线面啮合少齿差行星传动基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮是制造装备业和国防工业中极其重要的关键基础件,被认为是工业的象征。随着科学技术的发展,对齿轮传动的性能如承载能力、效率、可靠性、精度等提出了越来越高的要求。开展齿轮啮合原理的研究,是提高齿轮传动性能的理论基础和技术支撑。
     线面啮合理论是基于齿轮啮合原理提出的一种新的啮合理论,其基本描述是在满足一定运动规律的一个配对齿面上选定一条光滑曲线,以该曲线为脊线构建出全新的啮合管齿面,从而形成新的齿廓形式与另一齿面啮合。线面啮合具有点接触特性,通过构建合适的线面啮合副,可实现近似纯滚动啮合,齿面滑动率小,传动效率高等特点。系统深入地开展关于线面啮合理论和设计方法、制造关键技术和实验研究,奠定其工程应用的基础,具有重要的理论意义和工程实用价值。
     本文的主要内容如下:
     ⑴给出了曲线与曲面啮合的概念,提出线面啮合的产生方法,建立相应的几何学理论;提出以适当半径的球体沿啮合曲线的指定等距线包络出管状曲面的齿面构建新方法,推导啮合管状面方程、接触曲线方程等;给出了啮合曲线选取的条件以及线面啮合副参数的选取方法。
     ⑵给出了线面啮合摆线针轮行星传动的定义,啮合副的产生方法,建立相应的几何学理论;给出线面啮合摆线针轮行星传动啮合副齿廓统一方程,包括啮合曲面齿廓方程、啮合方程、新齿廓曲面方程、实际啮合的共轭接触线方程等;给出了线面啮合摆线针轮行星传动啮合副的设计实例;分析了线面啮合摆线针轮行星传动啮合副的参数选择条件和啮合特性。
     ⑶给出了线面啮合渐开线少齿差行星传动的定义,啮合副的产生方法,建立相应的几何学理论;给出线面啮合渐开线少齿差行星传动啮合副齿廓统一方程,包括啮合曲面齿廓方程、啮合方程、新齿廓曲面方程、实际啮合的共轭接触线方程等;给出了线面啮合渐开线少齿差行星传动啮合副的设计实例;分析了线面啮合渐开线少齿差行星传动啮合副的参数选择条件和啮合特性。
     ⑷推导出利用啮合副齿廓共轭接触曲线方程计算滑动率的通式,该方法对任意啮合齿轮副均适用。运用摆线针轮行星传动和渐开线少齿差面面共轭啮合副的共轭齿廓方程,推导其滑动率计算公式,并运用Mathematica计算和绘图功能,得到其滑动率曲线图。推导出线面啮合摆线行星传动和线面啮合渐开线少齿差行星传动啮合副的滑动率计算公式,得到其滑动率曲线。与面面啮合副相比,线面啮合副滑动率大为减小,由此表明线面啮合副其啮合过程为近似纯滚动,可以提高传动效率。
     ⑸建立了线面啮合摆线行星传动啮合副和线面啮合渐开线少齿差行星传动啮合副接触有限元分析模型,利用ANSYS求解器进行求解,并对结果进行分析,揭示线面啮合副点接触特性。
     ⑹提出了一种加工线面啮合摆线行星传动啮合管齿廓的“成形包络数控磨削”加工方法,研制了线面啮合摆线行星传动减速机样机,完成了实验台的搭建,开展了线面啮合摆线行星传动样机的验证实验研究。实验结果表明,线面啮合副可显著提高传动效率。
Gear is extremely an important key element in manufacturing equipment andnational defense industry, and is also considered to be an industrial symbol. With thedevelopment of science and technology, more attentions are paid to gear transmissionperformance such as load capacity, efficiency, reliability, accuracy, etc.. So it is ofgreatly significant to develop the study on principle of gearing and it provides thetheoretical basic and technical support for improving the gear performance.
