有横缝高拱坝的非线性地震响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展,小湾、溪洛渡等一批300米级世界超高拱坝即将在我国西部地区进行建设。这些大坝所在地区山高谷深,岸坡陡峻,河道狭窄,地处高地震烈度区,高坝的抗震性能关系到下游广大地区工农业生产和人民生命财产的安全,考虑地震因素成为大坝设计中的控制工况。拱坝是分段浇筑的、各坝段之间沿拱向设有均匀排列的伸缩横缝。由于地震作用时的动拉应力将抵消并超过静载作用下的压应力,导致横缝面沿法向张开,加上地震的交变作用,横缝可能会呈现反复的“渐开渐合”现象。横缝张合效应将削弱大坝的整体刚度、延长其振动周期、引起显著的应力重分配。因而横缝的非线性特性是高拱坝地震反应分析中至关重要的因素,在动力分析模型中合理计及这类非线性特性具有特别重要的学术意义和工程意义。
     以高278m的溪落渡拱坝为工程背景,进行了考虑横缝张开、行波效应等复杂因素的非线性动力分析。基于流固耦合理论,推导了可压缩水体的耦合有限元方程。为适应有横缝高拱坝非线性分析的复杂性,采用不可压缩水体和无质量地基假定进行有限元处理,以水体附加质量和地基附加刚度近似代替水体和地基的影响,通过静凝聚提高计算效率。论述了三维Fenves缝单元模型及缝单元的本构关系,可用以模拟横缝的张开、闭合和滑移,并可考虑缝面的初始压力和抗拉强度。为有效控制误差的传递,提高计算精度,对Wilson-θ法进行改进并分析了改进Wilson-θ法的稳定性。鉴于横缝非线性数值分析需要在每一时间步内迭代多次,推导了Newmark常加速度增量平衡方程及其等效迭代格式。对行波理论进行了阐述,用单向行波模式分析了整体坝的动力反应。对比了横河向和顺河向行波输入时坝体位移、应力的反应和分
    
     四川大学工学博士学位论文
    布异同。研究了溪落渡分缝拱坝的地震反应。分析了整体坝和分缝坝地震反
    应的异同,得出分缝坝较之整体坝在加速度、应力的大小与分布上的诸多不
    同点:分析了水深对有缝拱坝地震响应的影响,得出分缝坝在不同水深下缝
    的张开深度、宽度和频次的一系列结论。分析了分缝坝行波地震输入的地震
    响应,比较了常规均匀输入和行波输入,行波不同输入方向对应力的大小和
    分布,缝的张合深度和宽度、缝的张合时序等诸多方面的表现特性。通过以
    上分析,得到了如下的一些主要结论:
    1.计算结果分析表明:在高拱坝流固耦合动力分析中,水体不可压缩和无
     质量地基假定可显著地消减方程复杂度和计算工作量,但带来的数值误
     差较小。
    2.改进了wilson习法,在国内外首次分析了改进了wilson习法的数值稳定性,
     证明了改进ilsonE法与wilson习法具有相同的稳定性,用改进wilson习
     法求解线性整体坝是可行的。提出了增量形式Newmark法的等效迭代格
     式,该等效格式求解分缝拱坝非线性问题简便可行。
    3.进行了顺河向常规输入情况下整体坝和分缝坝两种计算模型的抗震动力
     特性对比研究。结果表明:分缝坝由于缝的开合,其横河向和顺河向的
     加速度要大于整体坝,同时,分缝坝本身的横河向加速度有可能大于顺
     河向加速度。在靠近基础的部位,两种计算模型的动拱应力改变不大,
     但动梁应力变化明显。分缝坝较之整体坝,上游坝面明显表现出总拱应
     力下降,总梁应力增加的趋势;而对下游坝面,其总压应力梁向增加,
     拱向减小,而总拉应力的梁向和拱向则增有减。整体坝的控制拉应力出
     现在下游顶拱的梁向,控制压应力出现在上游顶拱的拱向;分缝坝的控
     制拉应力出现在上游坝底的梁向,控制压应力却出现在下游坝底的梁向。
    4.研究了不同水位有缝坝在常规地震输入情况下横缝的开合规律和应力反
     应特点。无论运行低水位还是正常蓄水位,横缝张开最深最宽的是上游
     坝面中缝,张开宽度从中缝到边缝依次减小;正常蓄水位时缝的张开宽
     度明显小于运行低水位时缝的张开宽度。从控制裂缝张开深度和宽度的
     角度而言,低水位是控制工况;而从坝体应力的角度考虑,高水位是控
     制工况,
    5.深入研究了整体坝在常规输入和行波输入两种地震输人方式下的动力反
    
