非线性波方程的精确解与分支问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性波方程是描述自然现象的一类重要数学模型,也是非线性数学物理特别是孤立子理论最前沿的研究课题之一。通过对非线性波方程的求解和定性分析的研究,有助于人们弄清系统在非线性作用下的运动变化规律,合理解释相关的自然现象,更加深刻地描述系统的本质特征,极大地推动相关学科如物理学、力学、应用数学以及工程技术的发展。
     本文从动力系统分支理论的角度来研究非线性波方程的精确行波解行波解的分支及其动力学行为。首先,在现有求解非线性波方程的主要方法的基础上,对非线性波方程的精确解求解方法进行了研究,利用动力系统分支理论方法改进了求解非线性波方程精确解的一种子方程法,并用于求解几类重要的非线性数学物理方程,获得了一系列新的结果。其次,以动力系统分支理论和奇异摄动理论为研究工具,研究了几类源于实际物理问题的非线性波方程的行波解的定性行为,揭示了这些非线性模型中蕴涵的丰富的动力学性质,获得了奇异同宿轨道的动力学性质,分析并解释了这些复杂行波解产生的原因,丰富和发展了李继彬教授提出的研究奇异非线性波方程的动力系统方法一三步法。
     本文主要研究工作如下:
     第一章是绪言,综述了非线性波方程的发展历史、研究现状、主要研究方法以及取得的成果,介绍了近年来非光滑波的发现、相应的研究方法及其最新研究进展,指出了非线性波方程与动力系统之间的联系以及运用动力系统相关理论研究非线性波方程的现状。本章最后介绍了李继彬教授提出的研究非线性波方程的“三步法”的主要理论和结果以及其它预备知识。
     第二章通过改进范恩贵教授提出的求解非线性波方程的一种子方程法,研究了Sawada-Kotera方程的求解问题。该子方程法通过在复杂非线性方程与相对简单的一个子方程之间巧妙地构造一个多项式变换,把求解非线性波方程的问题转化为求解子方程。因此如何获得子方程的更多的精确解成为该方法的关键步骤。本文利用动力系统分支理论研究了一般形式的子方程,提出了改进的子方程法,并将之应用于求解Sawada-Kotera方程,获得了Sawada-Kotern方程的大量新精确解,如多峰孤立波解,多峰周期行波解等。特别地,在所获得的精确解中所含参数都与方程的系统参数无关,因此,让这些参数取不同的值,相应的解便会呈现十分丰富的动力学行为。利用这种改进的方法求解非线性波方程的优越之处在于,我们不仅可以获得一般形式的子方程的所有精确解(为节省篇幅,本文主要给出了它们的所有孤立波解和扭波解、部分的有理解和周期行波解),而且还能获悉每一个解的动力学性质及其满足的参数条件,这充分显示了利用动力系统分支理论改进的方法在研究非线性波方程精确解方面的优越性和有效性。
     第三章利用“三步法”研究了一类正则长波方程即R(m,n)方程的行波解。利用时间尺度变换,把R(m,n)方程的奇异行波系统转化为一个正则动力系统,在运用经典的动力系统分支理论研究正则系统的轨道的定性行为的基础上,利用正则系统与奇异系统之间的联系以及奇异摄动理论知识获得了R(m,n)方程行波解的定性信息,解释了该方程非光滑行波解产生的原因,并证明了正则系统的奇异同宿轨道对应的解是R(m,n)方程的光滑周期行波解而不是孤立波解。
     第四章研究了一类非线性耗散项和非线性色散项共存的n+1维Klein-Gordon方程,讨论了非线性耗散强度、非线性色散强度和非线性强度效应的共同作用对系统的影响,这种影响主要表现在解的动力学性质对这些非线性强度的依赖性。强调了奇异直线的存在是导致系统出现非光滑的周期尖波、孤立尖波和破缺波的根本原因,获得了各种光滑波和非光滑波存在的充分条件。奇异系统与正则系统具有不同的时间尺度,从而导致两系统某些对应轨道有着完全不同的动力学性质,比如,与正则系统的奇异同宿轨道相对应的奇异系统的轨道可能是其周期轨道也可能仍是同宿轨道,奇异系统的这两种不同的轨道对应的是原Klein-Gordon方程具有完全不同动力学性质的解:周期轨道对应着光滑的周期行波解而同宿轨道对应着光滑的孤立波解。然而如何判定奇异同宿轨道是奇异系统的周期轨道还是同宿轨道?这又依赖于非线性耗散强度和非线性色散强度。这些现象充分反映了非线性耗散强度、非线性色散强度以及非线性强度效应的共同作用对系统的本质影响,也充分展示了奇异非线性波系统的魅力。本文利用奇异摄动理论解释了正则系统与奇异系统之间对应轨道具有不同动力学行为这一奇妙现象,对其给予了严格的数学证明并给出了判定轨道性质的具体方法,丰富和发展了研究非线性波方程的动力系统方法一三步法。
     第五章研究了两类变形的2+1维Boussinesq型方程(正指数Boussinesq方程和负指数Boussinesq方程)的行波解的定性行为。由于它们的行波系统都具有奇性,因此我们借助微分方程定性理论研究了对应的正则系统,获得了正则系统所有有界轨道的定性性质,进而分析了这两类方程光滑行波解和非光滑行波解产生的分支参数条件,获得了各种有界行波解存在的充分条件。特别地,对于负指数Boussinesq方程的行波系统而言,其正则系统的所有光滑轨道都对应着奇异系统的光滑轨道,正则系统的奇异同宿轨道和异宿轨道也分别对应着奇异系统的同宿轨道和异宿轨道(即负指数Boussinesq方程的光滑孤立波解和扭波解),从而得到了负指数Boussinesq方程在一定的参数条件下不可数无穷多个光滑孤立波解的存在性。对于负指数Boussinesq方程来说,奇性并没有导致非光滑行波解的出现,这说明奇异直线的存在只是使奇异系统有非光滑解存在的可能性,但并不必然导致系统出现非光滑解。也就是说,奇异行波系统不一定存在非光滑的行波解
     第六章对本文的工作进行了总结,提出了有待进一步研究的问题。
Nonlinear wave equations are important mathematical models for describing natural phenomena and are one of the forefront topics in the studies of nonlinear mathematical physics, especially in the studies of soliton theory. The research on finding explicit and exact solutions of nonlinear wave equations and on analyzing the qualitative behavior of solutions of nonlinear wave equations can help us understand the motion laws of the nonlinear systems under the nonlinear interactions, explain the corresponding natural phenomena reasonably, describe the essential properties of the nonlinear systems more deeply, and promote greatly the development of engineering technology and related subjects such as physics, mechanics and applied mathematics.
     In this dissertation, the exact travelling wave solutions, the bifurcations and dynamical behavior of travelling wave solutions of the nonlinear wave equations are investigated from the viewpoint of bifurcation theory of dynamical systems. Firstly, based on the main methods for finding exact solutions of nonlinear wave equations, the bifurcation theory and method of dynamical systems are used to improve a sub-equation method which is an effective method of finding exact solutions of nonlinear partial differential equations. By making use of the improved sub-equation method, a variety of new exact solutions to many physically significant nonlinear equations of mathematical physics are obtained. The research enriches and develops the approaches to exact solutions of differential equations. On the other hand, by using bifurcation theory of dynamical systems and singular perturbation theory, the qualitative behavior of travelling wave solutions to the several families of nonlinear wave equations from physical background are studied, and the rich dynamical properties of these nonlinear models are shown. Moreover the dynamical properties of singular homoclinic orbits are considered and first obtained, and the reason why the complex travelling wave solutions appear is successfully analyzed and explained. The results obtained develop the three-step method, an approach of dynamical systems proposed by professor Jibin Li for studying singular nonlinear wave equations.
     The major works of this dissertation mainly are as follows.
     In Chapter 1, the historical background, research developments, main methods and achievements of nonlinear wave equations are summarized. The discovery, correspond- ing research approaches and recent advance of non-smooth waves are introduced. The relation between nonlinear wave equations and dynamical systems along with the study on nonlinear wave equations by using the theory of dynamical systems are presented. In the end of the chapter, some preliminary knowledge of dynamical systems and the basic mathematic theory and main results of the three-step method are introduced.