     A new meshing theory namely that curve-surface meshing is proposed based on theprinciple of gearing. The general principle can be described that the smooth curveselected on one of the mated tooth surfaces with given motion law is considered as theridge line and thereby a new meshing tubular tooth surface which is establishedaccording to the enveloping method can engage with another. The curve-surfacemeshing has the characteristic of point contact and the motion process characterized byengagement with approximate pure rolling, the smaller sliding ratio, the highertransmission efficiency, etc.. can be realized through constructing the suitablecurve-surface gear pair. It has important theoretical significance and practical value tosystematically carry out the study on curve-surface meshing theory, the general designmethod, manufacturing key technology and experiment, then lays the basic of itsengineering applications.
     The main content of this paper is as follows:
     (1) The concept of curve-surface meshing is presented and its forming method isalso proposed. The geometric theory is established based on the theoretical derivation.The new generation method of tooth surface is developed in terms of the envelopingtheory that a sphere with approximate radius moves along the given equidistant one ofcontact curve. The equations of tubular tooth surfaces and contact curves are derived,and the selected conditions are also demonstrated simultaneously.
     (2) The definition of cycloid planetary drive with curve-surface meshing is providedand the generation method of engagement pair is also developed. The geometric theoryabout this gearing is discussed subsequently. Moreover, the general equations ofengagement pair such as tooth profile of original surface, the meshing equation, toothprofile of new generated surface, and the actual meshing curve are developed. A designexample of cycloid planetary drive with curve-surface meshing is presented and the selected conditions of parameters and its meshing characteristics are analyzed.
     (3) The definition and generation method of curve-surface meshing involuteplanetary transmission with small tooth difference are proposed and the geometrictheory about this gearing is also discussed. The general equations of engagement pairsuch as tooth profile of original surface, the meshing equation, tooth profile of newgenerated surface, and the actual meshing curve are developed. A design example of ispresented. Similarly, the selected conditions of parameters and the meshingcharacteristics of this gear drive are analyzed.
     (4) The general formula of calculation of sliding ratio between the gear pair isderived based on the equations of conjugate contact curves, and it can be applied toarbitrary engagement pair of gear drive. The sliding ratio of conventional cycloidplanetary drive and involute planetary transmission with small tooth difference arederived by means of equations of tooth profile, respectively. Then, the schematic curveof sliding ratio is got in terms of the Mathematica software. Meanwhile, the sliding ratioof curve-surface meshing cycloid planetary drive and curve-surface meshing involuteplanetary transmission with small tooth difference are also derived. The sliding ratio ofcurve-surface meshing pair is greatly reduced compared with that of conventional gearpair. It shows that the motion with approximate pure rolling can be realized between thiscurve-surface meshing pair and the transmission efficiency is also improved.
     (5) The models of finite element analysis aimed to curve-surface meshing cycloidplanetary drive and curve-surface meshing involute planetary transmission with smalltooth difference are built, respectively. The results are solved in terms of ANSYS solverand the characteristic of point contact is revealed according to the analysis solution.
     (6) The forming envelop CNC grinding method which is utilized to manufacture thetubular tooth profile of curve-surface meshing cycloid planetary drive is developed. Thereducer prototype of this gearing is researched and the structures of laboratory bench arecompleted. The confirmatory test study is also carried out and the results indicate thatthe curve-surface meshing pair can significantly improve the transmission efficiency.
引文
[1] http://www.gov.cn/jrzg/2006-02/09/content_183787.htm..
    [2] http://www.gov.cn/zwgk/2009-05/12/content_1311787.htm..
    [3] http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/13455745.html.
    [4]刘荣强,田大可,邓宗全.空间飞行器展开与驱动机构研究进展[J].机械设计,2010,9:1-9.
    [5]孙京,马兴瑞,于登云.星载天线双轴定位机构指向精度分析[J].宇航学报,2007,28(3):545-550.
    [6] UEURA, KEIGI, SLATTER. Development of harmonic drive gear for space applications[C].European Space Mechanisms And Tribology Symposium8th, Toulouse, France, Sept.29-Oct.1,1999.259-264.
    [7] http://info.machine.hc360.com/2009/10/30085570651-4.shtml.
    [8] http://www.chinanews.com/cj/cj-cyzh/news/2009/10-29/1937839.shtml.
    [9] H.B.Brown, J.M.V. Weghe, A.B.Curt, K.K.Pradeep. Millibot trains for enhanced mobility[J].IEEE IEEE/ASMEtransactions on mechatronics,2002,12:452-461.
