机辅助设计与制造[M].北京:清华大学出版社,2006.
    [55]林清安.完全精通Pro/ENGINEER野火5.0中文版零件设计基础入门[M].北京:电子工业出版社,2010.
    [56]二代龙震工作室Pro/ENGINEER Wildfire 5.0进阶提高[M].北京:清华大学出版社,2010.
    [57]齐从谦,甘屹,王士兰Pro/E野火5.0产品造型设计与机构运动仿真[M].北京:中国电力出版社,2010.
    [58]祝绍箕,邹海兴,包学诚,郭厚林.衍射光栅[M].北京:机械工业出版社,1986.
    [59]郁道银,谈横英,等.工程光学[M].北京:机械工业出版社,1999.
    [60]王炜,杨厚民.平面变栅距光栅的原理及设计[J].光学学报,p1158-1162,Vol.19,No.9,2009.
    [61]时轮,郝德阜.变栅距衍射光栅的原理及应用[J].光学精密工程,p284-287,Vol.9,No.3,2001.
    [62]张发国,喻洪麟.闪耀光栅原理及其应用[J].重庆文理学院学报,p48-51,Vol.27,No.1, 2008.
    [63]David Voelz. Computational Fourier Optics[M]. SPIE Press,2011.
    [64]石顺祥,张海兴,刘劲松,等.物理光学与应用光学[M].西安:西安电子科技大学出版社,2000.
    [65]谢敬辉,赵达尊,阎吉祥,等.物理光学教程[M].北京:北京理工大学出版社,2005.
    [66]张洪武,关振群,李云鹏,顾元宪.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004.
    [67]刘瑞叶.计算机仿真技术基础(第2版)[M].北京:电子工业出版社,2011.
    [68]王金柱,吕帅,张明,郭日红.某型制导火箭弹控制系统设计与仿真[J].弹箭与制导学报,2011.11.
    [69]李云龙,韩恺.集成仿真在发动机冷却系统设计中的应用[J].车辆与动力技术,p27-30,03,2008.
    [70]于明,刘永寿,李磊,李元生,岳珠峰.基于双循环的离心叶轮多学科可靠性优化设计[J].航空学报,2011.12.
    [71]顾培英,邓昌,吴福生.结构模态分析及其损伤诊断[M].南京:东南大学出版社,2008.
    [72]大久保信行.机械模态分析[M].上海:上海交通大学出版社,1985.
    [73]韩清凯,于涛,孙伟.机械振动系统的现代动态设计与分析[M].北京:科学出版社,2010.
    [74]计晨,汪玉,赵建华,杜俭业.舰用柴油机抗冲击性能频域分析[J].振动与冲击,p171-176,Vol.29,No.11,2010.
    [75]张宏志,宋超,张晓峰,季龙飞.琴弦振动理论在工程中柔索求拉力的应用[J].振动与冲击,p77-78,Vol.21,No.3,2002.
    [76]林锉云,董加礼.多目标优化的方法与理论[M].吉林:吉林教育出版社.1992.
    [77]Abraham A, Jain L, Goldberg 1L Evolutionary multi-objective optimization:Theoretical advances and applications[M]. USA:Springer,2005.
    [78]申晓宁.基于进化算法的多目标优化方法研究[D].南京理工大学博士论文,2008.
    [79]王平,吴光强,郑松林.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011,47(2):102-108.
    [80]Coello Coello C A, Pulido G T. Multiobjective structural optimization using a micro ·genetic algorithm[J]. Structural and Multidisciplinary Optimization,30(5):p388-403,2005.
    [81]Greiner D, Winter G Emperador J M, Galvan B. Gray coding in evolutionary multicriteria optimization:Application in frame structural optimum design[C]. Evolutionary Multi-Criterion Optimization. Third International Conference. Guanajuato, Mexico, p576-591,2005.
    [82]陈伦军.机械优化设计遗传算法[M].北京:机械工业出版社,2005.
    [83]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.
    [84]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009.
    [85]戴光明,王茂才.多目标优化算法及在卫星星座设计中的应用[M].武汉:中国地质大学出版社,2009.
    [86]Kaveh A, Laknejadi K, Alinejad B. Performance-based multi-objective optimization of large steel structures [J]. ACTA MECHANICA, p355-369,223 (2),2012.
    [87]谢然,兰凤崇,陈吉清等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报,p117-124,47(4),2011.
    [88]李艳聪,张连洪,刘占稳等.刚度和质量驱动的预紧组合框架式液压机多目标优化设计[J].机械工程学报,p140-146,46(1),2010.
    [89]Xu Bin, Chen Nan, Che Huajun. An integrated method of multi-objective optimization for complex mechanical structure[J]. Advances in Engineering Software, p277-285,41,2010.
    [90]Chung Hae Park, Abdelghani Saouab. An integrated optimisation for the weight, the structural performance and the cost of composite structures [J]. Composites Science and Technology, p1101-1107,69,2009.
    [91]范华林,金丰年,方岱宁.格栅结构力学性能研究进展[J].力学进展,p35-53,Vol.38,No.1,2008.
    [92]范华林,方岱宁.胞元材料拓扑构型与力学性能的相关性[J].清华大学学报,p2072-2075,Vo1.47,No.11,2007.
    [93]庞振基,黄其圣.精密机械设计[M].北京:机械工业出版社,2000.
    [94](美)夏天长著,熊光楞,李芳芸译.系统辨识:最小二乘法[M].北京:清华大学出版社,1983.
    [95]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
    [96]张泽旭.神经网络控制与MATLAB仿真[M].哈尔滨:哈尔滨工业大学出版社,2011.
    [97]师黎,陈铁军,李晓媛,姚利娜.智能控制理论及应用[M].北京:清华大学出版社,2009
    [98]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [99]尹湛华.一种基于BPNN的复合型PID控制算法[J].控制理论与应用,27(7):5-8,2008.
    [100]Beitao Guo. Adaptive PID Controller Based on BP Neural Network[C]. International Joint Conference on Artificial Intelligence,2009.
    [101]Zhong, R, Wang, Y.B, Xu, Y.Z. Position sensorless control of switched reluctance motors based on improved neural network[J]. Electric Power Applications, p111-121, Vol.6, Issue.2,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700