     四川大学工学博士学位论文
     应。行波横河向输入时顺河向位移反应在拱冠梁处有所增大,其它点有
     所削弱:行波J’顷河向输入时非拱冠梁节点的横河向位移反应有所削弱。
     常规输入时,顺河向输入较横河向输入的应力反应大,说明常规输入时
     的控制方向是顺河向。但在行波输入时,行波横河向输入的应力反应比
     行波顺河向输入时大,说明行波输入的控制方向是横河向。
     6.在国内外首次进行了分缝坝行波输入的抗震分析,研编了计算程序,深
     入研究了常规输入与行波输入两种地震输入方式对有缝高拱坝地震响应
     的影响。行波顺河向输入时缝的张汗宽度普遍大于常规顺河向输入时的
     张开?
With the development of economy, Many arch dams such as Xiao wan, Xi
    Luodu and so on whose height are more than 300m are going to be constructed in
    westem regions of China. The arch dams locate at such areas which have high
    moUnain, deep valley, steep slope, narrow riverway and high seismic intensity.
    The aseismic capabilities of high arch dams have relationship with lives and
    properties of people and productions of industry and agriculture, so the eanhquake
    becomes the main factor of arch darns design. Arch dams are built by parts, and
    each of parts has vertical contraction joints spaced regular intervals. The dynamic
    tensile stresses of earthquake may balance or exceed to the precompression
    stresses due to static watef, this may arouse opening of joints along the normal
    direction. If the altemate actions of earthquake join, the joints may behave gradual
    opening and closing. The effect of opening and closing of joints will weaken the
    integral stiffness of arch dams, prolong their vibration periods and remarkably
    readjusting of stresses. In general, the nonlinear character of joints is the
    significant factor of the analysis of high arch dams seismic response. Reasonably
    taking into account nonlinear character of dynarnic model has very important
    significance of theory and engineering.
    Nonlinear dynamic analysis of high arch dams is carried out considering the
    opening of joints and the effect of traveling wave with engineering background of
    Xi Luodu arch dam whose height is 278 meteL Based on the theory of interaction
    of fluid-solid, the coupled FEM equation considering compressible water is
    
    
    deduced. In order to reduce the equation complexity and adapt to complicaied
    nonIinear ana1ysis of high arch dams with joints, finite element treatments are
    used with incompressibIe water and massless foundation. The added mass of
    water and added stiffness of foundation are respectively used to substitute the
    influence of water and fOundations. The efficiency in the computations is
    improved by means of static condensation. Fenves' 3-D joint element modeI and
    its constitutive relations are demonstrated and used to simulate the opening,
    closing and sliding of joints,and the initial pressure and tensile strength at the
    interface. In order to control the propagation of errors and enhance the accuracy of
    numerical solution, the wilson- 0 method is modified and the numerical stability
    of modified wilson- e method is analyzed. Because of need of much iteration in
    each time step while carrying on nonlinear numerical anaIysis, the incremefltal
    equilibrium formulation and its equivalent iterative equation of the constant
    average acceleration Newnark method are deduced. The theory of traveling wave
    input is discussed, and the dynatnic response of linear whole dams is analyzed by
    use of single-direction traveling wave model. The difference and commonness
    between cross-direction and longitude direction traveling wave that exists in the
    response and distribution of dam displacement and stress are obtained. The
    dynamic seismic response of Xi Luodu dam is studied. The difference and
    commonLness between dams with joints and without are analyzed. The magnitude
    and distribution of acceleration and stress of dams with joint and without possess
    many differences. The influence of different water depth on seismic response of
    dams with joint is studied, the conclusion in term of opening width, opening depth
    and opening frequency is attained. The characteristics about the magnitude and
    distribution of stress, the width and depth of joint and time sequence of joint
    opening are compared on condition of different traveling wave directions. The
    difference between general unifOrm wave input and traveling wave inPut is also
    compared. Though the above analysis, some conclusion are drew as followings f
    l. The computational results show that the assumptions of incompressible
    water and massless fOundation can considerably simplify the complexity of
    
