管线坯水平连铸工艺及外场改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着工业及国民经济的迅速发展,对冷凝管及键合线的需求量日益增加,而且对其质量及生产效率也提出了越来越高的要求。如何生产出优质管线坯,使其能够满足后续加工的要求,是提高生产效率、获得高质量管线材的技术关键。目前外场如电磁场、超声场在冶金及材料加工领域得到了大量的研究及应用,为制备高质量管线坯提供了契机。
     本文以制备高质量空心白铜、紫铜管坯及Al-1%Si合金键合线坯为目的,在国家自然科学基金-上海宝钢“钢铁联合研究基金”资助的“空心金属管坯电磁连续铸造基础研究”及中国科学院精密铜管研究中心合作进行的“水平连续铸造空心铜管坯电磁改性研究”等项目的支持下进行了管、线坯水平连铸及外场改性研究。
     论文主要包括以下内容:
     建立了一套中试规模的空心管坯水平连铸实验装置,探索了采用铸轧法制备BFe10-1-1白铜冷凝管;根据空心BFe30-1-1白铜管坯连铸过程的凝固特点,建立了连铸过程温度场数值模拟计算模型,考察了工艺参数对空心BFe30-1-1白铜管坯成形的影响规律,在此基础上对空心BFe30-1-1白铜管坯水平连铸可行性进行了研究。结果表明:
     (1) 可以采用铸轧法制备BFe10-1-1白铜冷凝管;室温时BFe10-1-1白铜管坯具有良好的拉伸性能,管坯轧制温度不能超过600℃;
     (2) 采用水平连铸工艺可以制备出表面光滑、凝固组织致密的空心BFe30-1-1白铜管坯,其微观组织呈现典型的树枝状偏析,同时,工艺参数对空心BFe30-1-1白铜管坯质量有着重要影响。
     提出空心紫铜管坯水平电磁连续铸造技术,模拟了电磁场在结晶器内的分布,设计制作了电磁成形系统并进行了空心紫铜管坯水平电磁连铸实验,考察了电磁场对空心紫铜管坯表面质量、凝固组织、力学性能及模具使用寿命的影响。结果表明,在空心紫铜管坯水平连铸过程中施加工频电磁场,可以改善管坯表面质量;细化凝固组织,明显改善组织的周向均匀性;管坯的力学性能和综合成品率得到了提高。
     为改善Al-1%Si合金键合线坯质量,提出了大功率超声场作用下的水平连铸新技术。设计制作了一套水平连铸功率超声改性装置,在此设备上进行了Al-1%Si合金水平连铸实验,探讨了超声场对铸坯表面质量、凝固组织及力学性能的影响规律。结果表明:在Al-1%Si合金水平连铸过程中施加功率超声能够提高保温炉内金属液温度均匀性,显著提高铸坯表面质量;可细化晶粒,抑制Si元素在晶界的偏析;随着超声功率的增加,铸坯的力学性能得到显著的提高。
In recent years, with the development of industry and national economy, the needs of high quality condenser-tubes and bonding wires increase quickly. To meet the succedent procedure, tube blanks and wire rods free from defects are needed, which is the key to improve production efficiency and obtain high-quality tubes and bonding wires. Nowadays, external fields such as electromagnetic field and power ultrasonic field are successfully applied in metallurgy and material processing, which provides a chance to produce high quality tube blanks and wire rods.The purpose of the dissertation is to produce high quality copper-nickel, pure copper tube blanks and Al-l%Si wire rods. The research is mainly supported by two projects, one is "Basic Research on Electromagnetic continuous casting of tube blanks", which is supported by Iron and Steel Cooperation Research Foundation, co-sponsored by National Natural Science Fundation and Baosteel Group Corporation;and the other is "Research on the Effect of Electromagnetic Field on Copper Tubes During Horizontal Continuous Casting", cooperated with the Research Center of Precise Copper Tube of the Chinese Academic of Science.The main contents are as follows:Horizontal continuous casting systems of pilot scale were designed to produce tube blanks. The method of casting-rolling to produce BFe10-1-1 condenser tubes was investigated. According to the solidification character of BFe30-l-l tube blanks, numerical simulation computation model of temperature field was established for simulating heat transfer during continuous casting. The influence of parameters on solidification of BFe30-1-1 tube blanks was investigated, and the feasibility of horizontal continuous casting of BFe30-l-l tube blanks was studied. It showed that:(1) BFe10-1-1 condenser tubes can be produced by casting-rolling method. The tensile properties of BFe10-1-1 tube blanks at room temperature is perfect and the maximum rolling temperature is 600℃.(2) BFe30-l-1 tube blanks with smooth surface and dense solidification structure can be obtained by horizontal continuous casting. The microstructure of cast BFe30-1-1 tube blanks is typical dendritic segregation and the quality of BFe30-l-l tube blanks is severely influenced by casting parameters.