     In Chapter 2, by improving a sub-equation method proposed by professor Engui Fan for finding exact solutions to nonlinear wave equations, the explicit exact solutions of the Sawada-Kotera equation are discussed. The essence of the sub-equation method is to convert the problem for finding travelling wave solutions of nonlinear wave equations to the problem for solving a sub-equation by making a wonderful polynomial transformation between the more complicated nonlinear wave equation and the simpler sub-equation. Thus how to find more exact solutions of the sub-equation becomes a key step in this method. Here by making full advantage of bifurcation theory of dynamical systems to study the sub-equation with general forms, an improved sub-equation method is presented and applied to the Sawada-Kotera equation. As a result, a series of travelling wave solutions to the Sawada-Kotera equation are obtained in a systematic way, which include multi-hump solitary wave solutions, multi-hump periodic wave solutions and so on. Moreover all the parameters in the obtained solutions are independent of the systematic parameters in the Sawada-Kotera equation, and therefore these solutions exhibit rich dynamical behavior by taking different values of these parameters. By using the improved method, not only all the solutions of the sub-equation with general forms can be gained (in the thesis, to save space, all solitary wave solutions and kink wave solutions, some rational function solutions along with some periodic travelling wave solutions are just given), but also the dynamical property and the parametric condition of each solution obtained can be known, which shows the advantage and effectiveness of the improved sub-equation method for researching exact solutions of nonlinear wave equations.
     In Chapter 3, the travelling wave solutions of a family of regularized long-wave equations, i.e., R(m,n) equations, are discussed by using the three-step method. After making a transformation of time scale, the singular travelling wave system of R(m,n) equations is reduced to a regular dynamical system. And the qualitative behavior of orbits of the regular system can be obtained by using the classical bifurcation theory of dynamical systems. Hence the qualitative information of the travelling wave system of R(m,n) equations are achieved from singular perturbation theory and the relation between the singular system and the regular system. How smooth travelling wave solutions lose their smoothness and become non-smooth travelling wave solutions is explained. And the fact is proved that the travelling wave solutions of R(m,n) equations corresponding to the singular homo-clinic orbits of the regular system are not their smooth solitary wave solutions but smooth periodic travelling wave solutions.
     In Chapter 4, a family of n+1-dimensional Klein-Gordon equations with nonlinear dissipative term and nonlinear dispersive term are studied. The effect on the system under the common actions of nonlinear dissipative intensity, nonlinear dispersive intensity and nonlinear intensity effect is discussed, which shows that the dynamical behavior of solutions depends greatly on the nonlinear intensity. It is emphasized that the existence of singular straight line is the original reason for the appearance of non-smooth periodic cusp wave solutions, solitary cusp wave solutions and breaking wave solutions. Various sufficient conditions to guarantee the existence of smooth and non-smooth travelling wave solutions are given. The singular travelling wave system and the regular travelling wave system have distinct time scales which cause their some corresponding orbits to have distinct dynamical properties. The orbits of the singular travelling wave system which correspond to the singular homoclinic orbits of the regular travelling wave system, for example, are either its periodic orbits or still homoclinic orbits. While the two distinct orbits respectively correspond to different solutions of Klein-Gordon equations with distinct dynamical behavior: the periodic orbits of singular system correspond to the periodic travelling wave solutions while the homoclinic orbits correspond to the solitary wave solutions. But how to judge the singular homoclinic orbits are periodic orbits or homoclinic orbits of singular system depends on the nonlinear dissipative intensity, nonlinear dispersive intensity and nonlinear intensity effect. These phenomena show sufficiently the essential effect on the nonlinear system under the three kinds of intensity. In this chapter, by taking advantage of singular perturbation theory, the wonderful phenomena that the corresponding orbits between the singular system and the regular system have different dynamical behavior are explained and strictly proved in mathematics. And the methods for judging the orbital dynamical property are given. These results obtained here enrich and develop the three-step method.