    equation
引文
1.高拱坝抗震结构工程措施研究报告(九五攻关),中国水利水电科学研究院,1999.10
    2.杜修力,陈厚群,候顺载,拱坝系统二维非线性地震波动分析[J],地震工程与工程振动,Vol.16,No.3,1996
    3. J. P. F. O' Connor The modeling of cracks, potential crack surfaces and construction joints in arch dams by curved surface interface elements, Proc. of the 15th Int. Conference on Large dams, Lausanne, Switzerland, 1985:389-406
    4.李星召,拱坝与复杂基岸互耦时基于三维非线性有限元的破坏模式研究及可靠度分析,[硕士学位论文],南京,河海大学,1991
    5.美国垦务局著,拱坝设计翻译组译,拱坝设计,北京,水利电力出版社,1984
    6. M. J. Dowling, J. F. Hall, Nonlinear seismic analysis of arch dams[J], Journal of engineering mechanics, 1989(11):768-789
    7.B. Vladimir, Mathematical modeling of arch dams under high seismicity conditions,第八届欧洲地震工程会议论文集(里斯本),1986:6.8/33-6.8/40
    8.赵光恒,林绍忠,拱坝整体稳定分析[J],结构工程学报,1991 (1.2)
    9. R. W. Clough, E. L. Wilson, Dynamic analysis of large structural systems with local nonlinearities [J], Computer Methods in Applied Mechanics and Engineering, 1979, 17/18(Ⅰ):107-129
    10. A. Niwa, R. W. Clough, Nonlinear Seismic Response Of Arch Dams [J], Earthquake engineering and structural dynamical Vol, 5, 267-281(1982)
    11. D. Row, V. Schricker, Seismic analysis of structures with localized nonlinearities, Proc. 8th, WCEE, San Francisco, California, 1984
    12. J. S. H. Kuo, Joint-opening nonlinear mechanism: Interface Smeared Crack Model, E. E. R. C., Report, No. UCB/EERC 82/09, Univ. of Calif., Berkeley, calif., Aug. 1982
    13. J. F. Hall, M. J. Dowling, Response of jointed arches to earthquake excitation[J], Earthquake engineering and structural dynamics, Vol, 13, 779-798(1985)
    
    
    14. M. J. Dowling, Nonlinear seismic analysis of arch dams, Report No. EERL-87/03, Earthquake engineering research laboratory, California Institute of Technology, 1987
    15. M. J. Dowling, J. F. Hall, Nonlinear seismic analysis of arch dams[J], Journal of engineering mechanics, 1989 (11):768-789
    16. B. EL-AIDI, J. F. Hall, Non-linear earthquake response of concrete gravity dams partl: modelling[J], Earthquake Engng. Struct. Dyn., Vol, 18, 837-851(1989)
    17. J. F. Hall, Efficient nonlinear seismic analysis of arch dams-smeared crack arch dam analysis, California Institute of Technology, April, 1996
    18. J. F. Hall, Efficient non-linear seismic analysis of arch dams[J], Earthquake Engng. Struct. Dyn., 27, 1425-1444(1998)
    19. D. T. Lau, B. Noruziaan, A. G. Razaqpur, Modeling of contraction joint and shear sliding effects on earthquake response of arch dams[J], Earthquake Engng. Struct. Dyn., Vol, 27, 1013-1027(1998)
    20. K. E. Ricketts, O. C. Zienkiewicz, Preformed cracks and their influence on behavior of concrete dams, Criteria and Assumptions for Numerical Analysis of Dams, D. N. Naylor et al., Swansea, U. K., Sept, 1975
    21. J. P. F. O' Connor, The modeling of cracks, potential crack surfaces and construction joints in arch dams by curved surface interface elements, Proc. of the 15th Int. Conference on Large dams, Lausanne, Switzerland, 1985:389-406
    22. R. E. Goodman, R. L. Taylor, and Brekke, t. L. (1968), Amodel for the mechanics of jointed rock[J], J. Soil Mech. and Found. Div., ASCE, 94(3)
    23.张忠义,高拱坝静动力分析方法研究及其应用,大连理工大学博士学位论文,1996
    24. G. L. Fenves, S. Mojtahedi, R. B. Reimer, Adap-88:A computer program for nonlinear earthquake analysis of concrete arch dams, Report No. UCB/EERC 89/12, Earthquake Engineering Research Center, University of California at Berkeley, November 1989
    25. T. Liubomir, J. Dimitar, Analytical Studies of nonlinear behavior of arch dams using shaking table test results of arch dam fragment. Proceedings of Ninth World Conference on Earthquake Engineering, Japan, Vol. VI, 1988
    
