几类非线性方程的行波解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶、整数阶非线性偏微分方程是描述自然现象的最基本原理的重要数学模型之一。其行波解的求解和定性行为研究,将有助于掌握系统运动状态的变化规律。
     本文以源于物理问题的几类非线性分数阶、整数阶偏微分方程为研究对象,得到了这些非线性数学物理方程的一些行波解的参数表示以及定性行为,揭示了这些非线性模型蕴涵的丰富的动力学性质。针对几类分数阶偏微分方程,提出了基于时空尺度不变行波解的齐次原理,并用于具体方程的求解;对整数阶方程而言,针对具有正则行波系统的一类偏微分(Konopelchenko-Dubrovsky)方程,用平面动力系统分支理论得到了有界行波解的参数表示与分支行为;针对具有奇异行波系统的一类给定的杆方程,用李继彬教授提出的基于平面动力系统分支理论的“三步法”,得到了一定参数条件下的扭波解、周期波解和一些无界行波解的表不。
     全文分为五章:
     第一章是绪论和预备知识。本章主要分为两个部分,第一部分介绍分数阶微分方程的相关背景知识。综述了分数阶微积分的发展历史、基本理论、在非线性科学中的应用举例以及分数阶偏微分方程求解的研究现状。第二部分介绍了基于正则系统和奇异系统的整数阶非线性偏微分方程行波解研究的动力系统方法。
     第二章是几类分数阶非线性方程的时空尺度不变行波解研究。本章首先基于求具有时空尺度不变性的行波解而提出了一个基本原理,即齐次原理。再把该原理应用于推广的分数阶Benjamin-Ono方程和等离子体中推广的分数阶Zakharov-Kuznetsov方程,得到了一定参数条件下其由幂函数表示的具有时空尺度不变性的行波解
     第三章利用平面动力系统分支理论研究了Konopelchenko-Dubrovsky方程的有界光滑行波解:孤立波解、扭波(反扭波)解、周期波解。得到了这些解存在的参数条件及其12个显式表示。
     第四章研究了计入横向惯性效应后非线性弹性杆的纵波运动方程的行波解,用基于平面动力系统分支理论的“三步法”得了原系统在一定参数条件下的扭波解、周期波解和一些无界行波解的表达式52个。从讨论中发现,随着杆材料的非线性增强,杆的纵向波动的动力学行为就越复杂。
     第五章对本文的工作进行了总结,并对今后的研究方向作了展望。
A fractional or integer order nonlinear partial differential equation is one of the math-ematical models which are used to describe the basic principles of nature phenomena. For the models, the research of finding the representations and investigating the dynamics of their traveling wave solutions is useful to obtain the law of behavior for the system's motions.
     In this thesis, taking some nonlinear fractional or integer order equations which come from physical models as objects of research, parameter representations and qualitative dy-namical behavior of some traveling wave solutions of these equations are obtained, which reveal the rich dynamics contained by these nonlinear models. To find the traveling wave solutions expressed by power functions for some fractional partial differential equations, a homogenous principle is obtained and used to get the solutions for some given equa-tions. For some integer order partial differential (Konopelchenko-Dubrovsky) equations with regular traveling systems, the bifurcation theory method of planar dynamical sys-tems is employed to find the bounded smooth traveling wave solutions. For the given rod integer order equations with singular traveling systems, the "three-step method " based on the bifurcation theory method of planar dynamical systems is used to investigate kink wave solutions, periodic wave solutions and unbounded solutions under some parameter conditions.
     There are five chapters in this thesis.
     In Chapter1, the research background and main methods of investigating traveling wave solutions for nonlinear equations are summarized. There are two sections in this chapter. In Section1, for fractional order nonlinear partial differential equations, the his-torical background, basic theory, the examples for applications and present situation of solving these equations are summarized. In Section2, for integer order nonlinear par-tial differential equations with regular or singular traveling wave systems, the dynamical system method for finding traveling wave solutions is introduced.
     In Chapter2, the space-time scaling invariant traveling wave solutions of some frac- tional equations are investigated. Firstly, for finding the solutions, a basic principle, i.e. homogenous principle is obtained. Secondly, the principle is used, for generalized frac-tional Benjamin-Ono equations and generalized fractional Zakharov-Kuznetsov equations in plasma, to obtain the solutions which are expressed by power functions under some pa-rameter conditions.