     In Chapter 5, the qualitative behavior of travelling wave solutions to two variants of 2+1 dimensional Boussinesq-type equations with positive and negative exponents respectively is studied. Since both their traveling wave systems have singularity, after applying qualitative theory of differential equations to the corresponding regular systems, the qualitative properties of all bounded orbits of the regular systems are obtained. Therefore the bifurcation parameter conditions which lead to smooth and non-smooth traveling wave solutions to the two variants of Boussinesq-type equations are analyzed and the various sufficient conditions to guarantee the existence of the bounded traveling wave solutions are obtained. Especially, for the Boussinesq-type equations with negative exponent, all the smooth orbits of the regular system correspond to the smooth orbits of the singular system. The singular homoclinic orbits and heteroclinic orbits of the regular system also are respectively the homoclinic orbits and heteroclinic orbits of the singular system, i.e., the smooth solitary wave solutions and smooth kink (or anti-kink) wave solutions of the Boussinesq-type equations with negative exponent. Hence the existence of uncountably infinite many smooth solitary wave solutions under certain parametric conditions is obtained. For the Boussinesq-type equations with negative exponent, the singularity does not cause the appearance of non-smooth traveling wave solutions, which shows that singular line does not always result in non-smooth solutions. That is to say, singular traveling wave systems do not always exist non-smooth traveling wave solutions.
     In Chapter 6, the summary of this dissertation and the prospect of future study are given.
引文
[1]Gleick J,Chaos:Making a New Science,New York:Viking Penguin Inc.,1988.中译本:《混沌开创新科学》,张椒誉译,上海译文出版社,1990.
    [2]傅新楚,关于非线性与复杂性.见:第九届全国现代数学和力学学术会议,上海:上海大学出版社,2004.
    [3]Ablowitz M J,Clarkson P A,Solitons,Nonlinear Evolution Equations and Inverse Scattering.London Mathematical Society Lecture Notes Series 149,Cambridge:Cambridge University Press,1991.
    [4]Bullough R K,Caudrey P J,Solitons.Berlin:Springer-Verleg,1980.
    [5]Dodd R K,Eilbeck J C,Morris H C,Solitons and Nonlinear Equations.London:Academic Press,1984.
    [6]Drazin P G,Johnson R S,Solitons:An Intruduction.Cambridge:Cambridge University Press,1988.
    [7]Gu Chaohao,Guo Bailin,Li Yishen et al,Soliton Theory and Its Applications.New York:Springer-Verleg,1995.
    [8]Remoissenet M,Waves Called Solitons:Concepts and Experiments.Berlin:Springer-Verleg,1996.
    [9]Infeld E,Rowlands G,Nonlinear Waves,Solitons and Chaos.Cambridge:Cambridge University Press,2000.
    [10]任学藻,廖旭,刘涛等,一维分子晶体中的极化子,原子与分子物理学报,2006,4(23):616-620.
    [11]李百文,郑春阳,宋敏等,高强度激光与等离子体相互作用中的受激Raman 级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速,物理学报,2006,55(10):5325-5337.
    [12]吴紫标,光纤中的光孤子,大学物理,2000,19(3):40-41.
    [13]楼森岳,唐晓艳,非线性数学物理方法.北京:科学出版社,2006.
    [14]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何应用.上海:上海科学技术出版社,1999.
    [15]李翊神,孤子与可积系统.上海:上海科技教育出版社,1999.
    [16]Rogers C,Schief W K,B(?)cklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory.Cambridge:Cambridge University Press,2002.
    [17]Russell J S,Report on Waves,in:Report of the British Association for the Advancement of Science,1837,pp.417-496.
    [18]Russell J S,On waves,in:Report of 14th Meeting of the British Association for the Advancement of Science,1844,pp.311-390.
    [19]王振东,孤立子与孤立波,力学与实践,2005,27(5):86-88.
    [20]Airy G B,Tides and Waves.London:Encyclopedia Metropolitana,1845,192(5):241-396.
    [21]Stokes G G,On the theory of oscillatory waves,Transactions of the Cambridge Philosophical Society,1847,8:441-455.
    [22]王丽霞,KdV方程的第二次导出,数学的实践与认识,2006,36(8):343-349.
    [23]Boussinesq M J,Theorie de l'intumescence appelee onde solitaire ou de translation se propageant dans un canal rectangulaire,C.R.Acad.Sc.Paris,1871,72:755-759.
    [24]Boussinesq M J,Theorie des ondes et des remous qui se propagent le long d'un canal rectangularie horizontal,en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond,Journal de Mathematiques Pures et Appliquees,1872,17(2):55-108.
    [25]Boussinesq M J,Essai sur la theorie des eaux courants,Mem.Acad.Sci.Inst.Nat.France,1877,23(1):1-680.
    [26]Miles J W,The Korteweg-de Vries equation:a historical essay,Journal of Fluid Mechanics,1981,106:131-147.
    [27]Darrigol O,The spirited horse,the engineer,and the mathematician:Water waves in nineteenth-century hydrodynamics,Archive for History of Exact Sciences,2003,58(1):21-95.
    [28]Rayleigh L,On Waves,Philosophical Magazine,1876,5(1):257-279.
    [29]McCowan J,On the solitary wave,Philosophical Magazine,1891,32(194):45-58.
    [30]Korteweg D J,de Vries G,On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves,Philosophical Magazine,1895,39(5):422-443.
    [31]Holden H,Peder D.Lax-Elements from his contributions to mathematics,A lecture at the Norwegian Academy of Science and Letters on March 17,2005.中译本:《对Lax(拉克斯)工作的通俗介绍—Peter.D.Lax对数学的主要贡献》,张同译,叶其孝校,数学译林,2005,2:121-127.
    [32]Fermi E,Pasta J R,Ulam S M,Studies on nonlinear problems.Los Alamos Science Laboratory Report La-1940,1955.
    [33]闫振亚,非线性波与可积系统:[博士学位论文].大连:大连理工大学,2002.
    [34]Zabusky N J,Kruskal M D,Interaction of solitons in a collisionless plasma and the recurrence of initial states,Physical Review Letters,1965,15(6):240-243.
    [35]陈登远,孤子引论.北京:科学出版社,2006,
    [36]Seeger A,Donth H,Kochendorfer A,Theorie der Versetzungen in eindimensionalen Atomreihen,Zeitschrift fur Physik,1953,134(2):173-193.
    [37]Perring J K,Skyrme T H R,A model unified field equation,Nuclear Physics,1962,31:550-555.
    [38]申建伟,非线性波方程行波解分岔及其动力学行为的研究:[博士学位论文].西安:西北工业大学,2006.
    [39]Camassa R,Holm D D,An integrable shallow water equation with peaked solitons,Physical Review Letters,1993,71(11):1661-1664.