    
    26. P. Palumbo, V. Rebecchi, P. Bonetti, M. Meghella, Earthquake Response of an arch dam including the nonlinear effects of contraction joint opening, Fourth Bench-mark Workshop on Numerical analysis of dams, 1996
    27. J. B. Liu, D. Wang, L. Yao, A contact force model in the dynamic analysis of contactable cracks, ACTA Mechanica Solida Sinica, Vol. 6, No. 4,1993
    28.李南生,周晶,林皋,有横缝高拱坝的动力接触模型及其数值解[J],水利学报,1999 (12):17-22
    29.陈健云,结构-地基的动力相互作用及随机多点分析[D],大连,1997
    30.陈健云,林皋,小湾拱坝考虑横缝的非线性分析[J],土木工程学报,1999,32(1):66-70
    31. C. H. Zhang, F. Jin, O. A. Pekau, Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons[J],Earthquake Eng Struct Dyn, 1995, 24:1651-1666
    32.徐艳杰,张楚汉等,小湾拱坝模拟实际横缝间距的非线性地震反应分析[J],水利学报,2001 (4):68-74
    33.徐艳杰,横缝配筋的拱坝地震非线性模型与无限地基影响研究,清华大学博士学位论文,1999,4
    34. Zhang Chuhan, Xu Yanjie, Wang Guanglun and Jin Feng, Nonlinear seismic response of arch dams with contraction joint opening and joint reinforcements[J], Earthquake Engineering and Structural Dynamics, 29, 1547-1566, 2000
    35.杜成斌,赵光恒,带横缝拱坝的非线性地震响应[J],水利学报,1995(5):22-28
    36.杜成斌,马良筠,任青文,有缝高拱坝的非线性地震响应分析[J],河海大学学报,1999;27 (6):40-43
    37.赵光恒,杜成斌,分缝结构的非线性响应分析[J],工程力学,1994;11 (3):28-37
    38.赵光恒,杜成斌,分缝拱坝的地震响应分析[J],河海大学学报,1994:22 (5):1-8
    39.郭永刚,高拱坝结构抗震研究,中国水利水电科学研究院博士后研究工作报告,1999
    
    
    40.郭永刚等,高拱坝伸缩横缝的开合对拱座岩体稳定的影响研究[J],水利学报,2000 (12):38-42
    41.涂劲等,纵缝对重力坝地震反应影响的研究[J],水利学报,2000 (12):53-58
    42.黄文雄,许庆春,王德信,拱坝的非线性开裂有限元分析[J],河海大学学报,1994;22 (5):100-103
    43.刘晶波,刘书,杜修力,含非光滑可接触型界面结构动态反应分析方法,“九五”攻关项目中期评估论文,1998
    44.杜修力,高拱坝抗震研究,二十一世纪土木工程学科的发展趋势,科学出版社,1997
    45. D. N. Buragohain, V. L. Shah, Curved isoparametric interface surface element [J], J. of. struct. Div., ASCE, 1978, 104(ST1): 205-209
    46. J. Dimitar, T. Ljubomir, Shaking table tests of an arch dam fragment, 第八届欧洲地震工程会议论文集(里斯本),1986:7.6/73-7.6/78
    47. E. Aldstead, P. G. Bergan, Nonlinear time-dependent concrete frame analysis[J], J. of Struct. Div., ASCE, 1978,104(7): 1077-1092
    48. E. Y-T. Chen, W. C. Schnobrich, Models for the post-cracking behavior of plain concrete under shout term monotonic loading[J], Computers and Structures, Vol 13, 1981, 213-221
    49. T. Liubomir, J. Dimitar, Shaking Table Tests of an Arch Dam Fragment, Proc. of China-U. S. Workshop on Earthquake Behavior of Arch Dams, 1987, Beijing
    50.兰振凯,周鸿钧,有缝拱坝的试验研究分析[J],实验力学,1989,4 (2):161-167
    51.陈厚群等,有横缝拱坝的非线性动力模型试验和计算分析研究[J],地震工程与工程振动,1995;15 (4):10-25
    52.林皋,朱彤,林蓓,结构动力模型试验的相似技巧[J],大连理工大学学报,2000(1),1-8
    53.清华大学水利水电工程系,伸缩横缝和拱坝配筋的地震非线性模型与无限地基影响研究(九五攻关),1999:324
    54.大连理工大学抗震研究室,高拱坝抗震结构工程措施研究报告(九五攻关),1999.8:53-72
    55. H. M. Westergaard, Water pressures on dams during earthquakes[J], Transactions. ASCE. 1933, 98: 418-472
    
    
    56. R. W. Clough. Reservoir interaction effects on the dynamic response of arch dams. Proceedings of China-US Bilateral Workshop on Earthquake Engineering, 1982: 58-84
    57. S. H. Kuo, Fluid-Structure interaction: added mass computations for incompressible fluid, UCB/EERC-82/09, University of California, Berkeley, 1982
    58. R. Clough, Reservoir interaction effects on the dynamics response of arch dams, Proceedings of US-PRC bilateral workshop on earthquake engineering, Harbin, China, August, 1982
    59. A. K. Chopra, Earthquake response of gravity dams[J], Journal of Engineering Mechanics Division, ASCE, 96(EM4), 1970:443-454
    60. A. K. Chopra, Hydrodynamic effects in earthquake response of arch dams, Proceedings of China-US Workshop on Earthquake Behavior of Arch Dams, Beijing, China, 1987:110-129
    61. Ka-Lun Fok & A. K. Chopra, Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility[J], Earthquake Engineering and Structural Dynamics, 14, 1986: 155-184
    62. Ka-Lun Fok & A. K. Chopra, Frequency response functions of arch dams: hydrodynamic and foundation flexibility effects[J], Earthquake Engineering and Structural Dynamics, 14, 1986:769-795
    63. Ka-Lun Fok & A. K. Chopra, Hydrodynamic and foundation flexibility effects in earthquake response of arch dams[J], Journal of Structural Engineering, ASCE, 112, 1986: 1810-1828
    64. Ka-Lun Fok & A. K. Chopra, Water compressibility in earthquake response of arch dams[J], Journal of Structural Engineering, ASCE, 113, 1987:958-975
    65. Craig S. Porter & A. K. Chopra, Dynamic analysis of simple arch dams including hydrodynamic interaction[J], Earthquake Engineering and Structural Dynamics, 9, 1981:573-597
    66. Craig S. Porter & A. K. Chopra, Hydrodynamic effects in dynamic response of simple arch dams[J], Earthquake Engineering and Structural Dynamics, 10, 1982: 417-431
    
    
    67. L. G. Olson, K. J. Bathe, Analysis of fluid-structure interaction, A direct symmetric coupled formulation based on the fluid velocity potential, Comp. and struct., Vol. 21, pp. 21-32, 1985
    68. T. Hanchen; A. K. Chopra, Earthquake analysis of arch dams including dam-water-foundation rock interaction[J], Earthquake Engineering and Structural Dynamics, 24, 1995: 1453-1474
    69. T. Hanchen, A. K. Chopra, Dam-foundation rock interaction effects in frequency-response functions of arch dams[J], Earthquake Engineering and Structural Dynamics, 24, 1995: 1475-1489
    70. T. Hanchen, A. K. Chopra, Dam-foundation rock interaction effects in earthquake response of arch dams[J], Journal of Structural Engineering, ASCE, 122(5), 1996: 528-538
    71. J. F. Hall, A. K. Chopra, Hydrodynamic effects in the dynamic response of concrete gravity dams[J], Earthquake Engineering and Structural Dynamics, 10, 1982: 333-345
    72. J. F. Hall, A. K. Chopra, Dynamic analysis of arch dams including hydrodynamic effects[J], Journal of Engineering Mechanics, ASEE, 109, 1983:149-167
    73. P. Chakrabarti & A. K. Chopra, Earthquake analysis of gravity dams including hydrodynamic interaction[J], Earthquake Engineering and Structural Dynamics, v2, 1973: 143-160
    74. B. Nath et al., Coupled dynamic behavior of realistic arch dams including hydrodynamic and foundation interaction, Proc. Instn of Civ. Engrs., Part 2, Vol. 73, Sept.,1982
    75.畑野正,水弹性地震时动水压共振关吟味,日本土木学会论文集,129,1966
    76.谢省宗,卓家寿,水弹性力学若干问题的研究和新近进展[J],现代力学与科技进步,北京,1997(8):161-168
    77. O. C. Zienkiewicz & R. E. Newton, Coupled vibrations of a structure submerged in a compressible fluid, Proc, Symp. Finite Element Techniques, Institute fur Statik und Dynamic der Luft-und Baum-fahrtkonstruktionen, University of Stuttgart, Germany, 1969
    
    
    78. J. Aviles, Xiangyue Li, Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibility and viscosity of water[J], Computer & Structure, v56(4), 1998:481-488
    79. Ka-Lun Fok & A. K. Chopra, Earthquake analysis and response of concrete arch dams, UCB/EERC-85/07
    80. A. K. Chopra, Modeling of dam-foundation in analysis of arch dams, Proc. 10th, WCEE, Madrid, 1992
    81. J. mominguez, O. Maeso, Model for the seismic analysis of arch dams including interaction effects, Proc. 10th, WCEE, Madrid, 1992
    82.张楚汉等,小湾高拱坝地震波动响应与抗震分析研究,清华大学“八五”攻关报告,1995
    83.徐艳杰,张楚汉,金峰,非线性拱坝-地基动力相互作用的FE-BE-IBE模型[J],清华大学学报,1998,38(11):99-103
    84. Chen H Q, Du X L, Hou S Z, Application of transmitting boundaries to nonlinear dynamic analysis of an arch dam-foundation-reservoir system, In: Zhang C, J. P. Wolf, eds, Dynamic Soil-Structure Interaction, Netherlands: Elsevier, 1997: 115-124
    85. A. K. Chopra, Earthquake response of reservoir-dam system[J], J. eng. mech. div. ASCE 94,1968
    86. D. K. Paul, Influence of reservoir and dam on the hydrodynamic pressure. Pro. Of 8th WCEE 7, 1984
    87. O. C. Zienkiewicz, The finite element method, McGRAW-HiLL, 1977
    88. O. C. Zienkiewicz, K. Bando, P. Bettess, C. Emson, and T. C. Chiam, Mapped infinite elements for exterior wave problems[J], International Journal for Numerical Methods in Engineering, Vol. 21, 1229-1251(1985)
    89. O. C. Zienkiewicz, C. Emson, and P. Bettess, A novel boundary infinite element[J], International Journal for Numerical Methods in Engineering, Vol. 19, 393-404(1983)
    
    
    90. S. S. Saini, P. Bettess, O. C. Zienkiewicz, Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements[J], Earthquake eng. struct, dyn. 1978, 6(4)
    91.赵崇斌,张楚汉,张光斗,用无穷元模拟拱坝地基[J],水利学报,1987(2):27-36
    92.赵崇斌,张楚汉,张光斗,映射动力无穷元及其特性研究[J],地震工程与工程振动,1987,7(2):1-14
    93.傅作新等,水坝库水与地基的动力相互作用分析[J],华东水利学院学报,1985(1)
    94.阎承大,张楚汗,拱坝地震动水压力分析的配点法[J],地震工程与工程振动,1990 (4)
    95. Y. G. Hanna, J. L. Humar, Boundary element analysis of fluid-domain[J], J. eng. mech. div. ASCE 108, EM2, 1982
    96. H. Antes, O. V. Estorff, Analysis of absorption effects on the dynamic response of dam reservoir systems by BEM[J], Earthquake eng. struct, dyn., 1987, 15(8)
    97.宋崇民,张楚汉,水坝抗震分析的动力边界元方法[J],地震工程与工程振动,1988 (4)
    98. D. H. Wept, et al, Matrix based on BE for time-domain dam-reservoir -soil analysis [J], Earthquake eng. struct, dyn., 1988,16(3)
    99. J. L. Humar and A. M. Jablonski, Boundary element reservoir model for seismic analysis of gravity dams[J], Earthquake Engineering and Structural Dynamics, Vol, 16, 1129-1156(1988)
    100. J. M. Raphael, Tensile strength of concrete, ACI Journal, 1984, 81 No. 2 158-165
    101. J. Eibl, And B. Schmidt-Hurtienne, Strain-rate sensitive constitutive law for concrete [J], Journ. of Eng. Mechanics, ASCE, 125, 12,1999
    102. P. H. Bichoff and S. H. Perry, Compressive behaviors of concrete at high strain rates[J], Materials and Structures, 1991, 24, 425-450
    103. L. J. Malvar and C. A. Ross, Review of strain rates for concrete in tension [J], ACI materials Journal, 1998, 95, 6, 735-739
    104. Gao Lin, A seismic design of arch dams, Proc. Eleventh World Conference on Earthquake Engineering, Paper No. 2020, Elsevier Science, 1996
    
    
    105. U. S. Federal Emergency Management Agency, Federal Guideline for earthquake Analysis and Design of Dams, Mar., 1985
    106.张楚汉,王光纶,李未显,地基弹性与惯性对拱坝振动的影响[J],地震工程与工程振动,5卷,3期,1985.9
    107.水电部混凝土拱坝设计规范编制组,混凝土拱坝设计规范,1985.8
    108.张楚汉,论拱坝抗震[J],地震工程与工程振动,1986,6(4):59-70
    109.邢景棠,周盛,崔尔杰,流固耦合力学概述[J],力学进展,v27,1,1997:19-38
    110. Du Xiuli, Chen Houqun & Hou Shunzai, Dynamic Response Analysis of High Arch Dam-Water-Foundation System, Proceedings of the 11th Conference held in Ft. Lauderdale, Florida, 1996:987-988
    111. R. W. Clough & Liu Hao-wu, Study of seismic input mechanism for arch dam analysis. Developments in Mechanics Proceedings of the 19th Midwestern Mechanics Conference, Columbus, USA., 13, 1985:460-465
    112.R.W.Clough,张光斗,陈厚群等,响洪甸拱坝动力响应特性(根据中美地震合作协议提出的报告),中国水利水电科学研究院,北京,1984年
    113. Chen Houqun & Hou Shunzai, Effects of seismic travelling wave on the response of arch dam, Proceedings of China-US Workshop on Earthquake Behavior of Arch Dams, Beijing, China, 1987:73-91
    114.R.W.Clough,J.Penzien,结构动力学,王光远等译,科学出版社,1981年
    115. Bayo & E. L. Wilsoon, Numerical techniques for the evaluation effects of soil-structure interaction effects in the time domain, Report No. UCB/EERC-83/04, Earthquake Engineering Research Renter, University of California, Berkeley, CA, 1983
    116.戴大农,王勖成,杜庆华,流固耦合系统动力响应的模态分析理论[J],固体力学学报,11,4 (1990):306-312
    117. K. J. Bathe, E. L. Wilson, Stability and accuracy analysis of direct integration methods[J], Earthquake Engng. Struct. Dyn., 1, 3 (1973)
    118. G. M. Hulbert, T. J. R. Hughes, An error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamics[J], Earthquake Engineering and Structural Dynamics, Vol. 15, 901-910(1987)
    
    
    119.罗加洪编,矩阵分析引论,华南理工大学出版社,2000
    120.于建华,谢用九,魏泳涛,高等结构动力学,四川大学出版社,1999
    121.张汝清等编著,非线性有限元分析,重庆大学出版社,1990年
    122.帕兹M著,结构动力学-理论与计算,李裕澈,刘勇生译
    123. K. J. Bathe, E. Ramm, E. L. Wilson, Finite element formulations for large deformation dynamic analysis[J], International Journal for numerical methods in engineering, 1975, Vol 9,353-386
    124. P. Leger, S. Dussault, Non-linear seismic response analysis using vector superposition methods[J], Earthquake Engng. Struct. Dyn., Vol, 21, 163-176(1992)
    125. N. Inoue, K. Yang, A. Shibata, Dynamic non-linear analysis of reinforced concrete shear wall by finite element method with explicit analytical procedure[J], Earthquake Engng. Struct. Dyn., Vol, 26, 967-986(1997)
    126. A. Ibrahimbegovic, E. L. Wilson, A methodology for dynamic analysis of linear structure-foundation systems with local non-linearity[J], Earthquake Engng. Struct. Dyn., Vol, 19, 1197-1208(1990)
    127. M. Dibaj & J. Penzien, Response of earth dams to travelling seismic waves[J], ASCE, Vol. 95, SMZ, 1969
    128. S. D. Werner, L. C. Lee, The three-dimensional response of a bridge structure subjected to travelling Raleigh waves, SV-waves, and P-waves, Agbabian Associates, EI Segundo, Colifornia, USA, May, 1980
    129. Liu Haowu, A comparative study of earthquake input mechanisms for dynamic analysis of concrete dams, International Symposium on Earthquakes and Dams, Beijing, China, 20 May, 1987
    130.刘浩吾,何发祥,拱坝行波输入的动力分析和抗震设计[J],水利学报,1990(9),26-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700