     In Chapter3, for the (2+1) dimensional Konopelchenko-Dubrovsky equation, the bifurcation theory method of planar dynamical systems is employed to find the bounded smooth traveling wave solutions:solitary wave solutions, kink (anti-kink) wave solutions, periodic wave solutions. The parameter conditions which make the solutions exist and the exact explicit parametric representations of12solutions are obtained.
     In Chapter4, for the nonlinear wave equation of longitudinal oscillation in a nonlin-ear elastic rod with lateral inertia, the "three-step method " from the view of the bifur-cation theory method of planar dynamical systems is used to investigate kink wave solu-tions, periodic wave solutions and unbounded solutions under some parameter conditions. Parametric representations of52solutions are obtained. From the qualitative behavior of the solutions, it is that the dynamical behavior of longitudinal oscillation, for the given rod, becomes more and more complex along with the enhancement of nonlinearity for the material.
     In Chapter5, the summary of this thesis and the prospect of future research are given.
引文
[1]Oldham K. B., Spanier J., The Fractional Calculus(M). New York:Academic Press, 1974.
    [2]郭柏灵,蒲学科,黄凤辉,分数阶偏微分方程及其数值解.北京:科学出版社,2011.
    [3]Ivo Petras, Fractional-Order Nonlinear Systems北京:高等教育出版社,2011.
    [4]周激流,蒲亦非,廖科,分数阶微积分原理及其在现代信号分析与处理中的应用.北京:科学出版社,2010.
    [5]Ross B., A brief history and exposition of fundamental theory of fractional calculus. Lecture Notes in Mathematics. Berlin.Springer-Verlag,1975.
    [6]Nishimoto K., Fractional calculus. Koriyama:Descartes Press,1987.
    [7]Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Ams-terdam:Gordon and Breach,1993.
    [8]Miller K.S., Ross B., An introduction to the fractional calculus and fractional differ-ential equations. New York:Willy,1993.
    [9]Podlubny I., Fractional differential equations. San Diego:Academic Press,1999.
    [10]Ross B., Fractional calculus and its applications. Proceedings of the International Conference held at the University of New Haven, June,1974. Berlin:Springer-Verlag, 1975.
    [11]Carpinteri A., Mainardi F., Frictals and fractional calculus in continuum mechanics. New York:Springer-Verlag,1998.
    [12]Hilfer R., Application of fractional calculus in physics. Singapoe, New Jersey, Lon-don and Hong Kong:World Scientific Publishing Company,2000.
    [13]Petras I., Podlubny I., OLeary P., et al, Analogue realization of fractional order controllers. Kosice:Technical University of Kosice,2002.
    [14]Zaslavsky G.M., Hamiltonian chaos and fractional dynamics. London:Oxford Uni-versity Press,2005.
    [15]Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and application of fractional dif- ferential equations. North-Holland mathematics Studies,204, Elseview,2006.
    [16]程金发,分数阶差分方程理论.厦门大学出版社,2011.
    [17]王竹溪,郭敦仁,特殊函数概论.北京:北京大学出版社,2000.
    [18]Adam Loverro, Fractional calculus:History, Definitions and Applications for Eng-nieers. University of Notre Dame,2004:78-79.
    [19]Weilbeer M., Efficient numerical methods for fractional differential equations and their analytical background. Papier flieger,2006.
    [20]Heymans N., Podlubny I., Physical interpretation of initial conditions for frac-tional differential equations with Riemann-Liouville fractional derivatives. Rheolog-ica Acta,2006,45:765-772.
    [21]Albert C.J.Luo, Valentin Afraimovich, Long-range interactions,stochasticity and fractional dynamics, Springer,高等教育出版社,2010.
    [22]蒲亦非,袁晓,廖科,陈忠林,周激流,现代信号分析与处理中分数阶微积分的五种数值实现算法.四川大学学报(工程科学版),2005,37(5).
    [23]蒲亦非,王卫星,数字图像的分数阶微分掩膜及其数值运算规则.自动化学报,2007,33(11).
    [24]周激流,袁晓,廖科,蒲亦非,一种可变阶次模拟分抗电路的实现方案.四川大学学报(工程科学版),2007,39(3).
    [25]晏祥玉,周激流,分数阶微积分在医学图像处理中的应用研究.成都信息工程学院学报,2008,23(1).