    [40]Kraenkel R A,Senthilvelan M,Zenchuk A I,Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa-Holm equation,Physics Letters A,2000,273(3):183-193.
    [41]Qian Tifei,Tang Minying,Peakons and periodic cusp waves in a generalized Camassa-Holm equation,Chaos Solitons and Fractal,2001,12(7):1347-1360.
    [42]Liu Zhengrong,Qian Tifei,Peakons of the Camassa-Holm equation,Applied Mathematical Modelling,2002,26(3):473-480.
    [43]Tian Lixin,Sun Lu,Singular solitons of generalized Camassa-Holm models,Chaos,Solitons and Fractals,2007,32(2):780-799.
    [44]Wazwaz Abdul-Majid,New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations,Applied Mathematics and Computation,2007,186(1):130-141.
    [45]Holm D D,Marsden J E,Ratiu T S,The Euler-Poincare equations and semidirect products with applications to continuum theories,Advances in Mathematics,1998,137(1):1-81.
    [46]Rosenau Philip,Hyman James M,Compactons:Solitons with finite wavelength,Physical Review Letters,1993,70(5):564-567.
    [47]Rosenau Philip,On solitons,compactons,and Lagrange maps,Physics Letters A,1996,211(5):265-275.
    [48]Yan Zhenya,Bluman George,New compacton soliton solutions and solitary patterns of nonlinearly dispersive Boussinesq equations,Computer Physics Communications,2002,149(1):11-18.
    [49]Wazwaz Abdul-Majid,Compacton solutions and nonlinear dispersion,Applied Mathematics and Computation,2003,142(3):495-509.
    [50]Wazwaz Abdul-Majid,Compacton solutions of the Kawahara-type nonlinear dispersive equation,Applied Mathematics and Computation,2003,145(1):133-150.
    [51]Wazwaz Abdul-Majid,Compacton solutions of higher order nonlinear dispersive KdV-like equations,Applied Mathematics and Computation,2004,147(2):449-460.
    [52]Zhang Jiefang,Meng Jianping,New localized coherent structures to the(2+1)dimensional breaking soliton equation,Physics Letters A,2004,321(3):173-178.
    [53]He Jihuan,Wu Xuhong,Construction of solitary solution and compacton-like solution by variational iteration method,Chaos,Solitons and Fractals,2006,29(1):108-113.
    [54]Fan Xinghua,Tian Lixin,Compacton solutions and multiple compacton solutions for a continuum Toda lattice model,Chaos,Solitons and Fractals,2006,29(4):882-894.
    [55]Feng Zhaosheng,Computations of soliton solutions and periodic solutions for the focusing branch of the nonlinear dispersive K(n,n)equations in higher-dimensional spaces,Applied Mathematics and Computation,2006,182(1):781-790.
    [56]Inc Mustafa,New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations,Chaos,Solitons and Fractals,2007,33(4):1275-1284.
    [57]Hasegawa A,Tappert F,Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers,Applied Physics Letters,1973,23(3):142-144.
    [58]Mollenaure L F,Stolen R H,Gordon J P,Experiment observation of picosecond pulse narrowing soliton in optical fibers,Physical Review Letters,1980,45(13):1095-1098.
    [59]代红英,汪仲清,光纤孤立子与光孤子通信,重庆邮电学院学报,2004,16(6):77-80.
    [60]蔡炬,杨祥林,光孤子通信技术的现状与未来,半导体光电,2003,24(1):66-70.
    [61]刘喜莲,彭天翔,光孤子与光孤子通信,物理与工程,2002,12(5):37-41.
    [62]何淑贞,浅析光孤子通信技术,光纤通信,2002,24(4):28-30.
    [63]张翼,基于双线性方法的孤子可积系统:[博士学位论文].上海:上海大学, 2004.
    [64]陈勇,孤立子理论中的若干问题的研究及机械化实现:[博士学位论文].大连:大连理工大学,2003.
    [65]Wahlquist Hugo D,Estabrook Frank B,Backlund transformation for solutions of the Korteweg-de Vries equation,Physical Review Letters,1973,31(23):1386-1390.
    [66]Rogers C,Shadwick W R,Backlund transformations and their application.New York:Academic Press,1982.
    [67]Darboux G,sur une proposition relative aux equations lineaires.Paris:Comptes Rendus Hebdomadaries des Seances de L'Academie des Science,1882.
    [68]Wadati Miki,Sanuki Heiji,Konno Kimiaki,Relationships among inverse method,Backlund transformation and an infinite number of conservation laws,Progress of Theoretical Physics,1975,53(2):419-436.
    [69]Ablowitz M J,Kaup D J,Newell A C et al,Nonliear evolution equations of physical significance,Physical Review Letters,1973,31(2):125-127.
    [70]Gu Chaohao,Darboux transformations for a class of integrable systems in n variables,Analyse,Varietes,et Physique,Proc.of Colloque International en l'honneur d'Yvonne Choquet-Bruhat,Kluwer,1992.
    [71]Gu Chaohao,On the interaction of solitons for a class of integrable systems in the space-time R~(n+1),Letters in Mathematical Physics,1992,26(3):199-209.
    [72]Gu Chaohao,Zhou Zixiang,On Darboux transformations for soliton equations in high dimensional space-time,Letters in Mathematical Physical,1994,32(1):1-10.
    [73]Gu Chaohao,Hu Hesheng,A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations,Letters in Mathematical Physics,1986,11(4):325-335.
    [74]Gu Chaohao,On the Backlund transformations for the generalized hierarchies of compound MKdV-SG equations,Letters in Mathematical Physics,1986,12(1):31-41.
    [75]Hu Hesheng,Darboux Transformations Between △α= sinh α and △α= sin α and the Application to Pseudo-Spherical Congruences in R~(2,1),Letters in Mathematical Physics,1999,48(2):187-195.
    [76]Hu Hesheng,The geometry of sine-Laplace,sinh-Laplace equations,Proceedings of the 3rd Marcel Grossmann meeting on general relativity,Part B,1983,pp.1073-1078.
    [77]Gu Chaohao,Hu Hesheng,The soliton behavior of principal chiral fields,Tiansolutions jin: Proceedings, Differential geometric methods in theoretical physics, 1992,pp.501-510.
    