    [10]姚俊武,王建中.谐波减速器在自重构机器人的应用研究[J].制造业自动化,2006,8:56-58.
    [11]阳培,张立勇,王长路,王建敏.谐波齿轮传动技术发展概述[J].机械传动,2005,3:69-73.
    [12]马长安,胡满红.谐波齿轮的工作原理及在减速器中的应用[J].山西冶金,2005,2:42-43.
    [13] Q.J.Fang, A.Zbun. The research of Zero Clearance Cycloid Ball Transmission[J]. Journal ofChinese M echanical Engineering.1994,7:17-23.
    [14]安子军.无隙钢球减速器研究[J].机械制造,1996,(8):8-111.
    [15]陈兵奎.锥形摆线轮行星传动装置[P].中国, ZL20063117879.0,2005.02.16.
    [16]张鹏,安子军,张作梅.摆线钢球行星传动啮合副非线性力学性能研究[J].工程力学,2010,3:186-192.
    [17]张彩丽,杨帆,陈继生.双摆线钢球行星传动减速器的力学性能分析[J].机械设计,2006,23(11):31-33.
    [18]神会存等.圆弧少齿差传动齿轮啮合作用力分析[J].山东科技大学学报(自然科学版),2000,19(03):73-76.
    [19]尹华杰.活齿少齿差传动力学模型和强度分析[J].郑州工学院学报,1990,(03):30-39.
    [20]王正为等.双内圆弧针齿少齿差传动及其效率[J].山东矿业学院学报.1993,12(01):1-5.
    [21]李充宁,周有强等.圆弧齿行星减速器的效率计算[J].机械传动,1993,04:21-23+62.
    [22]杨兰春.渐开线内齿轮副的设计与计算[M].北京:机械工业出版社,1995.1.
    [23]彭程.少齿差摆动活齿传动的模糊可靠性优化设计[J].现代机械,2006,(01):20-21+24.
    [24]毛世民,吴序堂等.点接触内啮合直齿锥齿轮全成形加工原理[J].制造技术与机床,1991,10:14-17.
    [25]毋荣亮.圆弧齿线双圆弧齿轮的基本啮合原理[J].太原工业大学学报,1997,28(03):73-78+111.
    [26] F.L. Litvin, F.Alfonso. Gear gometry and applied theory [M]. Cambridge, New York:Cambridge Unibersity Press,2004.
    [27]吴序堂.齿轮啮合原理[M].西安:西安交通大学出版社,2009.
    [28]李瑰贤.空间几何建模及工程应用[M].北京:高等教育出版社,2007.
    [29]吴大任,骆家舜.齿轮啮合理论[M].北京:科学出版社,1985.
    [30]容尔谦.空间啮合理论中的包络法[J].北京钢铁学院学报,1980,3:103-113.
    [31]容尔谦.关于包络法在空间啮合理论中的应用[J].应用数学学报,1981,3:258-271.
    [32] M.Neagoe, etc. On a New Cycloidal Planetary Gear used to Fit Mechatronic Systems ofRES[J]. Tokyo Institute of Technology,2004,45(7):1931-1939.
    [33] J.Argyris, etc. Determination of envelope to family of planar parametric curves and envelopesingularities[J]. Computer methods in applied mechanics and engineering,1999,175(6):175-187.
    [34] A.Demenego, etc. Design and simulation of meshing of a cycloidal pump[J]. Mechanismand Machine Theory,2002,37(3):311-332.
    [35]谷丽瑶,黄恺等.共轭啮合原理实现斜齿圆锥齿轮的三维实体造型[J].辽宁工业大学学报(自然科学版),2008,4(28):246-249.
    [36]狄玉涛,陈明等.弧齿线圆柱齿轮齿面形成原理及啮合性能分析[J].研究探讨,2006,09:50-52.
    [37]刘健.机械制造中曲面的共轭原理[J].大连工学院学刊,1959.
    [38]李高敬.螺旋齿轮啮合原理及其应用[J].精密制造与自动化,1979,04:34-47.
    [39]刘杰华.用空间啮合原理精确设计非渐开线齿轮滚刀刃形的研究[J].工具技术.1988,01:22-27.
    [40]郭燕利等.平面二次包络环面蜗轮副研究综述与展望[J].机械,2000,27:209~210.