    [26]万晶晶,于盛林,分数阶微积分在数字水印中的应用研究.计算机技术与发展,2008,18(10).
    [27]邓英,一种基于分数阶微积分的分数阶伪随机数字水印新算法.计算机科学,2008,35(5).
    [28]李文,白晶,基于有理切比雪夫逼近的分数阶微积分算子的离散化.大连交通大学学报,2010,31(4).
    [29]刘磊,苗启广,石程,面向小波与的加权分数阶微积分图像数字水印新算法.计算机应用,2011,31(11).
    [30]郭丁,顾行发,余涛,赵辉,马红涛,基于分数阶滤波器的遥感图像处理.国土资源遥感,2011,1.
    [31]工在华,分数阶微积分:描述记忆特性与中间过程的数学工具.科学中国人,2011,3:76-78.
    [32]祝奔石,分数阶微积分及其应用,黄冈师范学院学报,2011,31(6).
    [33]郑祖庥,分数微分方程的发展和应用.徐州师范大学学报(自然科学版),2008,26:1-10.
    [34]Possikhin Yu. A., Shitikova M.V., Application of fractional calculus for dynamic problerms of solid mechanics:Novel trends and recent results. Applied Mechanics Review,2010,63:010801-1-52.
    [35]苏海军,徐明瑜,耳石器官广义分数阶粘弹性动力学模型.中国生物医学工程学报,2001,20(1).
    [36]金辉,苏海军,粘弹性材料复模量和复柔量的分数阶积分表述.山东大学学报(理学版),2005,40(4).
    [37]齐海涛,徐明瑜,分数阶粘弹性模型的蠕变柔量:广义Zener和Poyntirg-Thomson模型.山东大学学报(理学版),2004,39(3).
    [38]刘甲国,高阶的分数阶的粘弹性材料本构模型的复模量与复柔量.山东大学学报(理学版),2008,43(4).
    [39]银花,陈宁,赵尘,王大明,分数阶到属性粘弹性结构动力学方程的数值算法.南京林业大学学报(自然科学版),2010,2
    [40]翟玉广,分数阶微积分在粘弹性材料本构关系中的应用.[硕士学位论文],山东:山东大学,2000.
    [41]金辉,分数阶微积分在非牛顿流体力学及粘弹性材料研究中的若干应用.[博士学位论文],山东:山东大学,2003.
    [42]李岩,分数阶微积分及其在粘弹性材料及控制理论中的应用.[博士学位论文],山东:山东大学,2008.
    [43]康建宏,分数阶微积分在粘弹性流体力学中的某些应用.[硕士学位论文],山东:山东大学,2009.
    [44]王少伟,分数阶微积分理论在粘弹性流体力学及量子力学中的某些应用.[博士学位论文],山东:山东大学,2007.
    [45]郭宵怡,分数阶微积分在量子力学和非牛顿流体力学研究中的某些应用.[博士学位论文],山东:山东大学,2007.
    [46]刘甲国,分数阶微积分在粘弹性材料本构方程中的某些应用.[博士学位论文],山东:山东大学,2006.
    [47]齐海涛,分数阶微积分在非牛顿流体力学中的某些应用.[博士学位论文],山东:山东大学,2004.
    [48]徐明瑜,谭文长,中间过程、临界现象-分数阶算子理论、方法、进展及其在现代力学中的应用.中国科学辑,2006,36:225-238.
    [49]Mainardi F., Applications of fractional calculus in mechanics. Singapore:SCT Pub-lisher,1997.
    [50]Riewe F., Mechanics with fractional derivertives. Physical Review E,1997,53: 3581-3592.
    [51]Debnath L., Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences,2003,54:3413-3442.
    [52]Monje C. A., Chen Y. Q., Vinagre B.M., Xue D.Y., Feliu V., Fractional-order sys-tems and controls:Fundamentals and applications. London:Springer-Verlag,2010.
    [53]Manabe S., The non-integer intedral and its application to control systems. Japanese Institute of Electrical Engineers Journal,1960,80(860).
    [54]Podlubny I., Fractional-order systems and controllers. IEEE Transactions on Auto-matic Control,1999,44(1):208-214.
    [55]Dumitru Baleanu, Jos/e Ant/onio Tenreiro Machdo, Albert C. J. Luo, Fractional Dynamics and control. Springer Verlag,2011.