    [78] Hu Hesheng, Some nonexistence theorems for massive Yang-Mills fields and har-monic maps, Lecture Notes in Physics, 1984,212:107-116.
    
    [79] Hu Hesheng, Letters in Mathematical PhysicsNonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime, Letters in Mathematical Physics, 1987,14(3):253-262.
    
    [80] Hu Hesheng, Wu Siye, Nonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime (II), Letters in Mathematical Physics, 1987,14(4):343-351.
    
    [81] Hu Xingbiao, Li Yong, Superposition formulae of a fifth-order KdV equation and its modified equation, Acta Mathematicae Applicatae Sinica, 1988,4(1):46—54.
    
    [82] Hu Xingbiao, Clarkson P A, Backlund transformations and nonlinear superposi-tion formulae of a diferential-diference KdV equation, Journal of Physics A, 1998,31(5):1405-1414.
    
    [83] Hu Xingbiao, Zhu Zuonong, A Backlund transformation and nonlinear super-position formula for the Belov-Chaltikian lattice, Journal of Physics A, 1998,31(20):4755-4761.
    
    [84] Hirota R, Hu Xingbiao, Tang Xiaoyan, A vector potential KdV equation and vec-tor Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs,Journal of Mathematical Analysis and Applications, 2003,288(1):326-348.
    
    [85] Xiao Ting, Zeng Yunbo, A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources, Physica A, 2005,353(1):38-60.
    
    [86] Zeng Yunbo, Zhu Yiqing, Xiao Ying et al, Canonical explicit Backlund transforma-tions with spectrality for constrained flows of soliton hierarchies, Physica A, 2002,303(3-4):321-338.
    
    [87] Zeng Yunbo, New factorization of the Kaup-Newell hierarchy, Physica D, 1994,73(3):171-188.
    
    [88] Li Yishen, Ma Wenxiu, Zhang Jin E, Darboux transformations of classical Boussi-nesq system and its new solutions, Physics Letters A, 2000, 275(1):60-66.
    
    [89] Li Yishen, Zhang Jin E, Darboux transformations of classical Boussinesq system and its multi-soliton solutions,Physics Letters A,2001,284(6):253-258.
    [90]Li Yishen,Zhang Jin E,Bidirectional soliton solutions of the classical Boussinesq system and AKNS system,Chaos,Solitons and Fractals,2003,16(2):271-277.
    [91]王明亮,白雪,齐次平衡原则与BTs,兰州大学学报,2000,36(3):12-17.
    [92]王明亮,李志斌,周宇斌,齐次平衡原理及其应用,兰州大学学报,1999,35(3):8-16.
    [93]Li Zhibin,Wang Mingliang,Travelling wave solutions to the two-dimensional KdVBurgers equation,Journal of Physics A,1993,26(21):6027-6031.
    [94]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报,1997,17(1):81-89.
    [95]Ma Wenxiu,Complexiton solutions of the Korteweg-de Vries equation with selfconsistent sources,Chaos,Solitons and Fractals,2005,26(5):1453-1458.
    [96]耿献国,二维Sawada-Kotera方程的Darboux变换,高校应用数学学报,1989,4(4):494-497.
    [97]Li Wenmin,Geng Xianguo,Darboux transformation of a differential-difference equation and its explicit solutions,Chinese Physics Letters,2006,23(6):1361-1364.
    [98]耿献国,变形Boussinesq方程的Lax对和Darboux变换,应用数学学报,1998,11(3):324-328.
    [99]耿献国,MKP方程和Darboux变换,数学年刊(A辑),1990,11(3):265-268.
    [100]Zhou Ruguang,Jiang Qiaoyun,A Darboux transformation and an exact solution for the relativistic Toda lattice equation,Journal of Physics A,2005,38(35):7735-7742.
    [101]Gardner C S,Green J M,Kruskal M D et al,Method for solving the Korteweg-de Vries equation,Physical Review Letters,1967,19:1095-1097.
    [102]Lax P D,Integrals of nonlinear equations of evolution and solitary waves,Communications On Pure And Applied Mathematics,1968,21(5):467-490.
    [103]Zakharov V E,Shabat A B,Exact theory of two-dimensional self-focusing and one-dimensional modulation instability of waves in a nonlinear media,Soviet Physics JETP,1972,34(1):62-69.
    [104]郭柏灵,庞小峰,孤立子.北京:科学出版社,1987.
    [105]Zakharov V E,Shabat A B,Interaction between solitons in a stable medium,Soviet Physics JETP,1973,37(5):823-828.
    [106]Ablowitz M J,Kaup D J,Newell A C et al,Method for solving the Sine-Gordon equation,Physical Review Letters,1973,30:1262-1264.
    [107]Ablowitz M J,Kaup D J,Newell A C et al,The inverse scattering transform-Fourier analysis for nonlinear problems,Studies in Applied Mathematics,1974,53:249-315.
    [108]Ablowitz M J,Segur H,Solitons and the Inverse Scattering Transform.Philadelphia:Society for Industrial and Applied Mathematics(SIAM),1981.
    [109]Wahlquist H D,Estabrook F B,Prolongation structures of nonlinear evolution equations,Journal of Mathematical Physics,1975,16(1):1-7.
    [110]Estabrook F B,Wahlquist H D,Prolongation structures of nonlinear evolution equations.Ⅱ,Journal of Mathematical Physics,1976,17(7):1293-1297.
    [111]Wu Ke,Guo Hanying,Wang Shikun,Prolongation structures of nonlinear systems in higher dimensions,Communications in Theoretical Physics,1983,2:1425-1442.
    [112]Wang Shikun,Guo Hanying,Wu Ke,Inverse scattering transform and regular Riemann-Hilbert problem,Communications in Theoretical Physics,1983,2:1169-1175.
    [113]李翊神,汪克林,郭光灿等,非线性科学选讲.合肥:中国科学技术大学出版社,1992.
    [114]屠规彰,非巍兰方程的逆散射解法,应用数学和计算数学,1979,1:21-43.
    [115]李翊神,一类发展方程和谱的变形,中国科学(A辑),1982,25(5):385-390.
    [116]Case K M,Kac M,A discrete version of the inverse scattering problem,Journal of Mathematical Physics,1973,14(5):594-603.
    [117]Flaschka H,On the Toda lattice.Ⅱ-inverse-scattering solution,Progress of Theoretical Physics,1974,51(3):703-716.
    [118]Ablowitz M J,Ladik J F,Nonlinear differential-difference equations,Journal of Mathematical Physics,1975,16(3):598-603.
    [119]刘希强,非线性发展方程显式解的研究:[博士学位论文].北京:中国工程物理研究院,2002.
    [120]倪皖荪,魏荣爵,水槽中的孤波.上海:上海科技教育出版社,1997.
    [121]Fokas A S,Its A R,The nonlinear Schrodinger equation on the interval,Journal of Physics A,2004,37(23):6091-6114.
    [122]Fokas A S,Its A R,Sung L Y,The nonlinear Schrodinger equation on the half-line,Nonlinearity,2005,18(4):1771-1822.
    [123]Dolye P W,Separation of variables for scalar evolution equations in one space dimension,Journal of Physics A,1996,29(23):7581-7595.
    [124]Doyle P W,Vassiliou P J,Separation of variables for the 1-dimensional non- linear diffusion equation, International Journal of Nonlinear Mechanics, 1998,33(2):315-326.
    [125] Zhdanov R Z, Separation of variables in the nonlinear wave equation, Journal of Physics A, 1994,27(9):L291-L297.
    