    Horizontal electromagnetic continuous casting of copper tube blanks was proposed. The distribution of electromagnetic field in the mold was calculated. The electromagnetic shaping systems were designed and horizontal electromagnetic continuous casting of copper tube blanks was carried. Effects of commercial frequency electromagnetic field on surface quality, solidification structure, and mechanical properties of copper tube blanks were investigated. The results showed that surface quality can be improved by the application of electromagnetic field during horizontal continuous casting;grains are refined and distribute more uniform in the circumferential direction;Moreover, the mechanical properties and final yield are enhancedA novel process of ultrasonic treatment was proposed to improve the quality of horizontal continuously cast Al-l%Si alloy. Experimental apparatus was designed and horizontal continuous casting of Al-l%Si wire rods was conducted to investigate the effects of ultrasonic field on the surface quality, solidification structures and mechanical properties of Al-l%Si alloy. The results show that the uniformity of melt temperature and surface quality of wire rods is enhanced with the application of ultrasonic field. Grains are refined and boundary segregation of Si element is suppressed. Moreover, the tensile properties of the alloy are evidently increased with the increase of ultrasonic power.
引文
[1] 王碧文.中国铜管生产现状及发展趋势.2003首届中国国际精密铜管材技术年会,新乡,2003:7-13.
    [2] 王乐俊.铜管生产的工艺及其特点.上海有色金属.1999,20(1):23-25.
    [3] 张岚原,王鉴锋.ACR铜管在空调换热器中的作用及空调对ACR铜管性能的要求.2003首届中国国际精密铜管材技术年会,新乡,2003:77-81.
    [4] 荣文清.试论BFe30-1-1白铜冷凝管的铸锭裂纹形成机理.东方电器评论,1996,10(3):189-193.
    [5] 赵锋,余业球,黎沃光.BFe30-1-1白铜杆的热型连铸.广东工业大学学报.2002,19(1):75-80.
    [6] Andrew J G, Strandjord, Scott Popelar, et al. Interconnecting to Aluminum- and Copper-Based Semiconductors (Electroless-Nickle/Gold for Solder Bumping and Wire Bonding). Microelectronics Reliability, 2002, 42: 265-283.
    [7] S. Ramminger, N. Seliger, G. Wachutka. Reliability Model for Al Wire Bonds Subjected to Heel Crack Failkures. Microelectronics Reliability. 2000, 40: 1521-1525
    [8] 郭大琦.提高陶瓷外壳封装集成电路自动铝丝楔焊键合质量的途径.微电子技术.1994,23(3):42-47.
    [9] Startistaw Ksiezarek, Bronistaw Besztak, Zbigniew Smieszek, et al. Wires from silver, silver alloys and copper alloys obtained by continuous casting. Wire Journal International, 2001, 10: 82-87.
    [10] 中国电子学会生产技术分会丛书编委会.微电子封装技术.北京:清华大学出版社,2001.
    [11] S. -Y. Kang, K. Chuang, Y. C. Lee. Random Change of Vibration Modes in Thermosonic Bondings. Journal of Electronic Packaging. 1998, 120(9): 253.
    [12] J. E Krzanowski, E. Razon, A. F. Hmiel. The Effect of Thin Film Structure and Properties on Gold Ball Bonding. Journal of Electrortic Materials. 1998, 27(11): 1211-1215.
    [13] 陈宇.集成电路封装用新型Al-1%Si键合线的研制:(硕士学位论文).兰州:兰州理工大学,2004.
    [14] 李自学,王凤生,张承军.不同状态的Si-Al丝对键合点根部损伤的影响.电子元件与材料.2001,9:1-5.
    [15] Kashiwabara M, Hattori S. Formation of Al-Au Intermettalic Compounds and Resistance Increase for Ultrasonic Al Wire Bonding. Review of the Electrical Communication Laboratory. 1996, 17(6): 1001-1013.
    [16] 关晓娟.优质铜盘管管坯控制技术研究.2003首届中国国际精密铜管材技术年会,新乡,2003:146-157.
    [17] 何涛.高精度紫铜盘管生产工艺方案优化.2003首届中国国际精密铜管材技术年会,新乡,2003:109-117.
    [18] 张金利.内螺纹铜管的技术展望.2003首届中国国际精密铜管材技术年会,新乡,2003:24-29.
    [19] 郑双喜.制冷和空调行业用内螺纹焊接铜管生产工艺和技术优势.2003首届中国国际精密铜管材技术年会,新乡,2003:137-145.
    [20] 张士宏.相关材料的新应用及其塑性加工技术的研发展望.2003首届中国国际精密铜管材技术年会,新乡,2003:87-93.
    [21] 李克.金属熔体预处理及其组织细化技术的研究:(博士后论文).上海:上海交通大学,2004.
    [22] 贾非.电磁连续铸造过程工艺优化及组织性能研究:(博士学位论文).大连:大连理工大学,2002.
    [23] 薄希辉.Mg及退火对连续定向凝固铝硅合金键合线材料组织和性能的影响:(硕士学位论文).北京:北京科技大学,2005
    [24] 陈琦.真空熔炼连续定向凝固铝硅合金的组织及变形行为研究:(硕士学位论文).北京:北京科技大学,2004
    [25] 郭戈,乔俊飞.连铸过程控制理论与技术.北京:冶金工业出版社,2003.
    [26] 吴长寿,夏祥生.谈中国钢铁连铸的发展.江西冶金.2002,6.
    [27] 曾昭昭.特种铸造.杭州:浙江大学出版社.1990.
    [28] 章仲禹,我国水平连铸技术发展的若干意见.南方钢铁.1997,No.97:1-7.
    [29] 顾维.水平连续铸钢的设备与工艺.铸造设备研究.1995,4:6-11.
    [30] 吴智文,倪满森,唐仲和.水平连铸结晶器内凝固传热数学模型.钢铁研究学报.1990,2(suppl):9-16.
    [31] 郭廷杰.大力推广水平连铸促进小钢厂节能.节能.1994.3:3-5.
    [32] 杨志强.我国水平连铸圆管坯生产现状.重庆钢铁高等专科学校校报.1993,8(3):31-35.
    [33] 王海生.铸铁水平连铸机凝固端及牵引控制设计研究与实验:(硕士学位论文).西安:西安理工大学,2004.
    [34] 西崗信一,中田正之,村上勝彦,等.高周波磁场利用水平连续铸造初期凝固制御.第1回電磁研究会提出资料.1996年1月,1-5.
    [35] Akira Ishizaka, Minoru Tawara, Hiroshi Kodama, et al. Production of Billets for Steel Seamless Tube by a Horizontal Continuous Casting Process. Proceedings of The Sixth International Iron and Steel Congress. Nagoya, 1990, 676-683.
    [36] J. M. Rodriguez. Continuous casting of copper tubes. Giessereiforschung. 1994, Vol46, 122-124.
    [37] 周文龙,张士宏.挤压铜管坯与连铸连轧铜管坯的研究.2003首届中国国际精密铜管材技术年会,新乡,2003:101-108.
    [38] Auders Halldin.板坯连铸中的电磁制动技术.连续铸钢用电磁搅拌译文集.中国金属学会、冶金部钢铁研究总院编.1988.
    [39] R. B. Mahapatra, et al. Mold Behavior and Its Influence on Quality in the Continuous Casting of Steel Slabs: Part1. Industry Trials, Mold Temperature Measurement and Mathematical Modeling. Metallurgical Transaction B. 1991, Vol22B: 862-865
    [40] Shin-ichi Mishioka et al. Contral of Initial Solidification in Continuous Casting by Application High-Frequency Magnetic Field. int. Symposium Electromagnetic Proc. of Materials, Nagoya, 1994: 203-208
    [41] S. Koshima, et al. Steel flow in a high speed continuous slab using an electromagnetic brake. Iron and Steel Engineer. 1984, 11(5): 41-47.
    [42] 冈泽健介等.电磁制动技术利用连铸铸型内熔钢喷流举动.铁钢.1998,84(70):20.
    [43] 李保宽等.薄板坯连铸结晶器内流场电磁制动的模拟研究.金属学报.1997,33(11):1207-1214.
    [44] 干勇等.电磁制动对薄板坯连铸结晶器内流动及传热的影响.第二届全国连铸电磁会议搅拌技术研讨会论文集,庐山,1998:129-193.
    [45] 吴彩虹,李新涛,李廷举,等.ZL102/ZL301复层铸坯的制备.中国材料科技与设备.2005,2(5):56-58.
    [46] 吴彩虹.直流电磁场下铝硅-铝镁复层材料的制备:(硕士学位论文).大连:大连理工大学,2005.
    [47] 贾光霖,庞维成.电磁冶金原理与工艺.沈阳:东北大学出版社,2003,143-165.
    [48] Tzavaras A A. Solidification control by electromagnetic stirring-state of the art, Steelmaking Conference, 1983, 66: 89-107.
    [49] El-kaddah N, Szekely J. The electromagnetic force field, fluid field and temperature prefiles in. levitated metal droplets. Metallurgical Transactions B. 1983, 1413: 401-410.
    [50] Meyer J L, Szekely, Kaddan. A comprehensive study of the induced current, the electromagnetic force field, and the velocity field in a complex electromagnetically driven flow system. Metallurgical Transactions B. 1987, 1813: 529-538.
    [51] Ilegbusi O J, Szekely. Mathematical modeling of the electromagnetic stirring of molten metal-solid suspensions. Transactions. 1988, 28: 97-102.
    [52] 徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响.五钢科技.1997,(1):5.
    [53] 矶部浩一,前出弘文,菅原健.连铸轻压下方法.特开平6-12.
    [54] Fujisaki K. In-mold electromagnetic stirring in continuous casting. IEEE Transactions on Industry Applications. 2001, 37(4): 1098-1104.
    [55] Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ International. 1995, 35 (7): 866-875.
    [56] 陈崇峰.一种新型的连铸电磁搅拌技术.钢铁研究.1997,3:53-56.
    [57] Ayata K, Mori H, Tanigtunchik, et al. Low superheat teeming with eletromagnetic stirring. ISIJ International. 1995, 35 (6): 680-685.
    [58] Takeuchi E, Brimacombe J K. The formation of oscillation marks in the continuous casting of steel slabs. Metall. Trans. B. 1984, 15B: 493.
    [59] Saucedo I G.. Augius A P ed. 1991 Steelmaking Conf Proc, Washington, Warrendale PA: Iron Steel Society, 1991: 79.
    [60] Tomono H. The Liquid Steel Meniscus in Molds and Its Relevance to the Surface Quality of Castings. Metallurgical Transactions B. 1981, 12B: 409.
    [61] Jean-Pierre Birat. The Continuous Casting Mold: A Basic Tool for Surface Quality and Strand Productivity. In: Steelmaking Conference Proceedings, Washington, 1991: 39.
    [62] Masayuki KAWAMOTO, Yuichi TSUKAGUCHI, Norihiro NISHIDA et al. Improvement of the Initial Stage of Solidification by Using Mild Cooling Mold Power. ISIJ International. 1997, 37(2): 134-139.
    [63] Seiji ITOYAMA, Hirokazu TOZAWA, Tetsuo MOCHIDA, et al. Control of Early Solidification in Continuous Casting by Horizontal Oscillation in Synchronization with Vertical Oscillation of the Mold. ISIJ International. 1998, 38(5): 461-468.
    [64] Jung Wook CHO, Hiroyuki SHIBATA, Toshihiko EMI, et al. Thermal Resistance at the Interface Between Mold Flux Film and Mold for Continuous Casting of Steels. ISIJ International. 1998, 38(5): 440-446
    [65] T Takehiko, Eiichi TAKEUCHI, Masatake HOJO, et al. ISIJ International. 1997, 37(11): 1112-1119.
    [66] Eiichi Takeuchi, et al. 3 rd Int. Symp. on 'Electromagnetic processing of materials', EPM2000, ISIJ, 20-27.
    [67] 任忠鸣,邓康,蒋国昌.软接触结晶器电磁连铸技术的发展.钢铁研究学报.2002,14(1):58-64.
    [68] Charles VIVES. Electromagnetic Refining of Aluminum Alloys by the CREM Process: Part Ⅰ. Working Principle and Metallurgical Results. 1989, Vol. 20B: 623-629.
    [69] Charles VINES. Electromagnetic Refining of Aluminum Alloys by the CREM Process: Part Ⅱ. Specific Practical Problems and Their Solutions. Metallurgical Transactions B. 1989, 20: 631-643.
    [70] Takeuchi E, Toh T, Harada H. Advances of applied MHD technology for continuous casting process. Nippon Steel Technical port, 1994: 29-37.
    [71] Etinne A. Proceedings of the First European Conference on Continuous Casting. Florence, Italy, 1991: 1577-1587.
    [72] 于光伟.高频磁场方坯软接触电磁连铸工艺研究:(博士学位论文).沈阳:东北大学,2001.
    [73] Tingju Li, Shinji Nagaya, Kinsuke Sassa et al. Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field. Metall. Trans. B. 1995, 26B(4): 353.
    [74] 李廷举等.间欠型高周波磁场印加同期印加连铸片表面性状改善.铁钢.1996,82(3):21.
    [75] LI Ting-ju, Sassa K, Asai s. Surface quality improvement of continuously cast metals by imposing intermittent high frequency magnetic field and synchronizing the field with mold oscillation. ISIJ International. 1995, 35: 409.
    [76] LI Ting-ju, Sassa K and Asai s. Effect of intermittent high magnetic field on initial solidification in continuous casting. Acta Metall Sinica. 1997, 10: 151.
    [77] ZHANG Zhi-feng, LI Ting-ju, WEN Bin, et al. Electromagnetic continuous casting by imposing multi-electromagnetic field. Trans. Nonferrous Met Soc. China, 2000, 10(6): 741-744.
    [78] 李廷举,金俊泽.改进铸坯表面质量的电磁连续铸造研究进展.大连理工大学学报.2000,40(1):80-82.
    [79] 张志峰,李廷举,金俊泽.复合电磁场作用下连铸金属液弯月面运动规律的热模拟研究.金属学报.2001,37(9):975-979.
    [80] 应崇福.超声学.北京:科学出版社,1990:456-527.
    [81] 冯若.超声手册.南京:南京大学出版社,1999.
    [82] 应崇福.声空化物理研究和核发射实验的近期进展.物理.2002,31(8):490-495.
    [83] 冯若.声化学研究中的声学问题.物理学进展.1996,16(3-4):402-412.
    [84] W. P. Mason. Electromechanical Transducer and Wavefilter. VanNostrand, New York, 1948.
    [85] 声学研究进展.中科院声学所成立30周年论文集.1994:154.
    [86] 冯伟骏.功率超生对Pb-Sn合金凝固行为的影响:(硕士学位论文).大连:大连理工大学,2004.
    [87] E. Mori. Ultrasonics International 1977 Conference Proceedings, 1977: 262.
    [88] E. Mori, et al. ultrasonics International 89 Conference Proceodings, 1989: 256.
    [89] 程存第主编.超声技术-功率超声及其应用.陕西:陕西师范大学出版社,1993:64-71.
    [90] 翟伟翔.智能化大功率超声电源的研制:(硕士学位论文).北京:华北电力大学,2002.
    [91] 汪承浩,赵哲英.声学学报.1982,7:364-371.
    [92] 侯立琪,林仲茂,应崇福.声学学报,1979,4:271-278.
    [93] Lin Zhongmao, et al. A Novel Efficiency Ultrasonic Emulsification Device and its Application. Toyohashi International Conference Ultrasonic Technology, Tokyo, 1987: 309-312.
    [94] 林书玉.纵-扭复合振动模式指数型复合超声变幅杆的研究.应用声学.1997,16(5):42-46.
    [95] 阮世勋.扭振超声变幅杆谐振参数测定方法的研究。应用声学.1996,15(2):27-33.
    [96] 阮世勋.几种扭振复合超声变幅杆的研究.应用声学.1998,17(1):21-27.
    [97] 林仲茂.20世纪功率超声在国内外的发展.声学技术.2000,19(2):101-105.