    [56]曾庆山,曹广益,朱新坚,分数阶控制系统的仿真方法.计算机仿真,2004,12.
    [57]曾庆山,曹广益,王振滨,分数阶PIλDμ控制器的仿真方法.系统仿真学报,2004,16(3).
    [58]王振滨,曹广益,曾庆山,朱新坚,分数阶PID控制器及其数字实现.上海交通大学学报,2004,38(4).
    [59]张邦楚,王少峰,韩子鹏,李臣明,飞航导弹分数阶PID控制及其数字实现.宇航学报,2005,26(5).
    [60]曹军义,梁晋,曹秉刚,基于分数阶微积分的模糊分数阶控制器研究.西安 交通大学学报,2005,39(11).
    [61]刘进英,李文,分数阶PIλDμ控制器的设计.自动控制与检测,2006,11.
    [62]赵春娜,潘峰,薛定宇,分数级系统H∞控制器设计.东北大学学报(自然科学版),2006,27(11).
    [63]曹军义,曹秉刚,杜彦亭,分数阶控制器在气动位置伺服控制中的应用研究.检测与控制装置,化工自动化及仪表,2006,33(2):61-64.
    [64]曹军义,曹秉刚,分数阶控制器离散方法评估策略研究.西安交通大学学报,2007,41(7).
    [65]李志刚,电液伺服系统的分数阶PID控制器研究.机床与液压,2007,35(1).
    [66]李远禄,于盛林,分数阶微分控制器的实现及其阶次对方法选择的影响.南京航空航天大学学报,2007,39(4).
    [67]李宏胜,分数阶控制及PIλDμ控制器的设计与进展.机床与液压,2007,35(7).
    [68]薛定宇,赵春娜,分数阶系统的分数阶PID控制器设计.控制理论与应用,2007,24(5).
    [69]樊红梅,孙宇,分数阶控制器在压力机位置伺服控制系统中的应用研究.机床与液压,2008,36(3).
    [70]朱呈祥,邹云,分数阶控制研究综述.控制与决策,2009,24(2).
    [71]满丽丽,基于分数阶比例积分控制器的伺服系统校正方法研究及仿真.[硕士学位论文],长春理工大学,2009.
    [72]何一文,许维胜,程艳,Buck型开关变换器分数阶PIλDμ控制研究.电子测量与仪器学报,2010,24(2):162-166.
    [73]王林,聂冰,李文,分数阶控制器在电机振动控制中的应用.工业控制计算机,2011,24(10).
    [74]赵春娜,李顺英,陆涛,分数阶系统分析与设计.国防工业出版社,2011.
    [75]陈家义,分数阶PIλDμ控制器的一种状态空间实现.智能计算机与应用,2011,4.
    [76]吴卫珍,赖家柱,基于分数阶微积分的风力发电机的变桨距控制方法研究.新余学院学报,2011,16(6).
    [77]钟其水,李辉,永磁同步电机分数阶微积分控制方法研究.电子科技大学学报,2011,40(2).
    [78]Caponetto R., Dongola G., Fortuna L., Petr/as I., Fractional order system:Modeling and control applications. World Scientific,2010.
    [79]Ortigueira M.D., Fractional calculus for scientists and engineers. Springer,2011.
    [80]Ray S.S., Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. Communication of Nonlinear Science and Numer-ical Simulation,2009,14,1295.
    [81]Abdulaziz O., Hashim I., Ismail E.S., Approximate analytical solution to fractional modified KdV equations. Mathematical Computation and Modelling,2009,49:136.
    [82]Hosseinnia S.H., Ranjba A., Momani S., Using an enhanced homotopy perturbation method in fractional equations via deforming the linear part. Computational Mathe-matics and Application,2008,56,3138.
    [83]Abdulaziz O., Hashim I., Momani S., Solving systems of fractional differential equations by homotopy-perturbation method. Physics Letters A,2008,372,451.
    [84]Abdulaziz O., Hashim I., Momani S., Application of homotopy-perturbation method to fractional IVPs. Journal of Computation and Applied Mathematics,2008,216,574.
    [85]Yildirim A., He's homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computational Mathematics, 2010,87,2998.
    [86]Yildirim A., Sezer S.A., Kaplan Y., Analytical approach to Boussinesq equation with space- and time- fractional derivatives. International Journal for Numerical Methods in Fluids,2011,66,1315.
    [87]Song L., Zhang H., Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Physics Letters A,2007,11,88.