    [126] Zhdanov R Z, Revenko IV, Fushchych W I, Orthogonal and non-orthogonal separation of variables in the wave equation u_(tt) — u_(xx) + V(x)u = 0, Journal of Physics A, 1993,26(17):5959-5972.
    [127] 曹策问, AKNS族的 Lax方程组的非线性化,中国科学(A辑), 1989,32(7):701-707.
    [128] Cao Cewen, Nonlinearization of the Lax system for AKNS hierarchy, Science in China (A), 1990,33(5):528-536.
    [129] Cao Cewen, Geng Xianguo, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, Journal of Physics A, 1990,23(18):4117-4125.
    [130] Cao Cewen, Geng Xianguo, Wu Yongtang, From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation, Journal of Physics A, 1999,32(46):8059-8078.
    [131] Cheng Yi, Li Yishen, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Physics Letters A, 1991,157(1):22-26.
    [132] Li Yishen, Ma Wenxiu, Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos, Solitons and Fractals, 2000,11(5):697-710.
    [133] Lou Senyue, Chen Lili, Formal variable separation approach for nonintegrable models, Journal of Mathematical Physics, 1999,40(12):6491-6500.
    [134] Zeng Yunbo, Separation of variables for the constrained flows, Journal of Mathematical Physics, 1997, 38(l):321-329.
    [135] Zeng Yunbo, Ma Wenxiu, Separation of variables for soliton equations via their binary constrained flows, Journal of Mathematical Physics, 1999,40(12):6526—6557.
    [136] Zeng Yunbo, Ma Wenxiu, The construction of canonical separated variables for binary constrained AKNS flow, Physica A, 1999, 274(4):505-515.
    [137] Ma Wenxiu, Geng Xianguo, New completely integrable Neumann systems related to the perturbation KdV hierarchy, Physics Letters B, 2000,475(1):56-62.
    [138] Ma Wenxiu, Chen Min, Do symmetry constraints yield exact solutions? Chaos,Solitons and Fractals, 2007, 32(4): 1513-1517.
    [139] Qiao Zhijun, Modified r-matrix and separation of variables for the modified Korteweg-de Vries (MKdV) hierarchy, Physica A, 1997,43(1):129-140.
    [140] Qiao Zhijun, Zhou Ruguang, Discrete and continuous integrable systems possessing the same non-dynamical r-matrix, Physics Letters A, 1997,235(1):35-40.
    [141] Zhou Zixiang, Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation, Journal of Mathematical Physics, 1998,39(2):986—997.
    [142] Zhou Ruguang, Ma Wenxiu, Classical r-matrix structures of integrable mappings related to the Volterra lattice, Physics Letters A, 1997,235(1):35-40.
    [143] Lou Senyue, Lu Jizong, Special solutions from the variable separation approach: the Davey-Stewartson equation, Journal of Physics A, 1996, 29(14):4209-4215.
    [144] Lou Senyue, On the coherent structures of the Nizhnik-Novikov-Veselov equation,Physics Letters A, 2000,277(2):94-100.
    [145] Lou Senyue, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, Journal of Physics A, 2002, 35(49):10619-10628.
    [146] Tang Xiaoyan, Lou Senyue, Zhang Ying, Localized excitations in (2+1)-dimensional systems, Physical Review E, 2002, 66(4):046601-046617.
    [147] Tang Xiaoyan, Lou Senyue, Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems,Journal of Mathematical Physics, 2003,44(9):4000-4025.
    [148] Zhdanov R Z, Conditional Lie-Backlund symmetry and reduction of evolution equations, Journal of Physics A, 1995,28(13):3841-3850.
    
    [149] Qu Changzheng, Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source, Studies in Applied Mathematics, 1997,99(2): 107-136.
    [150] Qu Changzheng, Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method, IMA Journal of Applied Mathematics,1999,62(3):283-302.
    [151] Qu Changzheng, Zhang Shunli, Liu Ruochen, Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source, Physica D, 2000,144(1):97-123.
    [152] Qu Changzheng, He Wenli, Dou Jihong, Separation of variables and exact solutions of generalized nonlinear Klein-Gordon equations, Progress of Theoretical Physics,2001,105(3):379-398.
    [153] Qu Changzheng, Estevez P G, On nonlinear diffusion equations with x-dependent convection and absorption, Nonlinear Analysis, 2004,57(4):549—577.
    
    [154] Zhang Shunli, Lou Senyue, Qu Changzheng, Variable separation and exact solu-tions to generalized nonlinear diffusion equations, Chinese Physics Letters, 2002,19(12):1741-1744.
    
    [155] Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for generalized (1+2)-dimensional nonlinear diffusion equations, Chinese Physics Let-ters, 2005,22(5): 1029-1032.
    
    [156] Zhang Shunli, Lou Senyue, Qu Changzheng, Functional variable separation for ex-tended (1+2)-dimensional nonlinear wave equations, Chinese Physics Letters, 2005,22(11):2731-2734.
    
    [157] Zhang Shunli, Lou Senyue, Variable separation and derivative-dependent func-tional separable solutions to generalized nonlinear wave equations, Communications in Theoretical Physics, 2004,41(2): 161-174.
    
    [158] Zhang Shunli, Lou Senyue, Derivative-dependent functional separable solutions for the KdV-type equations, Physica A, 2004, 335(3):430-444.
    
    [159] Zhang Shunli, Lou Senyue, Qu Changzheng, New variable separation ap-proach: application to nonlinear diffusion equations, Journal of Physics A, 2003,36(49): 12223-12242.
    
    [160] Zhang Shunli, Lou Senyue, Qu Changzheng, The derivative-dependent func-tional variable separation for the evolution equations, Chinese Physics, 2006,15(12):2765-2776.
    
    [161] Hirota Ryogo, Exact solution of the Korteweg-de Vries equation for multiple col-lisions of solitons, Physical Review Letters, 1971, 27(18):1192-1194.
    
    [162] Hirota Ryogo, Satsuma Junkichi, A variety of nonlinear network equations gener-ated from the Backlund transformation for the Toda lattice, Progress of Theoretical Physics Supplement, 1976, 59:64-100.
    
    [163] Matsuno Y, Bilinear Transformation Method. New York: Academic Press, 1984.
    
    [164] Hu Xingbiao, Rational solutions of integrable equations via nonlinear superposi-tion formulae, Journal of Physics A, 1997, 30(23):8225-8240.
    
    [165] Hu Xingbiao, Zhu Zuonong, Some new results on the Blaszak-Marciniak lattice:Backlund transformation and nonlinear superposition formula, Journal of Mathemat-ical Physics, 1998, 39(9):4766-4772.
    [166] Wu Yongtang, Hu Xingbiao, A new integrable differential-difference system and its explicit solutions, Journal of Physics A, 1999,32(8):1515—1521.
    
    [167] Hu Xingbiao, Tarn Honwah, Some new results on the Baszak-Marciniak 3-field and 4-field lattices, Reports on Mathematical Physics, 2000,46(1):99-105.
    
    [168] Tarn Honwah, Ma Wenxiu, Hu Xingbiao et al, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, Journal of the Physical Society of Japan,2000,69(1):45-52.
    
    [169] Hu Xingbiao, Ma Wenxiu, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Physics Letters A, 2002,293(3-4): 161-165.
    
    [170] Boiti M, Leon J J P, Manna M et al, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inverse Problems, 1986,2(3):271—279.
    
    [171] Boiti M, Leon J J P, Manna M et al, On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane, Inverse Problems, 1987,3(1):25—36.
    
    [172] Radha R, Lakshmanan M, Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations, Journal of Mathemati-cal Physics, 1994,35(9):4746-4756.
    
    [173] Lou Senyue, Generalized dromion solutions of the (2+1)-dimensional KdV equa-tion, Journal of Physics A, 1995,28(24):7227-7232.
    
    [174] Zhang Jiefang, Abundant dromion-like structures to the (2+1) dimensional KdV equation, Chinese Physics, 2000,9(1): 1-4.
    
    [175] Lou Senyue, Ruan Hangyu, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation, Journal of Physics A, 2001,34(2):305-316.
    
    [176] Wang Mingliang, Solitary wave solutions for variant Boussinesq equations,Physics Letters A, 1995,199(3-4): 169-172.
    
    [177] Wang Mingliang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A, 1996,213(5-6):279-287.
    
    [178] Wang Mingliang, Zhou Yubin, Li Zhibin, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A, 1996, 216(1):67-75.
    
    [179] Tian Bo, Gao Yitian, New families of exact solutions to the integrable disper-sive long wave equations in 2+1-dimensional spaces, Journal of Physics A, 1996, 29(11):2895-2903.
    [180]Fan Engui,Zhang Hongqing,A note on the homogeneous balance method,Physics Letters A,1998,246(5):403-406.
    [181]Fan Engui,Zhang Hongqing,New exact solutions to a system of coupled KdV equations,Physics Letters A,1998,245(5):389-392.
    [182]张解放,长水波近似方程的多孤子解,物理学报,1998,47(9):1416-1420.
    [183]张解放,变更Boussinesq方程和Kupershmidt方程的多孤子解,应用数学和力学,2000,21(2):171-175.
    [184]闫振亚,张鸿庆,Brusselator反应扩展模型的Auto-Darboux变换和精确解,应用数学和力学,2001,22(5):477-482.
    [185]Bluman G,Cole J,General similarity solution of the heat equation,Journal of Mathematics and Mechanics,1969,18(5):1025-1042.
    [186]Bluman G,Kumei S,Symmetries and Differential Equations.New York:SpringerVerlag,1989.
    [187]Olver P J,Applications of Lie Groups to Differential Equations.Berlin:SpringerVerlag,1986.
    [188]Clarkson P A,Kruskal M D,New similarity reductions of the Boussinesq equation,Journal of Mathematical Physics,1989,30(10):2201-2213.
    [189]Clarkson P A,Nonclassical symmetry reductions for the Boussinesq equation,Chaos,Solitons and Fractals,1995,5(12):2261-2301.
    [190]Clarkson P A,Mansfield E L,Symmetry reductions and exact solutions of shallow water wave equations,Acta Applicandae Mathematicae,1995,39(1-3):245-276.
    [191]Alexeyev A A,A multidimensional superposition principle:classical solitons Ⅲ,Physics Letters A,2005,335(2-3):197-206.
    [192]Conte R,Invariant painleveanalysis of partial differential equations,physics Letters A,1989,140(7-8):383-390.
    [193]Picketing A,A new truncation in Painleve analysis,Journal of Physics A,1993,26(17):4395-4405.
    [194]Picketing A,The singular manifold method revisited,Journal of Mathematical Physics,1996,37(4):1894-1927.
    [195]Parkes E J,Duffy B R,An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,Computer Physics Communications,1996,98(3):288-300.
    [196]Malfliet Willy,Solitary wave solutions of nonlinear wave equations,American Journal of Physics,1992,60(7):650-654.
    [197]Malfliet Willy,Hereman Willy,The tanh method:Ⅰ.Exact solutions of nonlinear evolution and wave equations,Physica Scripta,1996,54(6):563-568.
    [198]Malfliet Willy,Hereman Willy,The tanh method:Ⅱ.Perturbation technique for conservative systems,Physica Scripta,1996,54(6):569-575.
    [199]Fan Engui,Extended tanh-function method and its applications to nonlinear equations,Physics Letters A,2000,277(4-5):212-218.
    [200]Wazwaz A M,A sine-cosine method for handling nonlinear wave equations,Mathematical and Computer Modelling,2004,40(5-6):499-508.
    [201]Lou Senyue,Ni Guangjiong,The relations among a special type of solutions in some(D+1)-dimensional nonlinear equations,Journal of Mathematical Physics,1989,30(7):1614-1620.
    [202]Hereman W,Banerjee P P,Korpel A et al,Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method,Journal of Physics A,1986,19(5):607-628.
    [203]田畴,李群及其在微分方程中的应用.北京:科学出版社,2001.
    [204]田畴,Burgers方程的新的强对称、对称和李代数,中国科学(A辑),1987,30(10):1009-1018.
    [205]李翊神,朱国城,一个谱可变演化方程的对称,科学通报,1986,31(19):1449-1453.
    [206]Li Yishen,Zhu Guocheng,New set of symmetries of the integrable equations,Lie algebra and non-isospectral evolution equations.Ⅱ.AKNS system,1986,Journal of Physics A,19(18):3713-3725.
    [207]朱国城,季孝达,可积方程新的对称、李代数及谱可变演化方程,科学通报,1988,33(13):972-976.
    [208]Lou Senyue,A note on the new similarity reductions of the Boussinesq equation,Physics Letters A,1990,151(3-4):133-135.
    [209]Lou Senyue,Similarity solutions of the Kadomtsev-Petviashvili equation,Journal of Physics A,1990,23(13):L649-L654.
    [210]Lou Senyue,Ruan Hangyu,Chen Defang et al,Similarity reductions of the KP equation by a direct method,Journal of Physics A,1991,24(7):1455-1467.
    [211]Lou Senyue,Tang Xiaoyan,Lin Ji,Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, Journal of Mathematical Physics, 2000,41(12):8286-8303.
    
    [212] Lou Senyue, Symmetries of the Kadomtsev-Petviashvili equation, Journal of Physics A, 1993,26(17):4387-4394.
    
    [213] Tian Lixin, Yin Jiuli, New peakon and multi-compacton solitary wave solu-tions of fully nonlinear sine-Gordon equation, Chaos, Solitons and Fractals, 2005,24(1):353-363.
    
    [214] Zhang Jiefang, Dai Chaoqing, Xu Changzhi et al, Solutions with separated vari-ables and breather structures in the (1+1)-dimensional nonlinear systems, Physics Letters A, 2006, 352(6):511-519.
    
    [215] Liu Zhengrong, Lin Qingmei, Li Qixiu, Integral approach to compacton solutions of Boussinesq-like B(m,n) equation with fully nonlinear dispersion, Chaos, Solitons and Fractals, 2004,19(5):1071-1081.
    
    [216] Liu Zhengrong, Long Yao, Compacton-like wave and kink-like wave of GCH equa-tion, Nonlinear Analysis: Real World Applications, 2007,8(1):136—155.
    
    [217] Yan Zhenya, New compacton-like and solitary patterns-like solutions to non-linear wave equations with linear dispersion terms, Nonlinear Analysis, 2006,64(5):901-909.
    
    [218] Yan Zhenya, An improved algebra method and its applications in nonlinear wave equations, Chaos, Solitons and Fractals, 2004,21(4):1013-1021.
    
    [219] Inc Mustafa, Exact and numerical solitons with compact support for nonlinear dispersive K(m, p) equations by the variational iteration method, Physica A, 2007,375(2):447-456.
    
    [220] Inc Mustafa, New compact and noncompact solutions of the K(k, n) equations,Chaos, Solitons and Fractals, 2006, 29(4):895-903.
    
    [221] Wazwaz Abdul-Majid, Exact and explicit travelling wave solutions for the nonlin-ear Drinfeld-Sokolov system, Communications in Nonlinear Science and Numerical Simulation, 2006,11(3):311-325.
    
    [222] Wazwaz Abdul-Majid, The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K(n, n)-Burger equations, Physica D, 2006,213(2):147-151.
    
    [223] