非平稳信号处理方法的改进及在地震工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪八十年代以来,信号处理进入了前所未有的快速发展期,新兴的理论和方法不断涌现。作为普遍的基础理论和应用工具,信号处理同其他学科交叉融合的趋势日益明显,并在许多应用领域由不同的信号处理方法形成了传统的优势地位。但非平稳信号处理仍是目前所面临的重要问题之一,其难点在于如何协调好精度和分辨率这一对矛盾。
     在土木工程和地震工程中,振动信号处理是信号处理技术最典型的应用之一,其主要目的即是从信号中尽可能地提取完备的、具有实际物理意义的信息以满足科研和应用的需要。然而,现实中的信号大多是非线性、非平稳的,并且数据长度有限,这使得分析处理此类信号成为一项复杂的工作。特别地,地震动和结构响应是地震工程中两种常见的振动信号形式,由于两者及其对应的系统(结构)的特性存在一定的差异,使得与之密切相关的两方面应用——地震动输入研究和结构损伤识别又对信号处理提出了不同的要求。
     在地震动输入研究方面,人们已经认识到除传统三要素外强度和频率非平稳特性同样是地震动的重要特性,而瞬时谱被认为是描述上述非平稳特性的有效的概念。虽然已有不少信号处理方法被用于地震动的瞬时谱估计,但一直未能解决好精度和分辨率的矛盾,而在此基础上的地震动瞬时谱的模型化研究则更是空白。因此,寻求有效的信号处理方法用于地震动瞬时谱的模型化研究,是结构抗震设计和分析对地震动输入研究提出的迫切需求。
     在结构损伤识别方面,基于振动的损伤识别在过去十年里一直是研究热点,针对已有方法的不足,研究者在相继提出一些改进措施的同时,近年来也逐渐将注意力集中到通过结构振动信号完备信息的提取来实现结构损伤识别,这些研究为基于振动的结构损伤识别提供了一个新思路。显然,要实现这一思路就要求信号处理方法能够高效、实时地从结构振动(反应)信号中提取完备信息,并能据此对结构的性能(状态)做出准确的评判和推断。
     为此,本文对非平稳信号处理方法及其在地震动非平稳特性和结构损伤识别中的应用展开了研究,主要工作和取得的创新成果可归纳为以下三个方面: 1.非平稳信号处理方法
     首先,提出了三种改进的参数化方法,不仅解决了现有方法难以协调好精度和分辨率这一对矛盾的难题,而且也为地震动瞬时谱的模型化研究奠定了基础;其次,提出了基于EMD和VARMA模型的改进方法,由该方法所得Hilbert谱不仅更具物理意义而且分辨率和可读性更好。
     2.地震动的非平稳特性及仿真方法
     采用两种强度包线模型研究了地震动强度非平稳特性,基于所收集的翔实的(5700余条)强震记录分析了强度包线参数的多维相关性及衰减规律,并给出了强度包线参数的设计取值建议;提出了指数衰减曲线形式的地震动瞬时频率模型,分析了瞬时频率参数的多维相关性及衰减规律,并给出了设计取值建议;提出了时频域彼此独立的函数乘积形式的地震动瞬时谱模型,为结构抗震设计和分析用地震动输入的选择提供了一个重要的参考指标,为同时考虑强度和频率非平稳特性的地震动仿真与合成奠定了基础;提出了基于改进信号处理方法及模型化瞬时谱的地震动合成与仿真方法,为结构抗震设计和分析提供了更合理的地震动输入。
     3.结构损伤识别
     基于振动信号完备信息提取的思路,提出了三种改进的结构损伤识别方法,由于改进方法采用了具有时变特性的损伤指标,因此不仅具有较好的适用性、敏感性和抗噪性,而且解决了现有常规方法无法对结构损伤(包括多处损伤)的发生时间、先后次序、严重程度及累积发展过程等细节进行描述的难题。
     论文以信号处理为纽带,将地震动输入和结构损伤识别这两个地震工程中看似不相关的重要内容联系起来,研究成果不仅有利于地震动特性的全面认识,从而为结构抗震设计和分析提供更合理的输入,而且也为结构损伤识别提供了一条新途径。
     最后,论文分析了目前研究的不足,并对今后的研究方向进行了展望。
Since 1980s, signal processing has entered into an unprecedented period of rapid development with the emergence of new theories and methods. As a fundamental theory and a universal tool, signal processing has more closely interpenetrated and combined with other disciplines than ever, and in many applications some traditional methods have established their overwhelming superiority. However, non-stationary signal processing is still an important issue, of which the difficulty is to make a reasonable tradeoff between the precision and resolution. Such a problem exists both in parametric and nonparametric methods.
     Vibration signal processing is the most typical application in civil and earthquake engineering, of which the major purpose is to extract physically meaningful information from a signal as much as possible. While in the real world, signals are often nonlinear and non-stationary and their length is often very short, which makes the processing of such signals a difficult task. Especially, in earthquake engineering ground motions and structural responses are two familiar types of vibration signals. Due to the different characteristics of them and the associated systems, two related applications, i.e. earthquake ground motion and structural damage detection, have different requirements for signal processing.
     Firstly, for earthquake ground motions the non-stationary properties in amplitude and frequency contents are also important properties besides the conventional properties of amplitude, frequency and duration, and instantaneous spectrum is regarded as a proper notion to describe such non-stationary properties. Though there are several methods available for instantaneous spectrum estimation, the contradiction between precision and resolution is not yet reconciled, and the modeling of instantaneous spectrum is even more rarely studied. In this context, to find a method for the study of modeling of instantaneous spectrum is an efficient way to fulfill the requirement for ground motions in structural seismic design and analysis.
     Secondly, in structural damage detection vibration based methods have been the research focus during the past decade. To reduce the limitations of some existing methods, continuous efforts have given rise to some improved methods. In addition, some more recent research has shown that extracting physically meaningful information from vibration signals to detect structural damages may be the new trend, which undoubtedly requires some signal processing methods to extract useful information from vibration signals in an efficient and real-time manner through which the performance (state) of structures can be accurately evaluated.
     For above reasons, improved signal processing methods and their applications in non-stationary properties of ground motions and structural damage detection are systematically studied in this thesis, and major works and research findings are summarized as follows:
     1. Non-stationary signal processing methods
     First, three improved parametric methods are proposed which not only perfectly reconciles the contradiction between precision and resolution but also provides a basis for the modeling of instantaneous spectrum of ground motions. Then, an EMD and VARMA model based method is also proposed which offers advantages in accuracy and frequency resolution and produces more physically meaningful and readable Hilbert spectrum.
     2. Non-stationary properties and synthesis of ground motions
     Two types of envelope models are used to study the non-stationary properties in intensity of ground motions. Based on the 5750 strong ground motion records collected, the multidimensional correlation and attenuation relations of envelope parameters are investigated and the recommendations of envelope parameters are put forward. An exponential decay model of instantaneous frequency is proposed and the multidimensional correlation and attenuation relations of model parameters are analyzed, then the recommendations of model parameters are set forth. A simplified model of instantaneous spectrum in the form of the product of independent functions in time and frequency domains is proposed, which not only produce a reference index for selecting reasonable ground motions for structural seismic design and analysis but also provides a basis for synthesis and simulation of ground motions allowing for the non-stationary properties in amplitude and frequency contents at the same time. Based on the improved signal processing methods and the instantaneous spectrum model, several methods for synthesis and simulation of ground motions are proposed, which can provide reasonable ground motions for structural seismic design and analysis.
     3. Structural damage detection
     In the sense of extracting complete information from vibration signals, three improved methods for structural damage detection are proposed. Since time varying damage indices are used in these improved methods, they have the advantage in applicability, sensitivity and robustness, and can detail the time sequence of occurrence, relative severity and cumulative process of structural damages at multiple locations in an efficient manner, which cannot be done by using the conventional damage detection methods.
     In this thesis, signal processing is used as a link between earthquake ground motion and structural damage detection which are two unrelated but important research fields in earthquake engineering. The research findings presented here not only help to provide more reasonable ground motions for structural seismic design and analysis on the basis of a more comprehensive understanding of the properties of ground motions, but also provide a novel approach for structural damage detection which can be easily combined with other applications such as structural health monitoring and vibration control.
     Finally, the weakness of the present study is briefly discussed and some recommendations for future research are provided.
引文
[1]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [2]张贤达.现代信号处理[M].第2版.北京:清华大学出版社, 2002.
    [3]姚天任,孙洪.现代数字信号处理.武汉:华中科技大学出版社, 1999.
    [4]程佩清.数字信号处理教程[M].北京:清华大学出版社, 1995.
    [5]罗发龙,李衍达.神经网络信号处理[M].北京:电子工业出版社,1993.
    [6] Qian S. Introduction to time-frequency and wavelet transforms[M]. Upper Saddle River, N.J: PTR Prentice Hall, 2002.
    [7] Oppenheim A V, Willsky A S, Nawab S H. Signals and systems[M]. 2nd ed. Upper Saddle River, N.J: PTR Prentice Hall, 1996.
    [8] Orfanidis S J. Introduction to signal processing[M]. Upper Saddle River, N.J: PTR Prentice Hall, 1996.
    [9] Barni M, Perez-Gonzalez F. Pushing science into signal processing[J]. IEEE Signal Processing Magazine, 2005, 22(4): 119-120.
    [10] Djuric P M. Signal processing: Is the future bright?[J]. IEEE Signal Processing Magazine, 2005, 22(4): 2.
    [11]李英民.工程地震动的模型化研究[D].重庆:重庆大学, 1999.
    [12]金星,廖振鹏.地震动随机场的物理模拟[J].地震工程与工程振动, 1994, 14(3): 11-19.
    [13]姜慧,胡聿贤,俞言祥,等.强地面运动随机模拟中的几个关键问题探讨[J].国际地震动态, 2004, 8: 29-34.
    [14]魏琏,谢君斐.中国工程抗震研究四十年(1949-1989)[M].北京:地震出版社, 1989.
    [15] Hasgür Z. Nonstationary frequency effect of the ground motion upon the strength levels of the shear type RC structures[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(7): 675-689.
    [16] Conte J P, Pister K S, Mahin S A. Influence of the earthquake ground motion process and structural properties on response characteristics of simple structures, UCB/EERC-90/09[R]. Earthquake Engineering Research Center, University of California, Berkeley, CA, 1990.
    [17] Papadimitriou K. Stochastic characterization of strong ground motion and applications to structural response, EERL-90-03[R]. Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, CA, 1990.
    [18] Wang J J, Fan L C, Qian S, et al. Simulations of non-stationary frequency content and its importance to seismic assessment of structures[J]. Earthquake Engng. Struct. Dyn., 2002, 31: 993-1005.
    [19] Ruiz S E. Influence of the mathematical modeling of the seismic input on the stochastic response of structural frames[C]. Proc. of the Seventh International Conference on Soil Dynamics and Earthquake Engineering (SDEE 95), Crete, Greece, 1995, 267-274.
    [20]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社, 2002.
    [21]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社, 2001.
    [22]徐良,过静君,江见鲸.大跨桥梁安全监测的技术方法分析[C].中国土木工程学会桥梁及结构工程学会第十四届年会论文集.南京: 2000.
    [23]张启伟.大型桥梁健康监测概念与监测系统设计[C].中国土木工程学会桥梁及结构工程学会第十四届年会论文集.南京: 2000.
    [24]白以龙.工程结构损伤的两个重要科学问题——分布式损伤和尺度效应[J].华南理工大学学报, 2002, 30(11): 11-14.
    [25] Carden E P, Fanning P. Vibration based condition monitoring: a review[J]. Structural Health Monitoring, 2004, 3(4): 355-377.
    [26] Farrar C R, Cornwell P J, Doebling S W, et al. Structural health monitoring studies of the Alamosa Canyon and I-40 bridges, LA-13635-MS[R]. Los Alamos National Laboratory, Los Alamos, 2000.
    [27] Hemez F M, Doebling S W, Farrar C R. Inversion of structural dynamics simulations: state of the art and orientations of the research[C]. Proc. of the 25th International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2000.
    [28] Farrar C R, Doebling S W. An overview of vibration-based damage detection research at Los Alamos national laboratory[C]. Proc. of the 138th Meeting of the Acoustical Society of America, 1999.
    [29] Farrar C R, Sohn H, Doebling S W. Structural health monitoring at Los Alamos national laboratory[C]. Proc. of COMADEM 2000, Huston, USA, 2000.
    [30] Farrar C R, Czarnecki J J, Sohn H, Hemez F M. A review of structural health monitoring literature: 1996-2001[C]. Proc. of the 3rd World Conference on Structural Control, Como, 2002.
    [31] Farrar C R, Doebling S W. Structural health monitoring at Los Alamos national laboratory[C]. Proc. of the Institute of Electrical Engineers Colloquium on Condition Monitoring: Machinery, External Structures and Health, LA-UR-1582, Birmingham, UK, 1999.
    [32] Fritzen C P, Jennewein D, Kiefer T. Damage detection based on model updating methods[J]. Mechanical Systems and Signal Processing, 1998, 12(1): 163-186.
    [33] Teughels A, Maeck J, Roeck G D. Damage assessment by FE model updating using damage functions [J]. Computers & Structures, 2002, 80(25): 1869-1879.
    [34] Hemez F M, Doebling S W. Review and assessment of model updating for nonlinear, transient dynamics[J]. Mechanical Systems and Signal Processing, 2001, 15(1): 45-74.
    [35] Farrar C R, Doebling S W. Lessons learned from applications of vibration-based damage identification methods to large bridge structures[C]. Proc. of the International Workshop on Structural Health Monitoring, Stanford, CA, 1997, 351-370.
    [36] Farrar C R, Sohn H. Development of an automated monitoring system based on time series analysis[C]. Proc. of the 8th International Conference on Structural Safety and Reliability, Newport Beach, CA, USA, 2001.
    [37] Duffey T A, Doebling S W, Farrar C R, et al. Vibration-based damage identification in structures exhibiting axial and torsional response[J]. Jour. of Vibration and Acoustics, 2001, 123(1): 84-91.
    [38] Farrar C R, Doebling S W, Nix D A. Vibration-based structural damage identification[J]. Philosophical Trans. of the Royal Society: Mathematical, Physical & Engineering Sciences, 2001, 359(1778): 131-149.
    [39] Sohn H, Czarnecki J J, Farrar C R. Structural health monitoring using statistical process control[J]. Jour. of Structural Engineering, ASCE, 2000, 126(11): 1356-1363.
    [40] Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced concrete bridge column[J]. Earthquake Engng. Struct. Dyn., 2000, 29: 1131-1152.
    [41] Cornwell P J, Doebling S W, Farrar C R. Application of the strain energy damage detection method to plate-like structures[J]. Jour. of Sound and Vibration, 1999, 224(2): 359-374.
    [42] Doebling S W, Peterson L D, Alvin K F. Experimental determination of local structural stiffness by disassembly of measured flexibility matrices[J]. Jour. of Vibration and Acoustics, 1998, 120: 949-957.
    [43] Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge: I. experiment[J]. Smart Materials and Structures, 1998, 7: 704-719.
    [44] Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge: II. numerical study[J]. Smart Materials and Structures, 1998, 7: 720-731.
    [45] Sohn H, Law K H. A Bayesian probabilistic approach for structure damage detection[J]. Earthquake Engng. Struct. Dyn., 1997, 26: 1259-1281.
    [46] Doebling S W, Peterson L D. Computing statically complete flexibility from dynamically measured flexibility[J]. Jour. of Sound and Vibration, 1997, 205(5): 631-645.
    [47] Doebling S W, Hemez F M, Peterson L D, et al. Improved damage location accuracy using strain energy-based mode selection criteria[J]. AIAA Jour., 1997, 35(4): 693-699.
    [48] Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structuraldamage identification[J]. AIAA Jour., 1996, 34(12): 2615-2621.
    [49] Warden K, Allen D W, Sohn H, et al. Extreme value statistics for damage detection in mechanical structures, LA-13903-MS[R]. Los Alamos: Los Alamos National Laboratory, 2002.
    [50] Farrar C R, Sohn H, Fugate M L. Normalizing data for structural health monitoring[C]. Proc. of the 4th International Conference on Damage Assessment of Structures, Cardiff, Wales, UK, 2001.
    [51] George D, Hunter N, Farrar C R, et al. Identifying damage sensitive features using non-linear time series and bispectral analysis[C]. Proc. of IMAC 18, San Antonio, TX, 2000.
    [52]陈素文,李国强.基于BP网络的框架结构损伤的多重分步识别理论[J].地震工程与工程振动, 2002, 22(5): 18-23.
    [53]程远胜,区达光,谭国焕等.基于分级遗传算法的结构损伤识别方法[J].华中科技大学学报, 2002, 30(82): 73-75.
    [54]李守巨,刘迎曦,吴玉良等.基于神经网络的建筑结构节点损伤识别方法[J].大连理工大学学报, 2003, 43(3): 270-273.
    [55]王中东,夏熙梅,陈塑寰.基于剩余模态力分析方法的结构损伤识别[J].吉林工业大学自然科学学报, 1999, 29(3): 61-66.
    [56]李洪泉,贲庆国,于之绰,等.钢框架结构在地震作用下累积损伤分析及试验研究[J].建筑结构学报, 2004, 25(3): 69-75.
    [57]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报, 2003, 36(5): 52-75.
    [58]李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法[J].哈尔滨建筑大学学报, 1996, 29(2): 8-12.
    [59]李洪泉,欧进萍.钢筋混凝土框架结构地震损伤的识别与试验分析[J].世界地震工程, 1996, 12(4): 37-43.
    [60]王柏生,丁皓江,倪一清,等.模型参数误差对用神经网络进行结构损伤识别的影响[J],土木工程学报, 2000, 33(1): 50-55.
    [61]瞿伟廉,黄东梅.大型复杂结构的两阶段损伤诊断方法[J].世界地震工程, 2003, 19(2): 72-78.
    [62]罗跃纲,彭永恒,闻邦椿.工程结构损伤的集成神经网络识别研究[J].振动与冲击, 2006, 25(1): 14-18.
    [63]吴波,胡云霞.基于BP神经网络的空间索杆结构节点损伤识别研究[J].地震工程与工程振动, 2006, 26(1): 83-88.
    [64]孙宗光,高赞明,倪一清.基于神经网络的损伤构件及损伤程度识别[J].工程力学, 2006, 23(2): 18-22.
    [65]李林,朱宏平,洪可柱.基于神经网络方法的框架结构损伤检测的试验研究[J].振动与冲击, 2006, 25(1): 107-111.
    [66]焦莉,李宏男.结构损伤识别的耦合神经网络方法[J].沈阳建筑大学学报, 2006, 22(1): 73-76.
    [67]万小朋,李小聪,鲍凯,等.利用振型变化进行结构损伤诊断的研究[J],航空学报, 2003, 24(5): 422-426.
    [68]包龙生,于玲,王澎,等.基于神经网络的桥梁结构损伤识别分析[J].沈阳建筑大学学报, 2004, 20(1): 33-35.
    [69]张志谊,续秀忠,华宏星,等.基于信号时频分解的模态参数识别[J].振动工程学报, 2002, 15(4): 389-395.
    [70]梁凤岗,徐敏.信号重构中的时域反滤波及其应用[J].振动、测试与诊断,工程学报, 1997, 17(2): 15-19.
    [71]王修勇,陈政清.基于柔度矩阵和神经网络的结构损伤识别法[J].机械强度, 2002, 24(2): 164-167.
    [72]韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展[J].华南理工大学学报, 2003, 31(1): 91-96.
    [73]崔飞,袁万城,史家钧.结构损伤识别的样条函数方法[J].同济大学学报, 2002, 30(8): 907-910.
    [74]王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定[J].振动工程学报, 2000, 13(1): 137-142.
    [75]李国强,郝冲超,陆烨.框架结构损伤识别的两步法[J].同济大学学报, 1998, 26(5): 483-487.
    [76]陆秋海,李德葆,张维.利用模态试验参数识别结构损伤的神经网络法[J].工程力学, 1999, 16(1): 35-42.
    [77]苏娟,陆秋海,管迪华.神经网络法在定量损伤识别研究中的应用[J].清华大学学报, 1999, 39(4): 68-70.
    [78]李忠献,杨晓明,丁阳.应用人工神经网络技术的大型斜拉桥子结构损伤识别研究[J],地震工程与工程振动, 2003, 23(3): 92-97.
    [79]崔飞,杨党旗,高岩.用参数识别技术进行桥梁结构损伤识别[J].中国铁道科学, 2003, 24(3): 36-39.
    [80]董聪.基于动力特性的结构损伤定位方法[J].力学与实践, 1999, 21: 62-63.
    [81]杨晓楠,姜绍飞,倪一清,等.基于特征向量简化的复杂土木结构损伤检测[J].沈阳建筑工程学院学报, 2003, 19(2): 81-84.
    [82]易伟建,刘霞.基于遗传算法的结构损伤诊断研究[J].工程力学, 2001, 18(2): 64-71.
    [83]朱宏平,张源.基于自适应BP神经网络的结构损伤检测[J].力学学报, 2003, 35(1): 110-116.
    [84]刘箴,唐岱新.建筑结构损伤诊断方法研究[J].哈尔滨建筑大学学报, 2000, 33(1): 37-40.
    [85]赵琪.结构损伤对固有模态的影响及诊断[J].工程力学, 1999, 16(3): 51-57.
    [86]吴波,李惠,李玉华.结构损伤分析的力学方法[J].地震工程与工程振, 1997, 17(1): 14-22.
    [87]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报, 1997, 25(2): 135-140.
    [88]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展[J].土木工程学报, 2003, 36(5): 105-110.
    [89]成小平,胡聿贤,帅向华.基于神经网络模型的房屋震害易损性估计方法[J].自然灾害学报, 2000, 9(2): 68-73.
    [90]王柏生,倪一清,高赞明.用概率神经网络进行结构损伤位置识别[J].振动工程学报, 2001, 14(1): 60-64.
    [91]鞠彦忠,阎贵平,陈建斌,等.用小波神经网络检测结构损伤[J].工程力学, 2003, 20(6): 176-181.
    [92]周先雁,沈蒲生,程翔云.用振动参数识别技术对混凝土框架进行破损评估[J].土木工程学报, 1998, 31(2): 39-45.
    [93] Hemez F M, Doebling S W. Uncertainty, validation of computer models and the myth of numerical predictability[C]. Proc. of COST-F3 European Conference on Structural System Identification. Kassel, Germany, 2001.
    [94] Fugate M L, Sohn H, Farrar C R. Vibration-based damage detection using statistical process control[J]. Mechanical Systems and Signal Processing, 2001, 15(4): 707-721.
    [95] Sohn H, Farrar C R, Hunter N F, et al. Structural health monitoring using statistical pattern Recognition techniques[J], Jour. of Dynamic Systems, Measurement and Control, ASME, 2001, 123(4): 706-711.
    [96] Sohn H, Farrar C R, Damage diagnosis using time series analysis of vibration signals, Jour. of smart materials and structures[J], 2001, 10: 1-6.
    [97] Sohn H, Law K H. Extraction of Ritz vectors from vibration test data[J], Mechanical systems and signal processing, 2001, 15(1): 213-226.
    [98] Doebling S W, Farrar C R. Estimation of statistical distributions for modal parameters identified from averaged frequency response function data[J]. Jour. of Vibration and Control, 2001, 7: 603-624.
    [99] Ratcliffe C P. A frequency and curvature based experimental method for locating damage instructures[J]. Journal of Vibration and Acoustics, ASME, 2000, 122: 324-329.
    [100] Yuan S F, Wang L, Shi L H. Active monitoring for on-line damage detection in composite structures[J]. Journal of Vibration and Acoustics, ASME, 2003, 125: 178-186.
    [101] Shi Z Y, Law S S, Zhang L M. Structural damage detection from modal strain energy change[J]. Journal of Engineering Mechanics, ASCE, 2000, 126(12): 1216-1223.
    [102] Safak E. Wave-propagation formulation of seismic response of multistory buildings[J]. Journal of Structural Engineering, ASCE, 1999, 125(4): 426-437.
    [103] Zumpano G, Meo M. A new damage detection technique based on wave propagation for rails[J]. International Journal of Solids and Structures, 2006, 43: 1023-1046.
    [104] Ma J, Pines D J. Damage detection in a building structure model under seismic excitation using dereverberated wave mechanics[J]. Engineering Structures, 2003, 25(3): 385-396.
    [105] Hou Z, Noori M, Amand R S. Wavelet-based approach for structural damage detection [J]. Journal of Engineering Mechanics ASCE, 2000, 126(7): 677-683.
    [106] Ivanovic S S, Trifunac M D, Todorovska M I. On identification of damage in structures via wave travel times[C]. Proc. NATO Advanced Research Workshop on Strong-Motion Instrumentation for Civil Engineering Structures, Istanbul, Turkey, 1999.
    [107] Todorovska M I, Ivanovic S S, Trifunac M D. Wave propagation in a seven-story reinforced concrete building I. theoretical models[J]. Soil Dynamics & Earthquake Engrneering, 2001, 21(3): 211-223.
    [108] Todorovska M I, Ivanovic S S, Trifunac M D. Wave propagation in a seven-story reinforced concrete building II. observed wavenumbers[J]. Soil Dynamics & Earthquake Engrneering, 2001, 21(3): 225-236.
    [109] Todorovska M I, Ivanovic S S, Trifunac M D. Wave propagation in a seven-story reinforced concrete building III. damage detection via changes in wavenumbers[J]. Soil Dynamics & Earthquake Engrneering, 2003, 23(1): 65-75.
    [110]维纳R.控制论[M].北京:科学出版社, 1963.
    [111] Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27: 379-423, 623-656.
    [112]钟义信.信息科学原理[M].第三版.北京:北京邮电大学出版社, 2002.
    [113] Shannon C E. Communication in the presence of noise[J]. Proc. of the IRE, 1949, 37(1): 10-21.
    [114] Nyquist H. Certain topics in telegraph transmission theory[J]. Trans. AIEE, 1928, 47: 617-644.
    [115] Whittaker J M, Interpolatory function theory[M]. Cambridge, England: Cambridge Univ. Press, 1935.
    [116] Gabor D. Theory of communication [J]. Journal of the Institute of Electrical Engineers, 1946,93(26): 429-457.
    [117] Robinson E A. A historical perspective of spectrum estimation[J]. Proc. IEEE, 1982, 70(9): 885-907.
    [118] Cooley J W, Tukey J W. An algorithm for the machine computation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(4): 297-301.
    [119] Tukey J W. The sampling theory of power spectrum estimates[C]. Symp. on Applications of Autocorrelation Analysis to Physical Problems. Washington, DC, U.S. Office of Naval Research, 47-67,1949.
    [120] Blackman R B, Tukey J W. The measurement of power spectra from the point of view of communications engineering[J]. Bell Syst Tech J.,1958, 33: 185-282.
    [121] Priestley M B. Basic considerations in the estimation of spectra[J]. Technometrics, 1962, 4(4): 991-964.
    [122] Brillinger D R. John W. Tukey's work on time series and spectrum analysis[J]. The Annals of Statistics, 2002, 30(6): 1595-1618.
    [123] Koenig W, Dunn H K, Lacy L Y. The sound spectrograph[J]. J. Acoust. Soc. Am., 1946, 18(1): 19-49.
    [124] Potter R K, Kopp G, Green H C. Visible speech[M]. New York: Van Nostrand, 1947.
    [125] Ville J. Theorie et applications de la notion de signal analytique[J]. Cables et Transmission, 1948, 2A: 61-74.
    [126] Wigner E P. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40: 749-759.
    [127] Page C H. Instantaneous power spectra[J]. Journal of Applied Physics, 1952, 23: 103-106.
    [128] Turner C H M. On the concept of an instantaneous power spectrum and its relationship to the autocorrelation function[J]. Journal of Applied Physics, 1954, 25: 1347-1351.
    [129] Margenau H, Hill R N. Correlation between measurements in quantum theory[J]. Prog. Theor. Phys., 1961, 26: 722-738.
    [130] Levin M J. Instantaneous spectra and ambiguity functions[J]. IEEE Trans. Informat. Theory, 1967, IT-13: 95-97.
    [131] Rihaczek R. Signal energy distribution in time and frequency[J]. IEEE Trans. Informat. Theory, 1968, IT-14: . 369-374.
    [132] Ackroyd M H. Instantaneous and time-varying spectra—an introduction[J]. Radio Electron. Eng., 1970, 239: 145-152.
    [133] Bastiaans M J. Gabor's expansion of a signal into Gaussian elementary signals[J]. Proceedings of the IEEE, 1980, 68(4): 539-539.
    [134] Claasen T A C M, Mecklenbrauker W F G. The Wigner distribution—a tool for time-frequency signal analysis, part I: continuous-time signals[J]. Philips J. Res., 1980, 35: 217-250.
    [135] Claasen T A C M, Mecklenbrauker W F G. The Wigner distribution—a tool for time-frequency signal analysis, part II: discrete time signals[J]. Philips J. Res., 1980, 35: 276-300.
    [136] Claasen T A C M, Mecklenbrauker W F G. The Wigner distribution—a tool for time-frequency signal analysis, part III: relations with other time-frequency signal transformations[J]. Philips J. Res., 1980, 35: 372-389.
    [137] Cohen L. Generalized phase-space distribution functions[J]. J. Math. Phys., 1966, 7: 781-786.
    [138] Choi H, Williams W J. Improved Time-frequency representation of multicomponent signals using exponential kernels[J]. IEEE Trans. ASSP, 1989, 37(6): 862-871.
    [139] Atlas L, Zhao Y, Marks R J. The use of cone-shaped kernels for generalized time–frequency representations of non-stationary signals[J]. IEEE Trans. ASSP, 1990, 38(7): 1084-1091.
    [140] Jeong J, Williams, W J. Kernel design for reduced interference distributions[J]. IEEE Transactions on Signal Processing, 1992, 40(2): 402-412
    [141] Papandreou A, Faye B G. Generalization of the Choi-Williams and the Butterworth distribution for time frequency analysis[J]. IEEE Trans. on signal processing, 1993: 41(1): 463-472..
    [142] Jones D L, Bariniuk R G. An adaptive optimal-kernel time-frequency representation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP93), 1993, 4: 109-112.
    [143] Stankovic L. A method for time-frequency analysis[J]. IEEE Transactions on Signal Processing, 1994, 42(1): 225-229.
    [144] Barkat B, Boashash B. A high-resolution quadratic time–frequency distribution for multicomponent signals analysis[J]. IEEE Transaction on signal processing, 2001, 49(10): 2232-2239.
    [145] Flandrin P. Time-frequency/time-scale analysis[M]. San Diego, CA: Academic Press, 1999.
    [146] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089.
    [147] Mallat S, Zhang Z. Matching Pursuits with Time-Frequency Dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    [148] Mann S, Haykin S. The chirplet transform: A generalization of Gabor's logon transform[C]. Proc. Vision Interface'91, 1991, 205-212.
    [149] Mihovilovic D, Bracewell R N, Adaptive chirplet representation of signals in the time-frequency plane[J]. Electronics Letters, 1991, 27(13): 1159-1161.
    [150] Mann S, Haykin S. The adaptive chirplet: An adaptive wavelet like transform[C]. Proc. SPIE 36th Intl. Symp. Optical and Optoelectronic Appl. Sci. Eng., 1991.
    [151] Mann S. Adaptive chirplet transform[J]. Optical Engineering, 1992, 31(6): 1243-1256.
    [152] Gerr N L. Introducing a third-order Wigner distribution[J]. Proc. IEEE, 1988, 76(3): 290-92.
    [153] Giannakis G B, Mendel J M. Identification of non-minimum phase systems using higher-order statistics[J]. IEEE Trans. ASSP, 1989, 37: 360-377.
    [154] Haykin S. Adaptive filter theory[M]. 2nd edition. New Jersey: Prentice-Hall, 1991.
    [155] Marple S L. A new autoregressive spectrum analysis algorithm[J]. IEEE Trans. ASSP, 1990, 28(4): 441-450.
    [156] Matsuoka T, Ulrych T J. Phase estimation using the bispectrum[J]. Proc. IEEE, 1984, 72(10): 1403-1411.
    [157] Mendel J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[J]. Proc. IEEE, 1991, 79: 278-305.
    [158] Nikias C L, Mendel J M. Signal processing with higher-order spectra[J]. IEEE Signal Processing Magazine, 1993, 10(3): 10-37.
    [159] Nikias C L, Pan R. Time delay estimation in unknown Gaussian spatially correlated noise[J]. IEEE Trans. ASSP, 1988, 36: 1706-1714.
    [160] Nikias C L. Higher-Order Spectral Analysis: A Nonlinear Signal Processing Framework[M]. Upper Saddle River, N.J: PTR Prentice Hall, 1993.
    [161] Nikias C L, Raghuveer M R. Bispectrum estimation: A digital signal processing framework[J]. Proc. IEEE, 1987, 75: 869-891.
    [162] Pan R, Nikias C L. The complex cepstrum of higher-order cumulants and non-minimum phase system identification[J]. IEEE Trans ASSP, 1988, 36: 186-205.
    [163] Namias V. The fractinal order Fourier transform and its application to quantum mechanics[J]. J. Inst. Math. Appl., 1980, 25: 241-265.
    [164] McBride A C, Kerr F H. On Namias’fractional Fourier transform[J]. IMA J. Appl. Math, 1987, 39: 159-175.
    [165] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation (I)[J]. J. Opt. Sco. AM. A, 1993, 10(10): 1875-1881.
    [166] Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation (II). J Opt Sco AM A, 1993, 10(12): 2522-2531.
    [167]陶然,齐林,王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社, 2004.
    [168]孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报, 1996, 24(12): 60-65.
    [169]陶然,邓兵,王越.分数阶Fourier变换在信号处理领域的研究进展[J].中国科学: E辑,信息科学, 2006, 36(2): 113-136.
    [170] Pitton J W, Wang K, Juang B H, Time-frequency analysis and auditory modeling for automatic recognition of speech[J]. Proc. IEEE, 1996, 84(9): 1199-1215.
    [171] Gaunaurd G C, Strifors H C. Signal analysis by means of time-frequency (Wigner-type) distributions—applications to sonar and radar echoes[J]. Proc. IEEE, 1996, 84(9): 1231-1263.
    [172] Wood J C, Barry D T. Time-frequency analysis of skeletal muscle and cardiac vibrations[J]. Proc. IEEE, 1996, 84(9): 1281-1294.
    [173] Haykin S, Racine R J, Xu Y, et al. Monitoring neuronal oscillations and signal transmission between cortical regions using time-frequency analysis of electroencephalographic activity[J]. Proc. IEEE, 1996, 84(9): 1295-1301.
    [174] Atlas L E, Bernard G D, Narayanan S B. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors[J]. Proc. IEEE, 1996, 84(9): 1319-1329.
    [175] Samimy B, Rizzoni G. Mechanical signature analysis using time-frequency signal processing: Application to internal combustion engine knock detection[J]. Proc. IEEE, 1996, 84(9): 1330-1343.
    [176] Schuster A. On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena[J]. Terr. Magnet.,1898, 3(1): 13-41.
    [177] Yule G U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers[J]. Phil Trans Roy. Soc. London. A., 1928, 226: 267-298.
    [178] Walker G. On periodicity in series of related terms[J]. Proceedings of the Royal Society of London, Ser. A, 1931, 131: 518-532.
    [179] Wold H. A study in the analysis of stationary time series[D]. PhD Thesis. Stockholm, Sweden: Stockholm University, 1938.
    [180] Durbin J. Efficient estimation of parameters in moving average models[J]. Biometrika, 1959, 46, 306-316.
    [181] Durbin J. The fitting of time series models[J]. Revue Inst. Int. de Stat., 1960, 28: 233-243.
    [182] Burg J P. Maximum entropy spectral analysis[C]. 37th Annual International Meeting of the Society for the Exploration of Geophysics. Oklahoma City, 1967.
    [183] Burg J P. Maximum entropy spectral analysis[D]. PhD Thesis. Stanford, CA: Stanford University, 1975.
    [184] Parzen E. Multiple time series modelling[R]. Stanford University Statistics Department Technical Report, No. 12, 1968.
    [185] Akaike H. Power spectrum estimation through autoregressive model fitting[J]. Annals of the Institute of Statistical Mathematics, 1969, 21(1): 407-419.
    [186] Akaike H. Fitting autoregressive models for prediction[J]. Annals of the Institute of Statistical Mathematics, 1969, 21(1): 243-247.
    [187] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. of the IEEE, 1969, 57(8): 1408-1418.
    [188] Itakura F, Saito S. Analysis synthesis telephony based on the maximum-likelihood method[C]. Proc. Sixth Int. Conf. on Acoustics. Tokyo, Japan, 1968.
    [189] Box G, Jenkins G M. Time series analysis, forecasting, and control[M]. Oakland, CA: Holden-Day, 1970.
    [190] Van Den Bos A. Alternative interpretation of maximum entropy spectral analysis[J]. IEEE Trans. Information Theory, 1971, IT-17(7): 493-494.
    [191] Parzen E. Some recent advances in time series modeling[J]. IEEE Trans. on Automatic Control, 1974, 19(6): 723-730.
    [192] Akaike H. A new look at the statistical model identification[J]. IEEE Trans. on Automatic Control, 1974, 19(6): 716-723.
    [193] Akaike H. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting[J]. Biometrika, 1979, 66(2):237-242.
    [194] Akaike H. Use of statistical models for time series analysis[C]. Proc. of IEEE (ICASSP 86), 1986, 11: 3147-3155.
    [195] Cadzow J A. ARMA Spectral Estimation: An efficient closed form procedure[J]. Proc. RADC Spectrum Estimation Workshop, 1979, 81-97.
    [196] Kaveh M. High resolution spectral estimation for noisy signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(3): 286-287.
    [197] Cadzow J A. High performance spectral estimation—A new ARMA method[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28(5): 524-529.
    [198] Cadzow J A, Ogino K. Adaptive ARMA spectral estimation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP81), 1981, 6: 475-479.
    [199] Cadzow J A. Autoregressive moving average spectral estimation: A model equation error procedure[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, GE-19(1): 24-28.
    [200] Bruzzone S, Kaveh M. On some suboptimum ARMA spectral estimators[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28(6): 753-755.
    [201] Kay S M, Marple S L. Spectrum analysis—A modern perspective[J]. Proc. IEEE, 1981, 69: 1380-1418.
    [202] Kay S M. A new ARMA spectral estimator[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28(5): 585-588.
    [203] Kay S M. Modern spectral estimation: Theory and applications[M]. New Jersey: Prentice-Hall, 1988.
    [204] Marple S L. A tutorial overview of modern spectral estimation[C]. 1989 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-89), 1989, 4: 2152-2157.
    [205] Priestley M B. Current developments in time series modelling[J]. Jour. of Econometrics, 1988, 37: 67-86.
    [206] Ihara S. Maximum entropy spectral analysis and ARMA processes[J]. IEEE Transactions on Information Theory, 1984, 30(2): 377-380.
    [207] Lagunas H M, Santamaria P M, Figueiras V A. ARMA model maximum entropy power spectral estimation[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1984, 32(5): 984-990.
    [208] Lagunas H M. Cepstrum constraints in ME spectral estimation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP83). 1983, 8:1442-1445.
    [209] Choi B S, Cover T M. An information-theoretic proof of Burg's maximum entropy spectrum[J]. Proc. IEEE, 1984, 72(8): 1094-1096.
    [210]谢衷洁.时间序列分析[M].北京:北京大学出版社, 1990.
    [211]张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社, 1996.
    [212]胡昌华,周涛,夏启兵,张伟.基于MATLAB系统分析与设计——时频分析[M].西安:西安电子科技大学出版社, 2002.
    [213]梁泽怀.时间序列的分析辨识与适应性滤波[M].北京:科学出版社, 1984.
    [214]韩曾晋.自适应控制[M].北京:清华大学出版社, 2000.
    [215]徐宁寿.随机信号估计与系统控制[M].北京:北京工业大学出版社, 2001.
    [216] Rao T S. The fitting of non-stationary signals[J]. J. R. Statis. Soc., 1970, B32: 312-322,.
    [217] Kitagawa G. Changing spectrum estimation[J]. Journal of Sound and Vibration, 1983, 89(3): 433-445.
    [218] Grenier Y. Time-dependent ARMA modeling of nonstationary signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983, 31(4): 899-911.
    [219] Miki N, Miyanaga Y, Saga S, et al. Spectrum and pitch estimation of speech using a time-varying ARMA estimation algorithm[C]. Proc. of IEEE International Conference on ICASSP85, 1985, 10: 1133-1136.
    [220] Sharman K, Friedlander B. Time-varying autoregressive modeling of a class of nonstationary signals[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP84), 1984, 9: 227-230.
    [221] Kitagawa G. Non-Gaussian state-space modeling of nonstationary time Series[J]. Journal of theAmerican Statistical Association, 1987, 82(400): 1032-1041.
    [222] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2): 203-221.
    [223] Mallat S. Multiresolution approximations and wavelet orthogonal bases in L2(R)[J]. Trans. Amer. Math. Soc., 1989, 315: 69-87.
    [224] Mallat S. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans. Pat. Anal. Mach. Intell., 1989, 11: 674-693.
    [225] Mallat S. Multifrequency channel decompositons of images and wavelet models[J]. IEEE Trans. Acoust., Speech, Signal Processing, 1989, 37(12): 2091-2110.
    [226] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005.
    [227] Coifman R R, Meyer Y, Quake S, et al. Signal processing and compression with wavelet packets[A]. In: Byrnes J S, Byrnes J L, Hargreaves K A, Berry K, ed. Wavelets and Their Applications, 1994.
    [228] Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718.
    [229] Goodman T N T, Lee S L, Tang W S. Wavelet in wandering subspaces[J]. Trans. Amer. Math. Soc., 1993, 338: 639-654.
    [230] Sweldens W. The lifting scheme: a construction of second generation wavelets[J]. SIAM J. Math. Anal., 1998, 29(2): 511-546.
    [231] Sweldens W. The lifting scheme: A custom design construction of biorthogonal wavelets[J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.
    [232] Candès E J, Donoho D L. Ridgelets: A Key to higher-dimensional intermittency?[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2495-2509.
    [233] Jiang X Q, Blunt L. Third generation wavelet for the extraction of morphological features from micro and nano scalar surfaces[J]. Wear, 2004, 257(12): 1235-1240.
    [234] Candès E J, Donoho D L. Curvelets—A surprisingly effective nonadaptive representation for objects with edges. In: Cohen A, Rabut C, Schumaker L L, ed. Curve and Surface Fitting: Saint-Malo 1999. Nashville, TN: Van-derbilt Univ. Press, 1999.
    [235] Donoho D L, Huo X. Combined image representation using edgelets and wavelets[C]. Wavelet Applications in Signal and Image Processing VII (SPIE), Denver, CO, 1999.
    [236] Donoho D L, Huo X. Beamlet pyramids: a new form of multiresolution analysis, suited for extracting lines, curves and objects from very noisy image data. Wavelet applications in signaland image processing VIII (SPIE), San Diego, CA, 2000.
    [237]焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社, 2008.
    [238] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc London Ser A, 1998, 454: 903-995.
    [239] Huang N E, Shen Z, Long S R. A new view of water waves--the Hilbert spectrum[J]. Annu. Rev. Fluid Mech., 1999, 31: 417-457.
    [240] Huang N E, Bethesda M D. Computing instantaneous frequency by normalizing Hilbert transform, US Patent 6,901,353[P]. 2005.
    [241] Huang N E, Wu M C, Long S R, et al. A confidence limit for empirical mode decomposition and Hilbert spectral analysis[J]. Proc. of R. Soc. London, Ser. A, 2003, 459: 2317-2345.
    [242] Feldman M. Analytical basics of the EMD: Two harmonics decomposition[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2059-2071.
    [243] Sharpley R C, Vatchev V. Analysis of the Intrinsic Mode Functions[J]. Constructive Approximation, 2006, 24(1): 17-47.
    [244] Wu Z. and Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[R]. Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173.
    [245] Oonincx P J, Hermand J P. Empirical mode decomposition of ocean acoustic data with constraint on the frequency range[C]. Proceedings of the Seventh European Conference on Underwater Acoustics(ECUA 2004), Delft, Netherlands, 2004.
    [246] Huang N E, Wu Z H, Long S R, et al. On instantaneous frequency[J]. Advances in Adaptive Data Analysis, 2009, 1(2): 177-229.
    [247] Damerval C, Meignen S, Perrier V. A fast algorithm for bidimensional EMD[J]. IEEE Signal Processing Letters, 2005, 12(10): 701-704.
    [248] Nunes C, Guyot S, Deléchelle E. Texture analysis based on local analysis of the bidimensional empirical mode decomposition[J]. Machine Vision and Applications, 2005, 16(3): 177-188.
    [249] Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis by bidimensional empirical mode decomposition[J]. Image and Vision Computing, 2003, 21(12): 1019-1026.
    [250] Liu Z X, Peng S L. Boundary processing of bidimensional EMD using texture synthesis [J]. IEEE Signal Processing Letters, 2005, 12(1): 33-36.
    [251]胡聿贤.地震工程学[M].第二版.北京:地震出版社, 2006.
    [252] Bedrosian E. A product theorem for Hilbert transform[C]. Proc. IEEE, 1963, 51: 868-869.
    [253] Boashash B. Estimating and interpreting the instantaneous frequency of a signal: I.fundamentals[C]. Proc. of IEEE, 1992, 80: 520-538.
    [254] Nuttall A H. On the quadrature approximation to the Hilbert transform of modulated signals[C]. Proc. IEEE, 1966, 54: 1458-1459.
    [255] Efe M O, Kaynak O, Wilamowski B A. An on-line and robust identification scheme for time-varying ARMA processes[C]. Proc. of 28th Annual Conference of the Industrial Electronics Society, IEEE, 2002, 3: 1990-1994.
    [256] Chakraborty M, Prasad S. Multichannel time-varying ARMA model identification by least squares circular lattice structures[C]. Proc. of IEEE International Conference on ICASSP91, 1991, 5: 3229-3332.
    [257] Likothanassis S D, Demiris E N, Karelis D G. A real-time ARMA model structure identification method[C]. Proc. of the 13th IEEE International Conference on Digital Signal Processing, 1997, 2: 915-918.
    [258] Ravishanker N, Ray K B. Bayesian analysis of vector ARMA models using Gibbs sampling[J]. Jour. Forecast., 1997, 16: 177-194.
    [259] Sentoni G B, Biegler L T, Guiver J B, et al. State-space nonlinear process modeling: identification and universality[J]. AIChE Jour., 1998, 44(10): 2229-2239.
    [260] Yoo K Y, Rhee H K. LF-LPV input/output data-based predictive controller design for nonlinear systems[J]. AIChE Jour., 2002, 48(9): 1981-1990.
    [261] Mobarakeh A A, Rofooei F R, Ahmadi G. Simulation of earthquake records using time-varying ARMA (2,1) model[J]. Probabilistic Engineering Mechanics, 2002, 17: 15-34.
    [262] Soderstrom T, Mahata K, Soverini U. Identification of dynamic errors-in-variables models: approaches based on two-dimensional ARMA modeling of the data[J]. Automatica, 2003, 39: 929-935.
    [263] Miyanaga Y, Miki N, Nagai N. Adaptive identification of a time—varying ARMA speech model[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1986, 34(3): 423-433.
    [264] Ismaili M A. Design of a system of linear oscillators spectrally equivalent to a non-linear one[J]. International Jour.l of Non-Linear Mechanics, 1996, 31(5): 573-580.
    [265] Kaderli A, Kayhan A S. Spectral estimation of nonstationary ARMA processes using the evolutionary cepstrum[J]. IEEE Signal Processing Letters, 2002, 9(4): 130-132.
    [266] Mrad B R, Fassois S D, Levitt J A. Nonstationary signal estimation using time-varying ARMA models[C]. Proc. of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994, 433-436.
    [267] Mrad R B, Fassois S D, Levitt J A. A polynomial-algebraic method for non-stationary TARMA signal analysis -- part I: the method[J]. Signal Processing, 1998, 65: 1-19.
    [268] Eff M ?, Kaynak O, Wilamowski B M. A robust identification technique for time-varying ARMA processes based on variable structure systems theory[J]. Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, 2002, 8(2): 185 -198.
    [269] Lim B K, Un C K. Continuous adaptive speech analysis based on a time-varying ARMA model[J]. IEEE Electronics Letters, 1990, 26(10): 674-675.
    [270] Chakraborty M, Prasad S. Multichannel time-varying ARMA model identification by least squares circular lattice structures[C]. Proc. of IEEE International Conference on ICASSP91, 1991, 5: 3229-3332.
    [271] Chowdhury F N. Input-output modeling of nonlinear systems with time-varying linear models[J]. IEEE Trans. on Automatic Control, 2000, 45(7): 1355-1358.
    [272] Chowdhury F N. Goal-oriented system identification for safe operation of engineering systems[C]. Proc. of the 2000 American Control Conference, IEEE, 2000, 4: 2711-2712.
    [273] Yuksel M E, Kara S, Taspinar N. Time-varying parametric modeling and simulation of ultrasonic Doppler signals[C]. Proc. of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1996, 157-160.
    [274] Cigizoglu H K. Incorporation of ARMA models into flow forecasting by artificial neural networks[J]. Environmetrics, 2003, 14: 417-427.
    [275] Horita E, Miyanaga Y, Tochinai K. Time-varying analysis using ARMA model with double inputs[C]. Proc. of IEEE International Symposium on ISCAS92, 1992, 3: 1471-1474.
    [276] Grenier Y. Time-frequency analysis using time-dependent ARMA models[C]. IEEE International Conference on ICASSP84, 1984, 9: 270-273.
    [277] Olafsson S, Remseth S, Sigbjornsson R. Stochastic models for simulation of strong ground motion in Iceland[J]. Earthquake Engng. Struct. Dyn., 2001, 30:1305-1131.
    [278] Abrahart R J, See L. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments[J]. Hydrol. Process, 1999, 14: 1046-1061.
    [279] Dahlhaus R. Fitting time series models to nonstationary processes[J]. The Annals of Statistics, 1997, 29(1): 1-37.
    [280] Kitagawa G, Gersch W. A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series[J]. IEEE Transactions on Automatic Control, 1985, 30(1):48-56.
    [281] Koreisha S G, Fang Y. The impact of measurement errors on ARMA prediction[J]. Jour. Forecast., 1999, 18: 95-109.
    [282] Oke T, Oller L E. Testing for short memory in a VARMA process[J]. Jour. Forecast., 1999, 18: 477-487.
    [283] Makridakis S, Hibon M. ARMA models and the Box-Jenkins methodology[J]. Jour. Forecast., 1999, 16: 147-163.
    [284] Tugnait J. ARMA spectral estimation for noisy signals observed through a linear system[J]. IEEE Trans. on Signal Processing, 1985, 33(1): 160-163.
    [285] Jong P, Penzer J. The ARMA model in state space form[J]. Jour. of Statistics & Probability Letters, 2004, 70: 119-125.
    [286] Boss D, Kammeyer K D. Blind estimation of ARMA systems[C]. Proc. of EUSIPCO-94, 1994, 3: 1105-1108.
    [287] Kalman R E. A new approach to linear filtering and prediction problems[J]. Jour. of Basic Engineering, ASME, Series D, 1960, 82: 35-45.
    [288] Sorenson H W. Least-square estimation: from Gauss to Kalman[J]. IEEE Spectrum, 1970, 7: 63-68.
    [289] Ljung L. System identification—Theory for the user[M]. 2nd ed. Upper Saddle River, N.J: PTR Prentice Hall, 1999.
    [290] Ljung L. Black box models from input-output measurements[C]. Proc. of IEEE Instrumentation and Measurement Technology. Budapest, Hungry, 2001, 138-146.
    [291] Haykin S. Kalman filtering and neural networks[M]. New York: John Wiley and Sons Inc, 2001.
    [292] Grewal M S, Andrews P A. Kalman Filtering: Theory and practice using Matlab[M]. 2nd ed. New York: John Wiley and Sons Inc, 2001.
    [293]邓自立,刘玉梅.稳态Kalman滤波的一种统一格式[J].控制与决策, 1999, 14(1): 25-29.
    [294] Wu Z Q, Harris C J. An adaptive neurofuzzy Kalman filter[C]. Proc. of the Fifth IEEE International Conference on Fuzzy Systems, 1996, 2: 1344-1350.
    [295] Samer S. Discrete-time Kalman filter under incorrect noise covariance[C]. Proc. of the American Control Conference, 1995, 1152-1156.
    [296]陈一虹,颜东,张洪钺.自适应卡尔曼滤波实时性研究及其应用[J]. 1996, 22(2): 146-149.
    [297]颜东,张洪钺.基于辨识ARMA模型的野值剔除方法与卡尔曼滤波修正算法[J].信息与控制, 1995, 24(3): 183-188.
    [298]高炳祥,万德钧.渐消卡尔曼滤波器的最佳自适应算法及其在陀螺随机常值漂移标定中的应用[J].中国惯性技术学报, 1997, 5(2): 11-14.
    [299]梁艳春,王在申.遗忘因子选取对于时变参数识别结果的影响[J].宇航学报, 1996, 17(1): 75-80.
    [300]周露,吴瑶华,黄文虎,等.具有有色观测噪声和未知模型参数的自适应状态估计器[J].宇航学报, 1997, 18(2): 8-13.
    [301]杨旭东,何平,胡恒章.离散卡尔曼滤波器滤波精度与噪声统计模型准确度的关系[J].电机与控制学报, 1999, 3(2): 69-72.
    [302] Julier S, Uhlmann J K. A new extension of the Kalman filter to nonlinear system[C]. The 11th International Symposium on Aerospace/Defence Sensing. Simulation and Controls, 1997.
    [303] Merwe R, Wan E A. Efficient derivative-free Kalman filters for online learning[C]. Proc. of European Symposium on Artificial Neural Networks (ESANN), 2001.
    [304] Wan E A, Merwe R. Dual estimation and the Unscented transformation[J]. Advances in Neural Information Processing Systems, 2000, 12: 666-672.
    [305] Wan E A, Merwe R. The Unscented Kalman filter for nonlinear estimation[C]. Proc. of IEEE Symposium 2000 (AS-SPCC), 2000.
    [306] Sanjeev A, Simon M, Neil, G, et al. A tutorial on particle filters for on-line no-linear/non-Gaussian Bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
    [307] Andrieu C, Doucet A. Recursive Monte Carlo algorithms for parameter estimation in general state models[C]. Proc. of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001: 14-17.
    [308]郑治真,张少芬.瞬态谱估计理论及其应用[M].北京:地震出版社,1993.
    [309] Liu S C. Evolutionary power spectral density of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America, 1970, 60(3): 891-900.
    [310] Sugito M, Furumoto Y, Sugiyama T. Strong motion prediction on rock surface by superposed evolutionary spectra[C]. Proc. of the 12th WCEE, Oakland, New Zealand, 2000.
    [311] Gersch W, Kitagawa G. A time varying AR coefficient model for modelling and simulating earthquake ground motion[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(2): 243-254.
    [312]亀田弘行,杉戸真太. Prediction of strong earthquake motions by evolutionary process model[J].第5回日本地震工学シンポジウム論文集, 1978: 41-48.
    [313] Al-Shoshan A I. Evolutionary spectrum and bispectrum estimation of a nonstationary process[J]. JKAU: Eng. Sci., 2006, 17(1): 33-50.
    [314] Priestley M B. Eolutionary spectra and non-stationary processes[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1965, 27(2): 204-237.
    [315] Quek S T, Teo Y P, Balendra T. Non-stationary structural response with evolutionary spectra using seismological input model[J]. Earthquake Engineering & Structural Dynamics, 1990,19(2): 275-288.
    [316] Gupta I D, Trifunac M D. Defining equivalent stationary PSDF to account for nonstationarity of earthquake ground motion[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(2): 89-99.
    [317] Liang J W, Chaudhuri S R, Shinozuka M. Simulation of nonstationary stochastic processes by spectral representation[C]. J. Engrg. Mech. ASCE, 2007, 133(6): 616-627.
    [318] Zembaty Z. A note on non-stationary stochastic response and strong motion duration[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(8):1189-1200.
    [319] Spanos P D, Tezcan J, Tratskas P. Stochastic processes evolutionary spectrum estimation via harmonic wavelets[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12-16): 1367-1383.
    [320] Spanos P D, Failla G, Evolutionary spectra estimation using wavelets[J]. J Eng Mech ASCE, 2004, 130(8): 952-960.
    [321]曹晖.小波理论在结构抗震随机振动分析中的应用研究[D].重庆:重庆建筑大学, 1999.
    [322] Papageorgiou A S. Analysis and simulation of earthquake strong ground motion for earthquake engineering applications. Report No. MCEER-04-SP01[R]. Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, Buffalo, NY, 2004.
    [323]徐国栋,周锡元,阎维明,等.考虑超随机特性的人工地震动合成[J].地震工程与工程振动, 2005, 25(4): 11-17.
    [324]李英民,董银峰,夏洪流,等.考虑频率非平稳特性的地震波ARMA模型仿真方法[J].重庆建筑大学学报, 2000, 22(S1): 123-127.
    [325]董银峰. ARMA模型在地震动仿真和谱估计中的应用[D].硕士学位论文.重庆:重庆建筑大学. 2000.
    [326] Dong Y F, Ji S Y, Xiao M K. Simulation of ground motions using time varying vector ARMA model[A]. In: Proc. of the 13th World Conference on Earthquake Engineering[C], 2004, PN1469.
    [327] Lin C J, Ghaboussi J. Generating multiple spectrum compatible accelerograms using stochastic neural networks[J]. Earthquake Engng. Struct. Dyn., 2001, 30:1021-1042.
    [328] Zonta D. Structural damage detection and localization by using vibrational measurements[D]. Bologna: the University of Bologna, Italy, 2000.
    [329] Parloo E, Guillaume P, Overmeire M V. Damage assessment using mode shape sensitivities[J]. Mechanical Systems and Signal Processing, 2003, 17(3): 495-518.
    [330] Koyluoglu H U, Nielsen S R K, Cakmak A S, et al. Prediction of global and localized damageand future reliability for RC structures subject to earthquakes[J]. Earthquake Engng. Struct. Dyn., 1997, 26: 463-475.
    [331] Yang Q W, Liu J K. A coupled method for structural damage identification[J]. Jour. of Sound and Vibration, 2006, 296: 401-405.
    [332] Mevel L, Basseville M. Goursat M. Stochastic subspace-based structural identification and damage detection--application to the steel-quake benchmark[J]. Mechanical Systems and Signal Processing, 2003, 17(1): 91-101.
    [333] Ndambi J M, Vantomme J, Harri K. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives[J]. Engineering Structures, 2002, 24: 501-515.
    [334] Maia N M M, Silva J M M, Almas E A M. Damage detection in structures: from mode shape to frequency response function methods[J]. Mechanical Systems and Signal Processing, 2003, 17(3): 489-498.
    [335] Maeck J, Wahab M A, Peeters B. Damage identification in reinforced concrete structures by dynamic stiffness determination[J]. Engineering Structures, 2000, 22: 1339-1349.
    [336] Salawu O S. Detection of structural damage through changes in frequency: a review[J]. Engineering Structures, 1997, 19(9): 718-723.
    [337] Banks T B, Inman D J, Leo D J, et al. An experimentally validated damage detection theory in smart structures[J]. Jour. of Sound and Vibration, 1996, 191(5): 859-880.
    [338] Kim J T, Stubbs N. Improved damage identification method based on modal information[J]. Jour. of Sound and Vibration, 2002, 252(2): 223-238.
    [339] Yam L H, Yan Y J, Jiang J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification[J]. Composite Structures, 2003, 60: 403-412.
    [340] Kaiser J F. On a simple algorithm to calculate the 'energy' of a signal[C]. 1990 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-90), 1990, 1(3-6): 381-384.
    [341] Maragos P, Kaiser J F, Quatieri T F. On amplitude and frequency demodulation using energy operators[J]. IEEE Transactions on Signal Processing, 1993, 41(4): 1532-1550.
    [342] Maragos P, Bovik A C. Image demodulation using multidimensional energy separation[J]. J. Opt. Soc. Amer. A, 1995, 12(9): 1867-1876.
    [343] Maragos P, Potamianos A. Higher order differential energy operators[J]. IEEE Signal Processing Letters, 1995, 2(8): 152-154.
    [344] Maragos P, Kaiser J F, Quatieri T F. Energy separation in signal modulations with application to speech analysis[J]. IEEE Transactions on Signal Processing, 1993, 41(10): 3024-3051.
    [345] Mitra S K, Lightstone M, Strobel N. Two dimensional Teager operators and their imageprocessing applications[C]. Proc. IEEE Workshop Nonlinear Signal Image Processing, 1995, Neos Marmaris, Greece, II: 959-962.
    [346] Cheikh F A, Hamila R, Gabbouj M, et al. Impulse noise removal in highly corrupted color images[C]. Proceedings of International Conference on Image Processing, 1996, Lausanne, Switzerland, 1: 997-1000.
    [347] Mitra S K, Yu T H, Ali R. Efficient detail-preserving method of impulse noise removal from highly corrupted images[J]. Image Video Process. SPIE, 1994, 2182: 43-48.
    [348] Arias A. A measure of earthquake intensity[A]. In: Hansen R J, ed. Seismic design for nuclear power plants. Cambridge MA: MIT Press, 1970, 438-483.
    [349] Travasarou T, Bray J D, Abrahamson N A. Empirical attenuation relationship for Arias intensity[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(7): 1133-1155.
    [350] Stafford P J, Berrill J B, Pettinga J R. New predictive equations for Arias intensity from crustal earthquakes in New Zealand[J]. Journal of Seismology, 2009, 13(1): 31-52.
    [351] Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion[J]. Bulletin of the Seismological Society of America, 1975, 65(3): 581-626.
    [352] Menun C, Kiureghian A D. Envelopes for seismic response vectors, UCB/PEER 1999/08[R]. California: Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1999.
    [353] Wiener N. Generalized harmonic analysis[J]. Acta Math., 1930, 55: 117-258.
    [354] Khintchine A. Korrelations theorie der stationaren stochastischen prozesse[J]. Math Ann., 1934, 109: 604-615.
    [355] Cohen L. Time-frequency distributions—a review[C]. Proc. of the IEEE, 1989, 77(7): 941-981.
    [356] Biot M A. Vibrations of buildings during earthquake[D]. PhD Thesis, Pasadena, California: California Institute of Technology, 1932.
    [357] Trifunac M D. Biot response spectrum[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6-7): 491-500.
    [358] Trifunac M D. Early history of the response spectrum method[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(9): 676-685.
    [359] Trifunac M D. 70th anniversary of Biot spectrum[C], 23rd Annual ISET Lecture, Indian Society of Earthquake Technology, 2003, 40(1): 19-50.
    [360] Marple S L. Computing the discrete-time "analytic" signal via FFT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2600-2603.
    [361] Mark W D. Spectral analysis of the convolution and filtering of non-stationary stochastic processes[J]. Journal of Sound and Vibration, 1970, 11(1): 19-63.
    [362] Kodera K, Villedary C de, Gendrin R. A new method for the numerical analysis of non-stationary signals[J]. Physics of The Earth and Planetary Interiors, 1976, 12(2-3): 142-150.
    [363]邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报, 2000, 28(9): 78-84.
    [364] Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proc. Roy. Soc. London, Ser. A, 2004, 460: 1597-1611.
    [365]黄大吉,赵进平,苏纪兰.希尔伯特——黄变换的端点延拓[J].海洋学报. 2003, 25(1): 1-11.
    [366] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Sig. Proc. Lett., 2004, 11(2): 112-114.
    [367] Gai Q, Ma X J, Zhang H Y, et al. Processing time-varying signals by a new method[C]. Proceedings of CIE International Conference on Radar, 2001, 1011-1014.
    [368] Smith J S. The local mean decomposition and its application to EEG perception data[J]. J. R. Soc. Interface, 2005, 2(5): 443-454.
    [369] Frei M G, Osorio I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proc. Roy. Soc. London, Ser. A, 2007, 463: 321-342.
    [370] Kopsinis Y, McLaughlin S. Improved EMD using doubly-iterative sifting and high order spline interpolation[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008: 1-8.
    [371] Kopsinis Y, McLaughlin S. Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 1-13.
    [372] Azzaoui N, Snoussi H, Duchene J. An enhanced empirical modal decomposition without sifting[J]. IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, 796-799.
    [373] Deering R, Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 4: 485-488.
    [374] Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing, 2006, 20(3): 718-734.
    [375] Peng Z K, Tse P W, Chua F L. An improved Hilbert–Huang transform and its application in vibration signal analysis[J]. Journal of Sound and Vibration, 2005, 286(1-2): 187-205.
    [376] Li L, Ji H B. Signal feature extraction based on an improved EMD method[J]. Measurement, 2009, 42(5): 796-803.
    [377]刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用, 2004, 40(16): 84-86, 100.
    [378]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展, 2003, 13(10): 1054-1060.
    [379]邓拥军,王伟,钱成春,等. EMD方法及Hilbert变换中边界问题的处理[J].科学通报, 2001, 46(3): 251-257.
    [380] Wu F J, Qu L S. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery[J]. Journal of Sound and Vibration, 2008, 314(3-5): 586-602.
    [381] Cheng J S, Yu D J, Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1197-1211.
    [382] Peel MC, McMahon T A, Pegram G G S. Assessing the performance of rational spline-based empirical mode decomposition using a global annual precipitation dataset[J]. Proc. of the Royal Society of London, Ser. A, 2009, 465(2106): 1919-1937.
    [383]钟佑明,金涛,秦树人.希尔伯特-黄变换中的一种新包络线算法[J].数据采集与处理, 2005, 20(1): 13-17.
    [384] Akima H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM (JACM), 1970, 17(4): 589-602.
    [385] Kruger C J C. Constrained cubic spline interpolation. http://www.korf.co.uk/spline.pdf.
    [386] Tanaka T, Mandic D P. Complex empirical mode decomposition[J]. IEEE Signal Processing Letters, 2007, 14(2): 101-104.
    [387] Rilling G, Flandrin P, Gon?alves P, et al. Bivariate empirical mode decomposition. IEEE Signal Processing Letters, 2007, 14(12): 936-939.
    [388] Donghae K, White P R. Nonstationary parametric system identification using higher-order statistics[C]. Proc. of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1998, 457-460.
    [389] Giannakis G B. On the identifiability of non-Gaussian ARMA models using cumulants[C]. IEEE Trans. on Automatic Control, 1990, 35(1): 18-26.
    [390] Swami A, Mendel J M. Computation of cumulants of ARMA processes[C]. Proc. of IEEE International Conference on ICASSP89, 1989, 4: 2318-2321.
    [391] Arun, K S. Principal components algorithms for ARMA spectrum estimation[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37(4): 566-571.
    [392] Priestley M B. Spectral Analysis and Time Series. London: Academic Press, 1981.
    [393] Chow T W S, Fei G, Cho S Y. Higher order cumulants-based least squares for nonminimum-phase systems identification[J]. IEEE Trans. on Industrial Electronics, 1997,44(5): 707-716.
    [394] Adnan A S, Alshamali A. Fitting ARMA models to linear non-Gaussian processes using higher order statistics[J]. Jour. of Signal Processing, 2002, 82: 1789-1793.
    [395] Aboutajdine D, Adib A, Meziane A. Fast adaptive algorithms for AR parameters estimation using higher order statistics[J]. IEEE Trans. on Signal Processing, 1996, 44(8): 1998-2009.
    [396] Swami A, Mendel J M. Computation of cumulants of ARMA processes[C]. Proc. of IEEE ( ICASSP 89), 1989, 2318-2321.
    [397] Adnan A. A new coefficient estimation method for autoregressive systems using cumulants[J]. Int. Jour. Circ. Theor. Appl., 2001, 29: 511-516.
    [398] Likothanassis S D, Demiris E N, Karelis D G. A real-time ARMA model structure identification method[C]. Proc. of the 13th IEEE International Conference on Digital Signal Processing, 1997, 2: 915-918.
    [399] Neumaier A, Wien U, Schneider, T. Estimation of parameters and eigenmodes of multivariate autoregressive models[J]. ACM Trans. on Mathematical Software, 2001, 27(1): 27-57.
    [400] Demiris E N, Likothanassis S D, Konstadopoulou B G, et al. Real time nonlinear ARMA model structure identification[C]. Proc. of the 14th IEEE International Conference on Digital Signal Processing, 2002, 2: 869-872.
    [401]张洪钺,黄劲东,范文雷.全最小二乘法及其在参数估计中的应用[J]. 1995, 21(1): 40-47.
    [402]涂奉生,齐寅峰.多变量线性控制系统分析与设计:状态空间与多项式矩阵方法[M].北京:化学工业出版社, 1989.
    [403]韩光文.辨识与参数估计[M].武汉:华中工学院出版社, 1980.
    [404] Chik Z. Performance of order selection criteria for short time series[J]. Journal of Applied Science, 2002, 2(7): 783-788.
    [405] Broersen P M T. Finite sample criteria for autoregressive order selection[J]. IEEE Trans. on Signal Processing, 2000, 48(12): 3550-3558.
    [406] Broersen P M T. Automatic spectral analysis with time series models[J]. IEEE Trans. on Instrumentation and Measurement, 2002, 51(2): 211-216.
    [407]康宜华,何岭松,杨叔子. ARMA谱的理论频率分辨力[J].华中理工大学学报, 1995, 23(6): 101-104.
    [408]大崎顺彦.地震动的谱分析入门[M].吕敏申,谢礼立,译.北京:地震出版社, 1980.
    [409] Hasada Y, Kumagai H, Kumazawa M. Autoregressive modeling of transfer functions in frequency domain to determine complex travel times[J]. Earth Planets Space, 2001, 53: 3-11.
    [410] Rolain Y, Pintelon R, Xu K Q, et al. Best Conditioned Parametric Identification of Transfer Function Models in the Frequency Domain[J]. IEEE Transactions on Automatic Control, 1995,40(11): 1954-1960.
    [411] Banos A, Gomez F. Parametric identification of transfer functions from frequency response data[J]. Computing & Control Engineering Journal, 1995, 6(3): 137-144.
    [412] Pintelon R, Guillaume P, Rolain Y, et al. Parametric identification of transfer functions in the frequency domain--a survey[J]. IEEE Transactions on Automatic Control, 1994, 39(11): 2245-2260.
    [413] Poncet A, Poncet J L, Moschytz G S. On the input-output approximation of nonlinear systems[C]. Proc. of IEEE International Symposium on ISCAS95, 1995, 2: 1500-1503.
    [414] DeGroat R D, Hunt L R, Linebarger D A. Approximating nonlinear systems by nonlinear ARMA and AR models[C]. Proc. of IEEE International Conference on ICASSP92, 5: 465-468.
    [415] Maiwald D, Dalle M J W, Bohme J F. Model identification and validation of nonstationary seismic signals[C]. Proc. of IEEE Signal Processing Workshop on Higher-Order Statistics, 1993: 319-322.
    [416] Jayakumar P. Modeling and identification in structural dynamics, EERL87-01[R]. California: Earthquake Engineering Research Laboratory, California Institute of Technology, 1987.
    [417] Peng C Y. Generalized modal identification of linear and nonlinear dynamic systems, EERL87-05[R]. California: Earthquake Engineering Research Laboratory, California Institute of Technology, 1987.
    [418] Yamada K. Real-time prediction of near-future seismic excitation adapting AR model to preceding information[J]. Earthquake Engng. Struct. Dyn., 1999, 28: 1587-1599.
    [419] Lindoff B, Holst J. Convergence analysis of the RLS identification algorithm with exponential forgetting in stationary ARX-structures[J]. Int. Jour. Adapt. Control Signal Process, 1999, 13: 1-22.
    [420] Pridham B A, Wilson J C. Identification of base-excited structures using output-only parameter estimation[J]. Earthquake Engng. Struct. Dyn., 2004, 33: 133-155.
    [421] Huang C S, Lin H L. Modal identification of structures from ambient vibration, free vibration, and seismic response data via a subspace approach[J]. Earthquake Engng. Struct. Dyn., 2001, 30:1857-1878.
    [422] Yang J N, Lin S L. On-line identification of non-linear hysteretic structures using an adaptive tracking technique[J]. International Jour. of Non-Linear Mechanics, 2004, 39: 1481-1491.
    [423] Tamura Y H. An approach to the nonstationary process analysis[J]. Annals of the Institute of Statistical Mathematics, 1987, 39(1): 227-241.
    [424] Gunnarsson S, Ljung L. Frequency domain tracking characteristics of adaptive algorithms[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37(7): 1072-1089.
    [425] Guo L, Ljung L. Performance analysis of general tracking algorithms[J]. IEEE Trans Automatic Control, 1995, 40(8): 1388-1402.
    [426] Gustaffasson F, Gunnarsson S, Ljung L. Shaping frequency-dependent time resolution when estimation spectral properties with parametric methods[J]. IEEE Trans. on Signal Processing, 1997, 45(4): 160-163.
    [427] Poulimenos A G, Fassois S D. Parametric time-domain methods for non-stationary random vibration modelling and analysis: A critical survey and comparison[J]. Mech. Syst. Signal Process,2006, 20: 763-816.
    [428]公茂盛,谢礼立. HHT方法在地震工程中的应用之初步探讨[J].世界地震工程, 2003, 19(3): 39-43.
    [429]陈隽,徐幼麟. HHT方法在结构模态参数识别中的应用[J].振动工程学报, 2003, 16(2): 383-388.
    [430]石春香,罗奇峰.时程信号的Hilbert-Huang变换与小波分析[J].地震学报, 2003, 25(4): 398-405.
    [431]罗奇峰,石春香. Hilbert-Huang变换理论及其计算中的问题[J].同济大学学报, 2003, 31(6): 637-640.
    [432]胡聿贤,张郁山,梁建文.应用HHT方法从竖向地震动记录识别场地液化的物理过程[J].地震工程与工程振动, 2004, 24(3): 1-11.
    [433]欧进萍,何林,肖仪清.基于ARMA模型和自由振动提取技术的海洋平台结构参数识别[J].应用数学和力学, 2003, 24(4): 398-404.
    [434]程军圣,于德介,杨宇.基于EMD和奇异值分解技术的滚动轴承故障诊断方法[J]. 2004, 19(2): 204-209.
    [435]杨宇,于德介,程军圣.基于Hilbert-Huang变换的特征能量法及其在滚动轴承故障诊断中的应用[J].计算机工程与应用, 2004, 40(10): 6-8, 33.
    [436] Andersen P. Identification of civil engineering structures using ARMA models[D]. Aalborg: Aalborg University, 1997.
    [437] Andersen P, Brincker R, Kirkegaard P. Theory of covariance equivalent ARMAV models of civil engineering structures[C]. Proc. IMAC 14. Michigan, USA, 1996, 518-524.
    [438] Brincker R, Zhang L M, Andersen P. Output-only modal analysis by frequency domain decomposition[C]. Proc. ISMA 25, 2000, 2.
    [439] Pandit S M. Modal and spectrum analysis: data dependent systems in state space[M]. New York: John Wiley and Sons Inc, 1991.
    [440]陈学忠,尹祥础.非线性科学在地震研究中的一些应用[J].地球物理学进展, 1994, 9(1): 100-110.
    [441]何平,赵子都.突变理论及其应用[M].大连:大连理工大学出版社, 1989.
    [442]闻邦椿,李以农,徐培民,等.工程非线性振动[M].北京:科学出版社, 2007.
    [443] Basu B, Gupta V K. Wavelet-based stochastic seismic response of a Duffing oscillator[J]. Journal of Sound and Vibration, 2001, 245(2): 251-260.
    [444] Saadat S, Buckner G D, Furukawa T, et al. An intelligent parameter varying (IPV) approach for non-linear system identification of base excited structures[J]. International Jour. of Non-Linear Mechanics, 2004, 39: 993-1004.
    [445] Jangid R S. Response of SDOF system to non-stationary earthquake excitation[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(15): 1417-1428.
    [446] Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics [J]. Mechanical Systems and Signal Processing, 2006, 20: 505-592.
    [447] Smyth A W, Masri S F, Kosmatopoulos E B, et al. Development of adaptive modeling techniques for nonlinear hysteretic systems[J]. Inter. Jour. Of Non-Linear Mechanics, 2002, 37(8): 1435-1451.
    [448] Ikhouane F, Rodellar J, Hurtado J E. Analytical characterization of hysteresis loops described by the Bouc-Wen model[J]. Mechanics of Advanced Materials and Structures, 2006, 13(6): 463-472.
    [449] Li H G, Meng G. Nonlinear dynamics of a SDOF oscillator with Bouc-Wen hysteresis[J]. Chaos, Solitons & Fractals, 2007, 34(2): 337-343.
    [450] http://www.iem.net.cn/
    [451] http://nsmp.wr.usgs.gov/data.html
    [452] http://www.cosmos-eq.org/index.html
    [453] http://peer.berkeley.edu/smcat/index.html
    [454] http://www.cisn.org/
    [455] http://www.isesd.cv.ic.ac.uk/
    [456] http://www.k-net.bosai.go.jp/
    [457] http://www.geonet.org.nz/
    [458] http://www.cwb.gov.tw/
    [459]金星,廖振鹏.地震动强度包线函数的理论研究[J].地震学报, 1994, 16(4): 519-525.
    [460] Stafford P J, Sgobba S, Marano G C. An energy-based envelope function for the stochastic simulation of earthquake accelerograms[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(7): 1123-1133.
    [461] Abrahamson N, Silva W. Summary of the Abrahamson & Silva NGA ground-motionrelations[J]. Earthquake Spectra, 2008, 24(1): 67-97.
    [462] Campbell K W, Bozorgnia Y. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s[J].Earthquake Spectra, 2008, 24(1): 139-171.
    [463] Boore D M, Atkinson G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s[J]. Earthquake Spectra, 2008, 24(1): 99-138.
    [464] Chiou B S J, Youngs R R. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2008, 24(1): 173-215.
    [465] Lin C J, Ghaboussi J. Generating multiple spectrum compatible accelerograms using stochastic neural networks[J]. Earthquake Engng Struct. Dyn., 2001, 30:1021-1042.
    [466]张景绘.动力学系统建模[M].北京:国防工业出版社, 2001.
    [467]边肇祺,张学工.模式识别[M].第二版.北京:清华大学出版社, 2002.
    [468]傅京孙.模式识别其应用[M].北京:北京大学出版社, 1990.
    [469]蔡元龙.模式识别[M].西安:西北电讯工程学院出版社, 1986.
    [470] Fassois S D. MIMO-LMS-ARMAX identification of vibrating structures-part 1: the method[J]. Mechanical Systems and Signal Processing, 2001, 15(4): 723-735.
    [471] Xia Y, Hao H. Statistical damage identification of structures with frequency changes[J]. Jour. of Sound and Vibration, 2003, 263: 853-870.
    [472] Dong Y F, Li Y M. Application of time series analysis on performance evaluation of seismic structures[C]. Proc. of the Ninth International Symposium on Structural Engineering for Young Experts, 2006, 1: 820-826.
    [473] Trifunac M D, Ivanovic S S, Todorovska M I. Apparent periods of a building I: Fourier analysis[J]. Journal of Structural Engineering, ASCE, 2001, 127(5): 517-526.
    [474] Trifunac M D, Ivanovic S S, Todorovska M I. Apparent periods of a building II: time-frequency analysis[J]. Journal of Structural Engineering, ASCE, 2001, 127(5): 527-537.
    [475] Ivanovic S S, Trifunac M D, Novikova M I, et al. Instrumented 7-storey reinforced concrete building in Van Nuys, California: ambient vibration surveys following the damage from the 1994 Northridge earthquake, CE 99-03[R]. Los Angeles, California: Dept. of Civil Engineering, Univ. of Southern California, 1999.
    [476] Trifunac M D, Ivanovic S S, Todorovska M I. Experimental evidence for flexibility of a building foundation supported by concrete friction piles[J]. Soil Dynamics & Earthquake Engrneering, 1999, 18(3): 169-187.
    [477] Ivanovic S S, Trifunac M D. Ambient Vibration Survey of Full Scale Structures Using PersonalComputers, CE95-05[R]. Los Angeles, California: Dept. of Civil Engineering, Univ. of Southern California, 1995.
    [478] Trifunac M D, Hao T Y, Todorovska M I. Energy of earthquake response as a design tool[C]. Proc. 13th Mexican National Conf. on Earthquake Engineering, Guadalajara, Mexico, 2001.
    [479] http://civil.eng.buffalo.edu/idarc2d50/
    [480] Clinton J F, Bradford S C, Heaton T H, et al. The observed wander of the natural frequencies in a structure[J]. Bulletin of the Seismological Society of America, 2006, 96(1): 237-257.
    [481] Cohen L. Time-frequency analysis[M]. Upper Saddle River, N.J: PTR Prentice Hall, 1995.
    [482] Daubechies I. Ten lectures on wavelets, CBMS-NSF Lecture Notes No. 61[R]. Philadelphia SIAM, 1992.
    [483] Mallat S. A wavelet tour of signal processing[M]. 2nd ed. New York: Academic Press, 1999.
    [484] Akan A, Chaparro L F. Multi-window Gabor expansion for evolutionary spectral analysis[J]. Signal Processing, 1997, 63: 249-262.
    [485] Larsen Y, Hanssen A. Wavelet-polyspectra: analysis of non-stationary and non-Gaussian/ non-linear signals[C]. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, 2000: 539-543.
    [486] Gelman L, Petrunin I. Time-frequency higher-order spectra with adjustment to the instantaneous frequency variation[J]. International Journal of Adaptive Control and Signal Processing, 2008, 24(3): 178-187.
    [487] Unsal-Artan R B, Akan A, Chaparro L F. Higher order evolutionary spectral analysis[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, 6: 633-636.
    [488] Gelman L, Lape?a E, Thompson C. Advanced Higher Order Spectra for Classification of Damage in Transient Conditions[J]. Journal of Intelligent Material Systems and Structures 2009, 20: 1343-1349.
    [489]金星,廖振鹏.地面转动分量的工程预测[J].地震工程与工程振动, 1992, 11(4): 10-18.
    [490] Trifunac M D, Todorovska M I. A note on the useable dynamic range of accelerographs recording translation[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4):275-286.
    [491] Castellani A, Boffi G. Rotational components of the surface ground motion during an earthquake[J]. Earthquake Engineering & Structural Dynamics, 2006, 14(5): 751-767.
    [492] Lee W H K, Huang B S, Langston C A, et al. Review: Progress in Rotational Ground-Motion Observations from Explosions and Local Earthquakes in Taiwan[J]. Bulletin of the Seismological Society of America, 2009, 99: 958-967.
    [493] Liu C C, Huang B S, Lee W H K, et al. Observing Rotational and Translational GroundMotions at the HGSD Station in Taiwan from 2007 to 2008[J]. Bulletin of the Seismological Society of America, 2009, 99: 1228-1236.
    [494]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报, 2007, 29(1): 102-111.
    [495]谭平,谈忠坤,周福霖.近场地震动特性及其弹性与塑性谱的研究[J].华南地震, 2008, 28(2): 1-9.
    [496]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报,2006, 28(6): 629-637.
    [497]翟长海,李爽,谢礼立,等.近场脉冲型地震动位移比谱特征研究[J].土木工程学报, 2008, 41(10): 1-5.
    [498] Mavroeidis G P, Papageorgiou A S. A Mathematical Representation of Near-Fault Ground Motions[J]. Bulletin of the Seismological Society of America, 2003, 93: 1099-1131.
    [499] Somerville P G. Development of an improved representation of near fault ground motions[C]. Proc. of the SMIP98 seminar on utilization of strong ground motion data, 1998, 1-20.
    [500]廖振鹏.工程波动理论导论[M].第二版.北京:科学出版社, 2002.
    [501]廖振鹏,刘晶波.波动的有限元模拟[J].地震工程与工程振动, 1989, 9(4): 1-13.
    [502]王阜,廖振鹏.多层剪切型结构水平地震反应的行波分析[J].地震学报, 1986, 8(4): 421-427.
    [503]廖振鹏,刘晶波.波动有限元模拟的基本问题[J].中国科学,B辑,1992: 874-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700