    [88]Hashim I., Abdulaziz O., Momani S., Homotopy analysis method for fractional IVPs. Communication of Nonlinear science and Numerical Simulation,2008,14, 474.
    [89]Abdulaziz O., Hashim I., Saif A., Series solutions of time-fractional PDEs by ho-motopy analysis method. Differential Equation and Nonlinear Mechanics,2008, doi: 10.1155/2008/686512.
    [90]Abdulaziz O., Hashim I., Chowdhury M.S.H., Zulkifle A.K., Assessment of decom- position method for linear and nonlinear fractional differential equations. Far East Journal of Applied Mathematics,2007,28,95.
    [91]Bataineh A.S., Alomari A.K., Noorani M.S.M., Hashim I., Nazar R., Series solu-tions of systems of nonlinear fractional differential equations. Acta Applicae Mathe-maticae,2009,105,189.
    [92]Mohyud-Din S.T., Yildirim A., Usman M., Homotopy Analysis Method for Frac-tional Partial Differential Equations. International Journal of Physical Science,2011, 6,136.
    [93]He J., Approximate analytical solutions for seepage flow with fractional derivatives in poros medium. Computer Methods in Applied Mechanics and Engneering,1998, 167,57.
    [94]He J., variational iteration method-a kind of non-linear analysis technique:some examples. International Journal of Non-Linear Mechanics,1999,34,699.
    [95]He J., Wazwaz A.M., Xua L., The variational iteration method:Reliable, efficient and promising, Computational Mathematics and Application,2007,54,879.
    [96]Djordjevic Vladan D., Atanackovic Teodor M., Similarity solutions to nonliner con-duction and Burgers/Korteweg-de Vries fractional equations. Journal of Computation and Applied Mathematics,2008,222:701.
    [97]Buckwar E., Luchko Y., Invariance of a partial differential equation of fractional or-der under the Lie group of scaling transformation. Journal of Mathematical Analysis and Applications.1998,227:81-89.
    [98]Russell J.S., Report on waves. Fourteen meeting of the British association for the advancement of science. London:John Murray,1844,311.
    [99]Ablowitz M. J., ClarksonP. A., Soliton, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York,1991.
    [100]楼森岳,唐晓艳,非线性数学物理方法.北京:科学出版社,2006.
    [101]叶其孝,李正元,王明新,吴雅萍,反应扩散方程引论(第二版).北京:科学出版社,2011.
    [102]贺凯芬,从孤立波到湍流-非线性波的动力学.北京大学出版社,2011.
    [103]刘式适,刘式达,物理学中的非线性方程(第二版).北京大学出版社,2012.
    [104]Wang D. S., Liu Y. F., Zhang H. Q., Symbolic computation and families of Ja-cobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation. Applied Mathematics and Computation,2005,168:823-847.
    [105]谷超豪,孤立子理论及其应用.浙江科技出版社,1990.
    [106]Abdul-Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory.北京:高等教育出版社,2009.
    [107]郭玉翠,非线性偏微分方程引论.北京:清华大学出版社,2008.
    [108]范恩贵,可积系统与计算机代数.北京:科学出版社,2004.
    [109]Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., Method for solving the Korteweg-de Vries equation. Physical Review Letters,1967,19:1059-7.
    [110]Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters,1971,27:1192-1194.
    [111]Miurs M. R., Backlund transformation. Springer, Berlin,1978.
    [112]Weiss J., Tabor M. and Carnevale G., The painleve property for partial differential equations. Journal of Mathematical Physics,1983,3(24):522-526.
    [113]Yan Ch. T., Asimple transformation for nonlinear waves. Physics Letters A,1996, 224:77-84.
    [114]He J. H., Application of homotopy perturbation method to nonlinear wave equa-tions. Chaos, Solitons & Fratals,2005,26:695-700.
    [115]Wang M. L., Exact solutions for a compound KdV-Burgers equation. Physics Let-ters A,1996,224:279-287.
    [116]Hu J. Q., An algebraic method exactly solving two high-dimensional nonlinear evolution equations. Chaos, Solitons & Fratals,2005,23:391-398.
    [117]Liu Sh. K., Fu Z. T., Liu Sh. D. and Zhao Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Physics Letters A, 2001,285:69-74.
    [118]Lou S. Y., Tang X. Y, Nonlinear mathematical and physical methods. Science press,2006.
    [119]Fan En. G., Soliton solutions for a generalized Hirota-Sats uma coupled KdV equa-tion and a coupled MKdV equation. Physics Letters A,2001,282:18-22.
    [120]Fan En. G., Integrable systems and computer algebra. Science Press,2004.
    [121]田畴,李群及其在微分方程中的应用.北京:科学出版社,2001.
    [122]李翊神,孤子与可积系统.上海科技教育出版社,1999.
    [123]李志斌,非线性数学物理方程的行波解.北京:科学出版社,2006.
    [124]闫振亚,复杂非线性波的构造性理论及其应用.北京:科学出版社,2007.
    [125]陈登远,孤子引论.北京:科学出版社,2006.
    [126]王红艳,胡星标,带自相容源的孤立子方程.北京:清华大学出版社,2008.
    [127]廖世俊著,陈晨,徐航译,超越摄动-通论分析方法导论.北京:科学出版社,2006.
    [128]陆启韶,常微分方程的定性方法与分叉.北京:北京航空航天大学出版社,1989.
    [129]Li J. B and Dai H.H., On the Study of Singular Nonlinear Traveling Wave Equa-tions:Dynamical System Approach. Science Press, Beijing,2007.
    [130]张芷芬,丁同仁,黄文灶,董镇喜,微分方程定性理论.北京:科学出版社,2003.
    [131]韩茂安,朱德明,微分方程分之理论.北京:煤炭工业出版社,1994.
    [132]张锦炎,冯贝叶,常微分方程几何理论与分支问题.北京:北京大学出版社,2000.
    [133]罗定军,张祥,董梅等,动力系统的定性与分之理论.北京:科学出版社,2001.
    [134]李继彬,李存富,非线性微分方程.成都:成都科技大学出版社,1988.
    [135]马知恩,周义仓,常微分方程定性与稳定性方法.北京:科学出版社,2001.
    [136]Chow S. N., Hale J. K., Method of Bifurcation Theory. Springer-Verlag, New York, 1981.
    [137]Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York,1983.
    [138]Wiggins S., Global Bifurcation and Chaos. New York:Springer-Verlag,1988.
    [139]刘式达,刘式适,孤立波与同宿轨道.力学与实践:1991,13(4):9-15.
    [140]刘式达,刘式适,叶其孝,非线性演化方程的显示行波解.数学的实践与认识,1998,28(4):289-301.
    [141]Dai H. H., Exact traveling wave solutions of an integrable equation arising in hy-perelastic rods. Wave Motions,1998b,28:367-381.
    [142]Li J. B., Liu Z. R., Smooth and non-smooth traveling waves in a nonlinearly dis-persive equation. Applied Mathematical Modelling,2000,25(1):41-56.
    [143]Li J. B., Liu Z. R., Travelling wave solutions for a class of nonlinear dispersive equations. Chinese Ann Math Ser B,2002 23(3):397-418.
    [144]Li J. B., Wu J. H., Travelling waves for an integrable higher order KdV type wave equations. International Journal of Bifurcation and Chaos,2006,16(8):2309-2324.
    [145]申建伟,非线性波方程行波解分岔及其动力学行为的研究:[博士学位论文].西安:西北工业大学,2006.
    [146]冯大河,非线性波方程的精确解与分支问题研究:[博士学位论文].昆明:昆明理工大学,2007.
    [147]张丽俊,非线性演化方程的奇异行波解研究:[博士学位论文].上海:上海大学,2008.
    [148]耿翼翔,非线性演化方程的精确解及其动力学行为研究:[博士学位论文].昆明:昆明理工大学,2009.
    [149]Byrd P. F., Fridman M. D., Handbook of elliptic integral for and scientists. Berlin, Springer,1971.
    [150]Xu W., Gao L., Tang Y., Shen J., A series explicit and exact traveling wave so-lutions of the B(m,n) equations. Applied Mathematics and Computation,2007,185, 748.
    [151]杜世刚,等离子体物理.原子能出版社,1988.
    [152]Zakharov V. E., Kuznetsov E. A., Three dimensional solitons (ion acoustic solitary waves existence in nonisothermal plasma). Zhurnal Eksperimental noi i Teoretich-eskoi Fiziki,1974,66(2):594-597.
