利用故障行波固有频率的单端行波故障测距法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波故障测距法按所需故障信息可分为单端和双端实现方法,双端法不依赖行波在线路上的多次反射现象因此可靠性和计算精度较高,但同时它的成本较高。单端行波测距法由于仅需单端信息,不需时钟同步设备和通讯设备,与双端法相比在经济性上有相当大的优势,但现有的单端测距实时算法可靠性较差,因此单端行波测距法是行波测距的研究热点之一。
     本文提出了一种仅利用单端行波的频率信息进行精确故障定位的新方法。与传统的基于电报方程的行波分析方法不同,本论文把有损的均匀传输线等效为多端口网络,两端相连的电力系统等效为集总电路,然后把它们当作一个整体建立数学模型。在这个数学模型基础上推导输电线端点处的电流和电压在拉普拉斯域的函数表达式,然后由函数表达式的特征公式可以得到行波函数的极点与线路长度、边界条件三者的数学关系。另一方面,各个极点的位置(在本文中统一称为行波固有频率)与对行波波形进行频谱分析得到的各个频率峰值点一一对应。于是在线路参数已知的条件下,利用适当的频谱估计方法提取行波的固有频率(一般采用主成分),结合边界条件即输电线终端连接的系统等效阻抗即可精确计算形成固有频率的两个反射点之间的线路长度,对故障行波固有频率两个反射点之间(一端为本端母线,另一端为故障点)的线路长度就是故障距离。
     从理论上推导了单相或多相线路、无损或有损输电线、线路参数与频率无关或相关等多种情况下故障行波固有频率与线路长度、边界条件三者的数学关系,使理论基础完善。然后讨论了新算法的实现必须考虑的几方面问题:
     首先研究了算法在不同故障方式下的实现方法及其适用性。在此基础上对单相接地故障时的“模混杂”现象从理论分析和仿真计算两方面出发进行了分析。提出了提高计算精度的新算法。
     研究了对故障行波固有频率主成分进行频率估计的方法。对传统频域频率变换方法、时频域方法和基于谐波模型的频谱估计方法在提取故障行波固有频率主成分应用中的优缺点进行了对比分析。
     讨论了不同的母线结构对算法的影响。母线结构的变化将引起行波波头形状的变化和频谱上干扰频率的产生,前者不会对固有频率主成分法造成影响,在这点上本算法优于时域行波法;后者会对算法造成影响,文中提出了新的波头识别方法,通过该方法可以发现在频域仍然比时域上更容易区分故障点和对端母线的反射波。
     研究了互感器设备的频率传变特性对算法的影响。通过研究,提出了利用电容式电压互感器二次侧电压行波进行单端故障定位的新方法。
     在故障行波固有频率主成分测距法的理论和实现方案的各个方面都得到考虑的基础上进行了大量仿真试验对算法的精度进行检验。
Travelling wave fault location can be classified into single-ended and double-ended methods according to different ways of obtaining the fault information. Double-ended method does not depend on multiple reflections of the travelling wave between the station buses, therefore it has higher reliability and accuracy. On the other hand, single-ended method relies on information from one end only. It does not need time synchronization or communication devices, thus more economical. However, the present single-ended methods are less reliable or accurate, which make single-ended travelling wave fault location one of the hottest subjects of research.
     A new method of accurate fault location using frequency information from one end only is presented, which is different from the traditional analyzing methods based on telegrapher's equations. In this paper the lossy homogeneous transmission lines are described by the multi-port model, and the power systems connected at each ends of the line are represented by lumped circuits. The model is thus composed of transmission lines and lumped circuits. It is then used to derive the transmission line terminal voltages and current functions in Laplace domain. Using the characteristic equations of the terminal voltages or currents functions, the relations of poles of travelling wave, line length and boundary conditions are further derived. On the other hand, the poles of the voltage/current functions are identical to components of the frequency spectra (hereafter referred to as natural frequencies) resulted from frequency transform of the voltage/current signals. Given the line parameters, using adequate frequency estimation methods to obtain any component of travelling wave natural frequencies (normally the dominant component), together with the boundary conditions (power system equivalent reactance), the distance between two terminals which forms the natural frequencies can be accurately calculated. For fault induced travelling wave frequencies (local bus the one end, fault point the other), the length is naturally the fault distance.
     The relations of fault induced natural frequencies, fault distance and boundary conditions are thoroughly discussed at single phase and three phases, lossless and lossy lines, frequency independent and dependent line parameters. This helps to make the theoretic foundation of the algorithm complete.
     After that, various aspects of the realization of the new algorithm are discussed:
     First of all, the realizations of the new algorithm under different fault conditions are studied. Then the modal mixing phenomenon at single-phase-to-ground fault is analyzed. A novel algorithm which improves the accuracy of fault location under the modal mixing conditions is presented and discussed theoretically and through simulations.
     Different ways of estimating the fault induced travelling wave natural frequencies are discussed. The pros and cons of traditional frequency transform methods, time-frequency transformation and parametric spectral estimation to this particular application are compared and discussed.
     The effects of different bus configurations on the algorithm are discussed. The change of bus configurations may cause the variation of the shape of the travelling wave and the formation of additional natural frequencies. The new algorithm is immune to the variation of the wave shape, a property which is superior to traditional time-domain method. The formation of additional natural frequencies has an influence on the algorithm. New approaches of identifying the correct wave front are also introduced in this paper. It can be found out that it is still easier in the frequency domain than in the time domain to distinguish the wave reflected by fault point and the remote bus.
     The effects of transient response of instrument transformers to the algorithm are studied. A new single-ended fault location method using capacitive voltage transformers (CVT) secondary voltages is presented.
     After all aspects of the theories and realizations of the travelling wave natural frequencies fault location method are taken care of, a large amount of simulations are conducted in order to verify the accuracy of the algorithm.
引文
[1]AIEE Committee Report.Bibliography and summary of fault location methods.IEEE Transactions on Power Apparatus and System.1956,75(2),1423-1428.
    [2]H.W.Dommel.Digital computer solution of electromagnetic transients in single and multiple networks.IEEE Transactions on Power Apparatus and Systems,1969,88(4),388-398.
    [3]葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社,1996.217-222.
    [4]Jun Zhu.Fault location and diagnosis on electric power distribution feeders.Ph.D dissertation.Clemson University.USA,1994.
    [5]R.K.Aggwaral,Y.Asian,A.T.Johns.New concept in fault location for overhead distribution systems using superimposed components,IEE Proc.-Gener.Transm.Distrib.1997,144(3):309-316.
    [6]A.Solimna,G.S.Christensen,S.S.Fouda.On the Application of the Least Absolute Value Parameter Estimation Algorithm to Distance Relaying.Electric Power Systems Research,1990,19:23-35.
    [7]A.A.Girgis.A new kalman filtering based digital distance relay.IEEE Transactions on Power Apparatus and System.1982,101(9):3471-3480.
    [8]S.K.Chakravarthy,C.V.Nayar,N.R.Achuthan.Applying Pattern Recognition in Distance Relaying,Part 1:Concept.IEE Proc.-Gener.Transm.Distrib.1992,139(4):301-305.
    [9]S.K.Chakravarthy,C.V.Nayar,N.R.Achuthan.Applying Pattern Recognition in Distance Relaying,Part 2:Feasibility.IEE Proc.-Gener.Transm.Distrib.1992,139(4):306-314.
    [10]J.Pinto de Sa,J.Afonso,R.Rodrigues.A Probabilistic Approach to Setting Distance Relays in Transmission networks.IEEE Trans.Power Delivery,1997,12(2):681-686.
    [11]A.Ferrero,S.Sangiovanni,E.Zappitelli.A fuzzy-setapproach to fault type identification in digital relaying.IEEE Trans.Power Delivery,1995, 10(1): 169-175.
    [12] Ibrahim Farhat. Fault detection, classification and location in transmission lines systems using neural networks. Master thesis, Concordia University,Canada, 2003.
    [13] T. Takagi, Y. Yamakoshi, M. Yamaura, et al. Development of a new fault locator using the one-terminal voltage and current data. IEEE Transactions on Power Apparatus and Systems, 1982, 101(8): 2892-2898.
    [14] D. Novosel, D. G. Hart, E. Udren, A. Phadke. Accurate fault location using digital relays. ICPST Conference, Oct. 1994, China: 1120-1124,
    [15] Eriksson. L, M. Saha, G. D. Rockfeller. An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remote-end infeed. IEEE Transactions on Power Apparatus and Systems,1985, 104(2): 424-436.
    [16] Adly A. Girgis D, G. Hart, W. Peterson. A new fault location technique for two and three terminal lines. IEEE Trans. Power Delivery, 1992, 7(1):98- 107.
    [17] D. J. Lawrence, L. Cabeza, and L. Hochberg. Development of an advanced transmission line fault location system part II—algorithm development and simulation. IEEE Trans. Power Delivery, 1992, 7(4), : 1972-1983.
    [18] D. Novosel, D. G. Hart, E. Udren, Garitty. Unsynchronized two-terminal fault location estimation. IEEE Winter Meeting, paper 95 WM 025-7 PWRD, New York, 1995.
    [19] Philippot L, J. C. Maun. An application of synchronous phasor measurement to the estimation of the parameters of an overhead transmission line. Fault Disturbance Analysis & Precise Measurements in Power Systems ,Arlington, Virginia, USA, 1995.
    [20] D. Hart, D. Novosel, E. Udren. Application of synchronized phasors to fault location analysis. Applications of Synchronized Phasors Conference,Washington. DC, USA, 1993.
    [21] M. Kezunovic. An accurate fault location using synchronized sampling at two ends of a transmission line. Applications of Synchronized Phasors Conference, Washington. DC, USA, 1993.
    [22] E. O. Schweitzer III. Evaluation and development of transmission line fault-locating techniques which use sinusoidal steady-state information.Ninth Annual Western Protective Relay Conference,Spokane,Washington,USA.1982.
    [23]M.Sachdev,R.Agarwal.A technique for estimating transmission line fault locations from digital impedance relay measurements.IEEE Trans.Power Delivery,1988,3(1):121-129.
    [24]D.A.Tziouvaras,J.Roberts,G.Benmouyal.New multi-ended fault location design for two or three terminal lines.Development in Power System Protection,Amsterdam,The Netherlands.2001.
    [25]R.K.Aggarwal,D.V.Coury,A.T.Johns,A.Kalam.A practical approach to accurate fault location on extra high voltage teed feeders.IEEE Trans.Power Delivery,1993,8(3):874-883.
    [26]D.J.Novosel,B.Bachmann,D.G.Hart,et.al.Algorithms for locating faults on series compensated lines using neural network and deterministic methods.IEEE Trans.Power Delivery,1996,11(4):1728-1736.
    [27]M.M.Saha,J.Izykowski,E.Rosolowski,B.Kasztenny.A new fault locating algorithm for series compensated lines.IEEE Trans.Power Delivery,1999,14(3):789-797.
    [28]M.M.Saha,K.Wikstrom,J.Izykowski,E.Rosolowski.Fault location in uncompensated and series-compensated parallel lines.Proceedings of 2000IEEE PES Winter Meeting,Singapore,paper 16 05 01,2000.
    [29]索南加乐,宋国兵,康小宁,等.基于单端电流的双回线时域故障定位方法.中国电机工程学报,2007,27(7):52-57.
    [30]俞波,杨奇逊,李营,.同杆并架双回线保护选相元件研究.中国电机工程学报,2003,23(4)38-42.
    [31]A.A.Girgis,C.M.Fallon,D.L.Lubkeman.A fault location technique for rural distribution feeders.IEEE Trans.Ind.Applicat.,1993,29(6):1170-1175.
    [32]M.S.Sachdev,R.Das,T.S.Sidhu.Determining location of faults in distribution systems.Proceedings of the lEE International Conference on Developments in Power System Protection,Nottingham,UK,1997:25-27.
    [33]E.C.Bascom III,D.W.Von Dollen,H.W.Ng.Computerized underground cable fault location expertise.Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,Chicago,IL,USA,1994.
    [34]C.M.Wiggins.A novel concept for URD cable fault location.IEEE Trans.Power Delivery.1994,9(1):591-597.
    [35]Lawrence D.J.,Waser D.L.Transmission line fault location using digital fault recorders.IEEE Transactions on Power Delivery.1988,3(2):496- 502.
    [36]杨奇逊微机继电保护基础.北京.水利电力出版社.1988.
    [37]索南加乐,齐军,陈福锋,等.基于R-L模型参数辨识的输电线路准确故障测距算法.中国电机工程学报,2004,24(12):119-125.
    [38]A.O.IBE,B.J.Cory.A travelling wave-based fault locator for two-and three-terminal networks.IEEE Transactions on Power Delivery.1986,1(2):283-288.
    [39]Kezunovic M,Perunicic B.Automated transmission line fault analysis using synchronized sampling at two ends.IEEE Transactions on Power Systems.1996,11(1):441-447.
    [40]Kezunovic M,Perunicic B.Synchronized sampling improves fault location.IEEE Transactions on Computer Applications in Power.1995,8(2):30-33.
    [41]IEEE.Advancements in microprocessor based protection and communication.NY,USA.IEEE Tutorial Course,IEEE Power Engineering Society,1997.
    [42]A.D.Ogden,L.N.Walker,G.E.Ott and J.R.Tudor.Special purpose digital computer requirements for power system substation needs.IEEE Winter Power Meeting,New York,1970.Paper No.70cp1442-PWR.
    [43]Swift G W.The spectra of fault-induced transients.IEEE Transactions on Power Apparatus and Systems,1979,98(3):940-947.
    [44]Styvaktakis E,Bollen M H J,Gu H Y.A fault location technique using high frequency fault clearing transients.IEEE Power Engineering Review,1999,19(5):58-60.
    [45]M.M.Tawfik,M.M.Morcos.ANN-based techniques for estimating fault location on transmission lines using prony method.IEEE Trans.Power Delivery,2001,16(2):219-224.
    [46]M.Chamia,S.Liberman.Ultra high speed relay for EHV/UHV transmission lines-development,design and application.IEEE Transactions on power apparatus and Systems.1978,97(6):2104-2116.
    [47]A.T.Johns.New ultra high speed directional comparison technique for the protection of EHV transmission lines.IEE Proc.C,1980,127:228-239.
    [48]M.Vitins.A fundamental concept for high speed relaying.IEEE Transactions on power apparatus and Systems.1981,100(1):163-173.
    [49]Crossley P A,McLaren P G.Distance protection based on travelling waves[J].IEEE Transactions on Power Apparatus and Systems,1983,102(9):2971-2983.
    [50]贺家李,葛耀中.超高压输电线故障分析与继电保护.北京:科学出版社,1987.
    [51]Gale P F,Crossley P A,Xu Bingyin,et al.Fault location based on travelling waves,IEE the 5th International Conference on Developments in Power System Protection,York,UK,1993.
    [52]徐丙垠,李京,陈平,等.现代行波测距技术及其应用.电力系统自动化,2001,25(23):62-65.
    [53]陈平,徐丙垠,李京,,等.现代行波故障测距装置及其运行经验.电力系统自动化.2003,27(6):66-69.
    [54]P.F.Gale,J.Stokoe and P.A.Grossley.Practical experience with travelling wave fault locators on Scottish power's 2758-400 kV transmission system.IEE Sixth International Conference on Development in power system protection,25-27,March 1997,Conference Pub.No.434,pp.192-196.
    [55]P.F.Gale,P.V.Taylor,P.Naidoo,C.Hitchin,D.Clowes.Travelling wave fault locator experience on Eskom's transmission network.IEE Seventh International Conference on Developments in Power System Protection,Published 2001,pp.327-330
    [56]覃剑,葛维春,邱金辉,等.影响输电线路行波故障测距精度的主要因素分析.电网技术,2007,31(2):28-35.
    [57]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用-D型原理.继电器.2004,32(3):14-17.
    [58]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用-A型原理.继电器.2004,32(2):13-18.
    [59]覃剑,葛维春,邱金辉,等.输电线路单端行波测距法和双端行波测距法的对比.电力系统自动化,2006,30(6):92-95.
    [60]施慎行,董新州,周双喜.单端接地故障行波分析.电力系统自动化,2005,29(23):29-32.
    [61]施慎行,董新州,周双喜.单端接地故障下第2个反向行波识别的新方法[J].电力系统自动化,2006,30(1):41-44.
    [62]葛耀中,董新洲,董新丽.测距式行波距离保护的研究(一)-理论与实现技术.电力系统自动化.2002,26(6):34-40.
    [63]M.Vitins.A correlation method for transmission line protection.IEEE Transactions on Power Apparatus and Systems.1978,97(5):1607-1616.
    [64]Shehab-Eldin E H,McLaren P G.Travelling wave distance protection -problem areas and solutions.IEEE Transactions on Power Delivery,Vol.3,No.3,1988:894-902.
    [65]Christopoulos C,Thomas D,Wright Prof A.Signal processing and discriminating techniques incorporated in a protective scheme based on traveling wave.IEE Proceedings,Vol.136,Part C,No.5,1989:279-288.
    [66]C.Christopoulos,D.W.P.Thomas,A.Wright,The performance of a protective scheme based on travelling waves-Fourth International Conference on Developments in Power Protection,1989.
    [67]M.Aurangzeb,P.A.Crossley,P.Gale.Fault location on a transmission line using high frequency travelling waves measured at a single line end.IEEE Power Engineering Society Winter Meeting,2000.
    [68]Liang Jie,S.Elangovan,J.B.X.Devotta.Adaptive Travelling Wave Protection Algorithm Using Two Correlation Functions.IEEE Transactions on Power Delivery.1999,14(1):126-131.
    [69]Vajira Pathirana,P.G.McLaren,E.Dirks,Investigation of a hybrid travelling wave/impedance relay principle - Canadian Conference on Electrical and Computer Engineering,2002.IEEE CCECE 2002.
    [70]Vajira Pathirana,E.Dirks,P.G.McLaren.Using impedance measurement to improve the reliability of traveling-wave distance protection.IEEE Power Engineering Society General Meeting.2003.
    [71]Ancell G B,Pahalawaththa N C.Effects of frequency dependence and line parameters on single ended travelling wave based fault location schemes.IEE Proceedings-C,1992,139(4):332-342.
    [72]Mallat S.A wavelet tour of signal processing.Academic Press,San Diego,USA,1998.
    [73]Mallat S,Hwang W L.Singularity detection and processing with wavelets.IEEE Trans.on Information Theory,1992,38(2):617-643.
    [74]Magnago F H,Abur A.Fault location using wavelets.IEEE Transactions on Power Delivery,13(4),1998:1475-1480.
    [75]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究.中国电机工程学报,1999,19(4):76-80.
    [76]覃剑,彭莉萍,王和春.基于小波变换的输电线路单端行波故障测距.电力系统自动化,2005,29(19):62-65.
    [77]Daubechies I.Ten Lecture on Wavelets.Philadelphia:Society for Industrial and Applied Mathematics,1992.
    [78]Daubechies I.Orthonormal bases of compactly supported wavelets.Commun.Pure & Applied Maths.1988,41:909-996.
    [79]Mallat S.A theory for multiresolution signal decomposition:the wavelet representation.IEEE Trans.on PAMI,1989,11(7):674-693.
    [80]T.K.Sarkar,C.Su.A tutorial on wavelets from an electrical engineering perspective,part 1:discrete wavelet techniques.IEEE Antennas and Propagation Magazine,1998,40(5):49-69.
    [81]T.K.Sarkar,C.Su.A tutorial on wavelets from an electrical engineering perspective,part 2:the continuous case.IEEE Antennas and Propagation Magazine,1998,40(6):36-49.
    [82]Chul Hwan Kim,Raj.Agganrval.Wavelet transforms in power systems,Part 1:General introduction to the wavelet transforms.Power Engineering Journal,April 2000:81-87.
    [83]Chul Hwan Kim,Raj.Agganrval.Wavelet transforms in power systems,Part 2:Examples of application to actual power system transients.Power Engineering Journal,August 2001:193-202.
    [84]何正友,王小茹,钱清泉.利用小波分析实现EHV输电线路单端量暂态保护的研究.中国电机工程学报,2001,21(10):10-14.
    [85]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究.中国电机工程学报,2005,22(5):38-43
    [86]何正友,符玲,麦瑞坤,等.小波奇异熵及其在高压输电线路故障选相中的应用.中国电机工程学报,2007,27(1):31-36.
    [87]刘志刚,王晓茹,钱清泉.小波网络研究进展与应用.电力系统自动化,2003,27(6):73-78.
    [88]刘志刚,钱清泉.基于多小波的电力系统故障暂态数据的压缩研究.中国电机工程学报,2003,23(10):22-26.
    [89]刘志刚,曾怡达,钱清泉.多小波在电力系统信号消噪中应用.中国电机工程学报,2004,24(1):30-34.
    [90]Wickerhauser M.Adapted wavelet analysis from theory to software.Wellesley,USA:A K Peters,1994.
    [91]M.J.Shensa.The discrete wavelet transform:Wedding the(?) trous and Mallat algorithm.IEEE Trans.Signal Proc.,1992,40(10):2464-2482.
    [92]S.Mallat,S.Zhong.Characterization of signals from multiscale edges.IEEE Trans.Part.Anal.and Math.Intell.,1992,14(7):710-732.
    [93]董新丽,葛耀中,董新洲.基于小波变换的行波测距式距离保护原理的研究.电网技术.2001,25(7):9-13.
    [94]施慎行,董新州,周双喜.基于行波极性的单端接地故障故障点反射波与对端母线反射波识别分析.第5届输配电计术国际会议,北京,2005.
    [95]Giovanni Miano.Transmission lines and lumped circuits.San Diego,USA:Academic Press,2001.
    [96]Paul C R.Analysis of multiconductor transmission lines.New York,USA:John Wiley&Sons,1994
    [97]Branin F H.Transient analysis of lossless transmission lines.Proc.IEEE,55:2012-2013.
    [98]Marx K D.Propagation modes,equivalent circuits,and characteristic terminations for multiconductor transmission lines with inhomogeneous dielectrics.IEEE Trans.Microwave Theory and Tech.,21:450-457.
    [99]Djordjevic A R,Sarkar T K,Harrington R F.Analysis of lossy transmission lines with arbitrary nonlinear terminal networks.IEEE Trans.Microwave Theory and Tech.,34(6):660-666.
    [100]邱关源.电路.北京:高等教育出版社.1999.
    [101]邬林勇,何正友,钱清泉.单端行波故障测距的频域方法.中国电机工程学报.2008,28(25):99-104.
    [102]Wedepohl L M.Application of matrix methods to the solution of travelling wave phenomena in polyphase systems.IEE Proceedings,1963,110(12):2200-2212.
    [103]黄家裕等.电力系统数字仿真.北京.中国电力出版社.1995.
    [104]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法.中国电机工程学报.2008,28(10):69-75.
    [105]Dommel H.Digital Computer Solution of Electromagnetic Transients in Single and Multiple Networks.IEEE Transactions on Power Apparatus and Systems,1969,Vol.PAS-88(4).
    [106]MATLAB 2006b help files.The Mathsworks Inc.USA.2006.
    [107]IEEE Standard C37.114-2004.IEEE Guide for determining fault location on AC transmission and distribution lines.2004.
    [108]Kawady T,Stenzel J.Investigation of practical problems for digital fault location algorithms based on EMTP simulation.IEEE/PES Transmission and Distribution Conference and Exhibition 2002,Asia Pacific,Yokohama,Japan,2002.
    [109]陈铮,董新洲,罗承沐.单端工频电气量故障测距算法的鲁棒性.清华大学学报(自然科学版),2003,43(3):310-313.
    [110]J.H.McClellan,R.W.Schafer,M.A.Yoder.DSP First:A Multimedia Approach.Prentice Hall,Upper Saddle River,New Jersey,1998.
    [111]Mertins A,Signal Analysis.John Wiley & Sons,Chichester,England,1999.
    [112]S.Burrus,R.A.Gopinath,Haitao Guo.小波和小波变换导论(英文版).北京:机械工业出版社,2005.
    [113]Coifman R,Wickerhauser M.Entropy based algorithms for best basis selection.IEEE Trans.on IT.1992,38(2):713-718.
    [114]马诺拉基斯,艾格尔,科根.统计和自适应信号处理.影印本.北京: 清华大学出版社,2003.
    [115]V.F.Pisarenko.The retrieval of harmonics form a covariance function.Geophysical Journal of the Royal Astronomical Society.1973,133:347-366.
    [116]G.Bienvenu,L.Kopp.Optimality of high resolution array using the eigensystem approach.IEEE Trans.Acoust.Speech Signal Process.1983,31:1235-1247.
    [117]David K.Cheng.电磁场与电磁波(第2版)/英文/影印本.北京:清华大学出版社.2007.
    [118]Arieh L.Shenkman.Transient analysis of electric power circuits handbook.The Netherlands:Springer Books.2005.
    [119]Mitsuharu Komoda,Mitsugu Aihara,et al..Development of a current detection type cable fault locator.IEEE Trans.On Power delivery,1991,6(2):541-545.
    [120]曾祥君,尹项根,林福昌等.基于行波传感器的输电线路故障定位方法研究.中国电机工程学报,2002,22(6):42-46.
    [121]David J.Lawrence,Luis Z.Cabeza,Lawrence T.Hochberg.Development of an advanced transmission line fault location system,part 1:Input transducer analysis and requirements.IEEE Trans.On Power delivery,1992,6(2):541-545.7(4):1963-1971.
    [122]D.J.Spoor,J.Zhu,P.Nichols.Filtering effects of substation secondary circuits on power system traveling wave transients.Proceedings of the Eighth International Conference on Electrical Machines and Systems,ICEMS 2005.2005,Vol.3:2360-2365.
    [123]IEEE Standard C37.110-1996.IEEE guide for the application of current transformers used for protective relaying purposes.
    [124]吴茂林,崔翔.电压互感器宽频特性建模.中国电机工程学报,2003,23(10):1-5.
    [125]周超,何正友,罗国敏.电磁式电压互感器暂态仿真及行波传变特性分 析.电网技术.2007,31(2):84-89.
    [126]IEEE Standard C57.13-1993.Requirements for Instrument Transformers.
    [127]Sweetana A.Transient response characteristics of capacitive potential devices IEEE Trans.on Power Apparatus and Systems,1970,89:1989-1997.
    [128]IEEE Committee Report.Transient response of coupling capacitor voltage transformers.IEEE Transactions on Power Apparatus and Systems,1981,100(12):4811-4814.
    [129]Cease T.W.,Driggans J.G.,Weikel S.J..Optical voltage and current sensors used in a revenue metering system.IEEE Trans.On Power Delivery.1991,6(4):1374-1379.
    [130]Cease T.W.,Johnston P.M..Amagneto-optic current transducer.IEEE Trans.on Power Delivery.1990,5(2):548-555.
    [131]Aikawa E,Ueda A,Watanabe M,et al.Development of new concept optical zero-sequence current/voltage transducers for distribution network.IEEE Trans.on Power Delivery.1991,6(1):414-420.
    [132]IEEE Committee Report.Optical current transducers for power systems:a review.IEEE Trans.on Power Delivery,1994,9(4):1778-1788.
    [133]邬林勇,何正友,钱清泉.利用电容式电压互感器二次信号的单端行波行波故障测距.电力系统自动化.2008,32(8):73-77.
    [134]Daqing Hou,J.R.Roberts.Capacitive voltage transformer:transient overreach concerns and solutions for distance relaying.Canadian Conference on Electrical and Computer Engineering,1996.vol.1:119-125.
    [135]M.Kezunovic,L.J.Kojovic,V.Skendzic,et al..Digital models of coupling capacitor voltage transformers for protective relay transient studies.IEEE Trans.Power Delivery.1992,7(4):1927-1935.
    [136]M.Kezunovic,L.J.Kojovic,A.Abur,et al..Experimental evaluation of EMTP-based current transformer models for protective relay transient study.IEEE Trans.on Power Delivery.1994,9(1):405-412.
    [137]IEEE Committee Report.Mathematical models for current,voltage and coupling capacitor voltage transformers.IEEE Trans.on Power Delivery.2000,15(1):62-72.
    [138]H,J,Vermeulen,L.R.Dann,J.van Roojen.Equivalent circuit modeling of a capacitive voltage transformer for power system harmonic frequencies.IEEE Trans.Power Delivery,1995,10(4):1743-1749.
    [139]Ghassemi F,Gale P F,Clegg B,et.al.Method to measure CVT transfer function.IEEE Transactions on Power Delivery.2002,17(4):915-920.
    [140]黄少锋,王兴国,刘千宽.一种基于固有频率的长距离输电线路保护方案.电力系统自动化.2008,32(8):59-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700