    [98] Eskin G I. Ultrasonic Treatment of Molten Aluminum. Metallurgiya, Moscow: 1985.
    [99] Abramov O V, Gurevich Ya B. Materialor, 1974, 1, 45.
    [100] Dobatkin V I, Eskin G I. The Efect of High Intensity Ultrasound on the Phase Interface in Metals. Nauka, Moscow: 1986, 87-93.
    [101] Eskin G I, Ultrasonic Treatment of Melts in Shape Casting and Continuous Casting of Light Alloys. Mashinostroenie, Moscow, 1975.
    [102] Dobatkin V I, Eskin G I. The Elect of High-intensity Ultrasound on the Phase Interface in Metals. Nauka, Moscow, 1986.
    [103] J. SEIFERT, F. FISCHER. Horizontal continuous casting of metals with mould excited by ultrasonic waves. Ulrasonics. 1977, 15(4): 154-158.
    [104] 李英龙,李宝绵,刘永涛,等.功率超声对Al-Si合金组织和性能的影响.中国有色金属学报.1999,9(4):719-722.
    [105] 赵忠兴.超声波对合金结晶过程的均匀化作用.热加工工艺.1999,5:10-11.
    [106] 戚飞鹏,高守雷,侯旭,等.超声功率对锡锑合金凝固组织的影响.上海大学学报.2003,9(1):42-46.
    [107] 陈锋,何德坪,舒光冀.超声作用下AI-Fe合金化机制及Al-Fe合金的制备.东南大学学报.1993,23(5):58-62.
    [108] 马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究.材料科学与工程.1995,13(4):2-7.
    [109] Abramo O V. Solidification of Metals in an Ultrasonic Field. Metallurcal, Moscow, 1972.
    [110] Abramo O V, Milenin E N, Neymark V E. Ultrasonic Methods for improvement Manufacturing Processes. Mashinostroenie, Moscow, 1970: 349.
    [111] Abramo O V. Action of High Intensity Ultrasound on Solidifying Metals. Ultrasonics. 1983, 37(8): 788.
    [112] 杨志,张士宏,许沂,等.连铸铜管坯三辊行星轧制的有限元模型建立.塑性工程学报.2003,10(6):70-73.
    [113] 李冰,李章刚,张士宏,等.铜合金管坯旋压成形的三维热力耦合有限元模拟.科学技术与工程.2005,5(17):1293-1296.
    [114] Shih C K, Hung C, Hsu R Q. The finite element analysis on planetary rolling process. Journal of Materials Processing Technology. 2001, 113: 115-123.
    [115] Shih C K, Hung C. Experimental and numerical analyses on three-roll planetary rolling process. Journal of Materials Processing Technology. 2003, 142: 702-709
    [116] 董顺德,王世钟,段广超.行星轧机的运动形式和轧管组织变化.锻压装备与制造技术.2004,3(4):30-32
    [117] 李蒙.水平连续铸钢伺服驱动装置职能控制系统的设计与研究:(硕士学位论文).西安:西安建筑科技大学,2003.
    [118] 崔崑.钢铁材料及有色金属材料.北京:机械工业出版社,1981:431
    [119] 虞觉奇.二元合金状态图集.上海:上海科学技术出版社,1987:338
    [120] 范顺科.世界有色金属牌号手册.北京:机械工业出版社,2003.
    [121] 王建军,包燕平,曲英.中间包冶金学.北京:冶金工业出版社,2001:105-106
    [122] J. T. berry, R D. Pehlke, P. v. Desai. The place of Computer Simulation of Solidification in Casting Production Interdisciplinary Issues in Materials Processing and Manufacture. ASME. 233-250, 1987.
    [123] 王喜军.铸件充型及凝固过程数值模拟集成软件系统的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1997.
    [124] J. Q. Wang, S. F. Hansen, P. N. Hansen. 3-D Modeling and Simulation of Mold Filling Use Pc's, Molding and Casting and Welding Process IV ED by AF. Giamei and G. J. Abbaschian. TMS, 741-754, 1988
    [125] 徐雪华,苏士芳,李殿中,等.复杂铸件的三维造型及自动剖分.铸造.1995,No.8:15-19.
    [126] 金俊泽,郑贤淑,郭可切.连铸钢坯凝固进程的数值模拟.钢铁.1985,20(5):19-27
    [127] 康进武.铸钢件凝固过程热应力数值模拟研究:(博士学位论文).北京:清华大学,1997
    [128] 陈瑶,柳百成.国内外铸造过程应力场数值模拟技术的研究进展.中国机械工程.1996,7(4):50-53.
    [129] 杨秉俭,J.A.Dantzig.灰铸铁的应力屈服面及三维热弹塑性应力分析.西安交通大学学报.1992,26(4):31-42.
    [130] B. J. Yang, WT Liu, J. Y. Su. Numerical Modeling on the Temperature Fluctuation and Thermo-stress Development of the Continuously Cast Steel Thin-slab. Conference on Modeling of Casting, Welding and Advanced Solidification ProcessesⅦ, The Minerals, Metals & Materials Society, 1995.
    [131] 李万.凝固过程数值模拟前后处理的研究:(硕士学位论文).西安:西安交通大学,1998.
    [132] 韩志强.球墨铸铁凝固过程的三维数值模拟研究:(博士学位论文).西安:西安交通大学,1997.
    [133] ANSYS技术报告.ANSYS Inc.,1998:1-6.
    [134] 周建兴,刘瑞祥,陈立亮,等.凝固过程数值模拟中的潜热处理方法.铸造.2001,50(7):404-407.
    [135] 杨全,张真.金属凝固与铸造过程数值模拟.杭州:浙江大学出版社,1996.
    [136] 李宝宽,赫冀成.计算流体力学在炼钢中的应用和发展.东北大学学报,1998:19(1):4-9.
    [137] Lehman A F, Tallback G R, Kollberg S G, et al. Fluid Flow Control in Continuous Casting Using Various Configuration of Static Magnetic Fields. International Symposium on Electromagnetic Processing of Materials, Tokyo, 1994: 372-377.
    [138] TOH T, Takechi E, Hojo M et al. Electromagnetic Control of Initial Solidification in Continuous Casting of Steel by Low Frequency Alternating Magnetic Field. ISIJ International. 1997, 37: 1112-1119.
    [139] Park J, Sim D, Kim H, et al. Effect of High Electromagnetic Field on Continuously Cast Billet. CAMP-ISIJ. 1999, 12: 57-60.
    [140] 邓康,任忠鸣,蒋国昌.软接触电磁连铸的数值模拟和实验研究.金属学报.1999,35:1112-1116.
    [141] Nakata H, Etay J. Meniscus Shape of Molten Steel under Alternating Magnetic Field. ISIJ International. 1992: 32: 521-528.
    [142] Genma N, Soejima T, Saito T, et al. The Linear-motor Type In-mold Electromagnetic Stirring Technique for the Slab Continuous Caster. ISIJ International. 1989, 29: 1056-1062.
    [143] W. Lauterbora, H. Bolle. Experimental Investigations of Cavitations-Bubble Collapse in the Neighbourhood of a Solid Boundary. Journal of Fluid Mechanica. 1975, 72(2): 391-395.
    [144] 钱祖文.非线性声学.北京:科学出版社,1992:228.
    [145] W. P. Schiffers, S. J. Shaw, D. C. Emmony. Acoustical and Optical Tracking of the Collapse of Laser-generated Cavitation Bubble Near a Solid Boundary. Ultrasonic. 1998, 36: 559-563.
    [146] J. -L. Laborde, A. Hita, J. -P. Caltagirone, et al. Fluid Dynamics Phenomena Induced by Power Ultrasonics. 2000, 38: 297-300.
    [147] V. S. Moholkar, P. Senthil Kumar, A. B. Paadit. Hydrodynamic Cavitation for Sonochemical Effects. Ultrasonics Sonochemistry. 1999, 6: 53-65.
    [148] 王俊,陈峰,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用.上海交通大学学报.1999,33(7):813-816
    [149] 林仲茂.超声变幅杆的原理和设计.北京:科学出版社,1987.
    [150] 高守雷.功率超声对金属凝固组织的影响:(硕士学位论文).上海:上海大学,2003.
    [151] 马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究.材料科学与工程.1995,13(4):2-7.
    [152] G. I. Eskin. Broad prospects for commercial application of the ultrasonic(cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry. 2001, 8: 319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700