    [153]Munro S., Parks E.J., The derivation of a modified Zakharov-Kunetsov equation and the stability of its solutions. Journal of Plasma Physics,1999,62,305.
    [154]Munro S., Parks E.J., Stability of solitery-wave solutions to a modified Zakharov-Kuznetsov equation. Journal of Plasma Physics,2000,64,411.
    [155]Yulita Molliq R., Noorani M.S.M., Hashim I., Ahmad R.R., Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM. Journal of Computation and Applied mathematics,2009,233,103.
    [156]Yildirim A. and Gulkanat Y., Analytical Approach to Fractional Zakharov-Kuznetsov Equations by He'Homotopy Perturbation Method. Communication of Theory Physics(Beijing, China),2010,53,1005.
    [157]Konopelchenko B. G., Dubrovsky V. G., Some new integrable nonlinear evolution equations in (2+1) dimensions. Physics Letters A,1984,102:15-17.
    [158]Wang D. S., Zhang H. Q., Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation. Chaos, Solitons & Fratals,2005, 25(3):601-610.
    [159]Zhang Sh., Symbolic computation and new families of exact non-traveling wave solutions of (2+1)-dimensional Konopelchenko-Dubrovsky equations. Chaos, Soli-tons & Fratals,2007,31:951-959.
    [160]Zhang Sh., The periodic wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equations. Chaos, Solitons & Fratals,2007,31:951-959.
    [161]Xia T. Ch., Lu Zh. Sh., Zhang H. Q., Symbolic computation and new families of exact soliton-like solutions of Konopelchenko-Dubrovsky equations. Chaos, Solitons & Fratals,2004,20:561-566.
    [162]Zhao H., Han J. G., Wang W. T., An H. Y., Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation. Czechoslovak Journal of Physics,2006,56(12).
    [163]Abdou M. A., Generalized solitonary and periodic solutions for nonlinear par-tial differential equations by the Exp-function method. Nonlinear Dynamics, DO I: 10.1007/s 11071-007-9250-1.
    [164]Wazwaz A. M., New kinks and solitons to the (2+1)-dimensional Konopelchenko-Dubrovsky equation. Mathematics and Modelling,2007,45:473-479.
    [165]孙训方,方孝淑,关来泰,材料力学(Ⅰ).高等教育出版社,2002.
    [166]郭鹏,一维非线性弹性杆波动方程的研究.[硕士学位论文],2005.
    [167]朱位秋,弹性杆中的非线性波,固体力学学报,1980,2:247-253.
    [168]Bridges T. J., Multi-symplectic structures and wave propogation. Mathematical Proceedings of Cambridge Philosophica Society,1997,121:147-190.
    [169]Duan W. S., Zhao J. B., Solitary waves in quadratic nonlinear elastic rod. Chaos, Soliton and Fractals,2000,11(8):1265-1267.
    [170]Bridges T. J., Reich S., Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A,2001,284:184-193.
    [171]刘广军,段广森,非线性弹性杆内纵向波方程的孤立波解.河南师范大学学报(自然科学版),2001,29(3).
    [172]韩强,郑向峰,非线性弹性杆中的孤波解及其数值分析.华南理工大学学报(自然科学版),2004,32(4).
    [173]刘志芳,张善元,非圆截面杆中的非线性扭转波及其行波解.固体力学学报,2007,28(3).
    [174]高经武,王小力,考虑横向惯性效应非线性粘弹性杆的应变波.中北大学学报,2010,31(4).
    [175]胡伟鹏,韩爱红,邓子晨,非线性弹性杆中纵波传播过程的数值模拟.计算力学学报,2010,27(1).
    [176]庄蔚,杨桂通,孤波在非线性弹性杆中的传播,应用数学和力学,7(7):571-581,1986.
    [177]张善元,庄蔚,非线性弹性杆中的应变孤波,力学学报,1986,20(1):58-67.
    [178]吕克璞,郭鹏,张磊等,非线性弹性杆波动方程的摄动分析,应用数学和力学,2006,27(9):1079-1083.
    [179]Li J. B. and Zhang Y., Exact travelling wave solutions in a nonlinear elastic rod equation. Applied Mathmatics and Computation,2008,202(2):504-510.
    [180]Li J.B. and Chen G. R., Bifurcations of Travelling Wave Solutions for Four Classes of Nonlinear Wave Equations. International Journal of Bifurcation and Chaos, 2005,15(12):3973-3998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700