    [41]重庆大学蜗轮传动科研组.平面二次包络弧面蜗杆传动的研究与应用[J].重庆大学学报,1978,04:1-18.
    [42]张光辉.平面二次包络弧面蜗杆传动[J].机械,1979,1:35-51.
    [43]秦大同等.平面包络环面蜗杆基于坐标测量的高精度制造方法[J].机械工程学报,1997,33(1):59-65.
    [44]贺惠农,韦云隆.平面二次包络环面蜗杆传动润滑机理的研究[J].润滑与密封,1996,5:15-17.
    [45]酒井高男,牧充.交错轴齿轮传动中第二次作用的研究[J].国际齿轮装置与传动会议论文选.机械工业出版社,1977
    [46]南开大学数学系齿轮研究小组.齿轮啮合理论的数学基础(一)[J].数学的实践与认识,1976,1:52~62.
    [47]南开大学数学系齿轮研究小组.齿轮啮合理论的数学基础(二)[J].数学的实践与认识,1976,2:41~58.
    [48]南开大学数学系齿轮研究小组.齿轮啮合理论的数学基础(三)[J].应用数学学报,1976,1(1):84~88.
    [49]陈兵奎.二次包络摆线行星传动装置[P].中国, ZL200610054263.6[P],2006.4.30.
    [50]房婷婷.摆线包络行星传动啮合理论研究[D].2007.
    [51]陈兵奎,王淑妍,李朝阳.双圆盘摆线轮行星传动装置[P].中国,200510057463.2,2005.12.23.
    [52]何卫东,李欣,李力行.高承载能力高传动效率新型针摆行星传动研究[J].中国机械工程,2005,07:565-569.
    [53] S.K.Malhotra, M.A.Parameswaran. Analysis of a cycloid speed reducer. Mechanism andMachine Theory,1983,18(6):491~499.
    [54]关天民,雷蕾,施晓春.摆线针轮行星传动减速器可靠性评价体系的研究[J].机械工程学报,2001,12:54-58.
    [55]程彦春,庄家友,张树杰.摆线行星传动新结构的探讨[J].东北大学学报(自然科学版),1990,04:401-405.
    [56]饶振纲.RV型行星传动的设计研究[J].传动技术,2002,4:6-11.
    [57]何卫东,李力行等. RV传动的研究[J].大连铁道学院学报,1993,9:107-107.
    [58]李思益等.双摆线钢球的啮合与传动[J].西北轻工业学院学报,1994,12:69-72.
    [59]孙英时等.三片摆线轮减速机针齿与摆线轮啮合实际作用力分析[J].大连铁道学院学报,2002,23(2):20-23
    [60]关天民等.三片摆线轮新型针摆传动及其受力分析[J].大连铁道学院学报,1999,20(3):48-51.
    [61] Mothion Technologies. Twinspin/Solution for Precision. http://motiontech.com.au,2003.
    [62] Roto Precision Inc. Mectrol Dojen Zero Backlash Speed Reducers[EB/OL].http://www.rotolube.com,1999.
    [63]陈兵奎,蒋旭君,王淑妍.新型锥形摆线轮行星传动初步研究[J].现代制造工程,2005,2:14-15.
    [64]陈兵奎,王淑妍等.锥形摆线啮合副加工方法[J].机械工程学报,2007,1:147-151.
    [65] F.L. Litvin, A.Demenego, D.Vecchiato. Formation by branches of envelope to parametricfamilies of surfaces and curves[J]. Computer methods in applied mechanics and engineering,2001,(190):4587-4608.
    [66] F.L. Litvin, A.M.Egelja, M.D.Donno. Computerized determination of singularities andenvelopes to families of contact lines on gear tooth surfaces[J]. Computer methods in appliedmechanics and engineering,1998,(158):23-24.
    [67] F.L. Litvin, P.H.Feng. Computerized design, generation, and simulation of meshing rotors ofscrew compressor[J]. Mechanism and Machine Theory,1997,32(2):137-160.
    [68] D.Vecchiato, A.Demenego, J.Argyris, F.L. Litvin. Geometry of a cycloidal pump[J]. Comput.Methods Appl. Mech. Engrg.2001,(190):2309-2330.
    [69] A.Demenego, D.Vecchiato, F.L. Litvin, N.Nervegna, S.Manco. Design and simulation ofmeshing of a cycloidal pump[J]. Mechanism and Machine Theory,2002,(37):311-332.
    [70] F.L. Litvin, P.H.Feng, Computerized Design and Generation of Cycloidal Gearings[J].Mechanism and Machine Theory,1996,31(7):891-911.
    [71] J.H.Shin, S.M.Kwon, On the lobe profile design in a cycloid reducer using instant velocitycenter[J]. Mechanism and Machine Theory,2006,(41):596-616.
    [72] J.H.Shin, S.Chang, S.M.Kwon, H.K.Choi. New shape design method of an epicycloidal gearfor an epicycloid drive[C]. Proc. of SPIE Vol.604060401G:1-6.
    [73] T.S.Lai, Design and machining of the epicycloid planet gear of cycloid drives[J]. InternationalJournal of Advanced Manufacturing Technology,2006,28(4):665-670.
    [74] T.S.Lai. Geometric design of roller drives with cylindrical meshing elements[J]. Mechanismand Machine Theory,2005,(40):55-67.
    [75] H.S.Yan, T.S.Lai. Geometry design an elementary planetary gear train with cylindricaltooth-profiles[J]. Mechanismand Machine Theory,2002,37(8):757-767.
    [76] D.Vecchiato, A.Demenego, J.Rrgyris,etal. Geometry of aCycloidal Pump[J]. ComPutMethods Appl Mech Engrg.2001,190:2309-2330.
    [77] G.C.Mimmia, E.Pennacchi. Non-undercuting conditions in internal gears[J]. Mechanism andMachine Theory2000,5:477-490.
    [78] H.Vogesang, B.Verhulsdonk, etal. Pulsation problems in rotary lobe PumP[J]. Vorld PumpFebruary,1999,(2):16-21.
    [79] S.H.Tong, D.C.H.Yang. On the generation of new lobe pumps for higher pumping flowrate[J].Mechanism and Machine Theory,2000,35:997-1012.
    [80] C.K.Chen, S.C.Yang. Geometric modeling for cylindrical and helical gear pumps withcircular arc teeth[J]. Proc lnstn Mech Engrs part C,2000,214(4):599-607.
    [81] D.W.Botsiber, L.Kingston. Design and performance of the cycloid speed reducer[J]. MachineDesign,1956,(28):65-69.
    [82] X.Li, W.He, L.Li, L.C.Schmidt. A new cycloid drive with high-load capacity and highefficiency[J]. ASME Journal of Mechanical Design,2004,(126):683-686.
    [83] J.Davidson, K.H.Hunt. Robots and Screw Theory[M]. Applications of Kinematics and Staticsto Robotics,Oxford University Press,2004.
    [84] J.S.Dai, D.R.Kerr. Geometric analysis and optimization of symmetrical Watt6-barmechanisms [J]. Journal of Mechanical Engineering Science, Proceedings of IMechE,205(C1):275-280.
    [85] E.P. Pollitt. Some applications of the cycloid machine design[J]. ASME Journal ofEngineering for Industry,1960,(82):407-414.
    [86]李力行,洪淳赫.摆线针轮行星传动中摆线轮齿形通用方程式的研究[J].大连铁道学院学报.1992,13(1):7-12.
    [87]李力行等.摆线针轮行星传动的齿形修正及受力分析[J].机械工程学报,1986,22(1):40~49.
    [88]李立行等,大型摆线针轮行星传动的合理结构和齿形[J].机械工程学报,1999,24(3):28~33.
    [89] D.C.H.Yang, J.G.Blanche. Design and application guideline cycloid drives with machiningtolerances. Mechanism and Machine Theory,1990,25(5):487~501.
    [90] L.X.Li, etc. The computer aided design of cycloid drive. Chinese Journal of MechanicalEngineering,1990,3(2):221~231.
    [91]李充宁,孙爽.摆线针轮行星传动的运动平稳性分析[J].机械设计与制造,2000,3:48~49.
    [92]李充宁,刘继岩等.2K-V型行星传动中摆线轮啮合的传动精度研究[J].机械工程学报,2001,37(4):61~65.
    [93]李充宁,摆线针齿行星传动轮齿的相对运动及滑动系数[J].机械传动,1998,22(3):19~21.
    [94]高兴岐.多齿差摆线针轮行星传动的齿形及啮合特性的理论分析[J].机械传动,2000,4(4):11~16.
    [95]孟继安等.内啮合摆线齿轮泵齿廓特征参数化设计探讨.化工机械,1990,3:145-150.
    [96]侯东海等.少齿差摆线齿轮啮合原理及几何参数选择[J].机械传动,1995,19(3):24-27.
    [97]李荣堂.内啮合多齿差圆弧摆线齿轮测绘[J].机械设计与制造,1994,2:17-19.
    [98]李荣堂,史发科.多齿差内啮合圆弧摆线齿轮泵的开发[J].石油化工设备技术,1994,15(4):25-30.
    [99]徐秀生.多齿差圆弧摆线式内啮合齿轮泵的设计[J].水泵技术,1996,3:26-31.
    [100]冯澄宙.渐开线少齿差形星传动[M].人民教育出版社,1982.
    [101]舒小龙,李平.渐开线少齿差传动的最小啮合角[J].机械设计与研究,2000,16(04):47-49+8.
    [102]张春林等.渐开线少齿差行星传动的变位系数的选择[J].北京理工大学学报,1998,18(05):563-566.
    [103]万朝燕等.渐开线少齿差行星传动啮合点的确定方法[J].大连铁道学院学报,1997,18(02):47-50.
    [104]杨锡和,石辉.少齿差内啮合齿轮的强度计算[J].雷达与对抗,2003,02:58-59+62.
    [105]叶志刚等. K-H-V型渐开少齿差行星传动的建模设计与CAD技术[J].机械设计与研究,2000,03:47-49+8.
    [106]李红保,黄凯.少齿差内啮合传动多齿啮合的研究[J].辽宁工业大学学报(自然科学版),2008,28(04):250-252+256.
    [107]何韶君,罗跃纲.渐开线少齿差行星传动的弹流润滑分析[J].煤矿机械,2007,28(04):92-94.
    [108]丁志等.基于UG的渐开线变位齿轮传动系统的设计[J].机械,2004,31(S1):101-102+104.
    [109]陶桂宝,李泽群等. NN型渐开线少齿差行星传动齿轮副的设计[J].现代制造工程,2007,(08):116-118+18.
    [110]张文照,王光华.渐开线少齿差内啮合同时接触齿数研究及实际重合度的一种计算方法[J].上海化工学院学报,1980,(01):93-102.
    [111]贺敬良,吴序堂等.交错轴渐开线锥形齿轮副啮合原理研究[J].机械工程学报,2004,40(04):81-84.
    [112]陶昇元等.诺维可夫齿轮的啮合原理与计算[J].合肥工业大学学报,1959.
    [113]段德荣.圆弧齿轮啮合原理的误差[J].机械传动,1996,(03):8-12+55.
    [114] Y.Z.Chen, G.Xing, X.Peng. The Space Curve Mesh Equation and its kinematicsExperiment[C]. Proceedings of12th IFToMM World Congress, Besan on France,2007,6:18-21.
    [115] Y.Z.Chen, X. Peng, G. Xing. Dynamics Modeling and Experiment on Micro-Elastic-Meshing-Wheel Mechanism[C]. Proceeding of ITIC’2006, Hangzhou China,2006,11(56):7.
    [116] Y.Z.Chen, X.Y.Xiang, L.Luo. A Corrected Equation of Space Curve Meshing. Mechanism andMachine Theory,2009,44(7):1348-1359.
    [117] Y.Z.Chen, L.Luo, Q.Hu. Contact Ratio of Space-Curve Meshing-Wheel TransmissionMechanism[J]. Journal of Mechanical Design,2009,131(7):074501-5.
    [118] Y.Z.Chen, X.Liu, D.G.Chetwynd, P. Huang. Investigation of a novel elastic–mechanical wheeltransmission under light conditions[J]. Mechanism and Machine Theory,2008,43:1462-1477.
    [119] Y.Z.Chen, Q.Hu, L.H.Sun. The Design Criterion of the Space-Curve Meshing-WheelMechanism Based on Elastic Deformation of the Tine[J]. Journal of Mechanical Design,2010,132(5):054502-6.
    [120] Y.Z.Chen, L.Luo, Q.Hu. The Parameters of SCMW mechanism for helix–shaped drivingtine[J]. Chinese Journal of Mechanical Engineering,2009.
    [121]杨静等.圆弧少齿差传动齿轮弯曲应力的分析及实验研究[J].机械设计与研究,2001,17(03):45-46+75-8.
    [122]神会存等.圆弧少齿差传动齿轮啮合作用力分析[J].山东科技大学学报(自然科学版),2000,19(03):73-76.
    [123]董师予,张黎明等.圆弧针齿行星传动中替代参数对传动性能的影响[J].机械设计与研究,1987,(05):1-9.
    [124]张广军等.圆弧针齿行星传动动力学的计算机仿真[J].机械设计,1995,07:16-18+22+44-45.
    [125]王正为等.双内圆弧针齿少齿差传动及其效率[J].山东矿业学院学报.1993,12(01):1-5.
    [126]黄小平等.齿轮纯滚动啮合的原理与实现[J].机械传动,2001,25(03):5-8.
    [127]黄小平,黄爱苹.纯滚动接触齿轮的齿形研究.林业机械与木工设备[J].2004,12:39-41.
    [128]厉海祥.点线啮合齿轮传动[M].北京:机械工业出版社,2010.
    [129]厉海祥,罗齐汉,黄海等.点线啮合圆柱齿轮传动[J].水利电力机械,2007,06:40-43.
    [130] B.K.Chen, T.T.Fang, C.Y.Li.Gear geometry of cycloid drives[J]. Science in Chin Series E:Technological Sciences,2008,51(5):598-610.
    [131]饶振刚.行星传动机构设计[M].北京:国防工业出版社,1994.
    [132]张奎.摆线二次包络封闭式行星传动研究[D],2010.
    [133]齿轮手册(第二版)[M].北京:机械工业出版社,2000.
    [134]章易程,李蔚聂等.渐开线内齿轮副相对滑动率的研究[J].机械传动,2001,25(02):25-27+40.
    [135]章易程,李蔚聂等.渐开线外齿轮副相对滑动率的研究[J].机械设计,2001,07:27-29.
    [136]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [137]高创宽,周谋,亓秀梅.齿面摩擦力对齿轮接触应力的影响[J].机械强度,2003,25(6):642-645.
    [138]刘晖.基于参数化的齿轮传动接触有限元分析[D].大连交通大学,2004.
    [139] K.B.Sheu, C.F.Chang,ect. Kinetostatic Analysis of Cycloid Drive[J]. Journal of the ChineseSociety of Mechanical Engineers,2003,24(6):571-583.
    [140] X.Li, etc. A New Cycloid Drive With High-Load Capacity and High Efficiency[J]. Journal ofMechanical Design,2004,4:126-683.
    [141] S.K.Malhotra, M.A.Paramesweran. Analysis of A Cycloid Speed Reducer, Mechanism andMachine Theory[J].1983,18(6)491-499.
    [142]关天明,张东升,蕾蕾. FA新型摆线针轮行星传动受力分析方法与齿面接触状态有限元分析[J].机械设计,2005,22(3):31-43.
    [143]李润方等.接触问题数值方法[M].重庆大学出版社,1992,03:11-14.
    [144]傅则绍.微分几何与齿轮啮合原理[M].东营:石油大学出版社,1999.
    [145]王淑妍.锥形摆线行星传动基础理论及实验研究[D].2008.
    [146]机械设计手册(第四版)[M].北京:化学工业出版社,2002.
    [147]《现代机械传动手册》编辑委员会.现代机械传动手册[M].机械工业出版社,2002.
    [148]电机工程手册编辑委员会.机械工程手册(机械零部件设计卷)第二版[M].机械工业出版社,1996.
    [149]《机械设计手册》编写组编.机床设计手册(部件、构件及总体设计)[M].机械工业出版社,1986.
    [150]郑州工学院机械原理及机械零件教研室编.摆线针轮行星传动[M].科学出版社,1978.
    [151]梅向明,黄敬之.微分几何(第二版)[M].北京:高教出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700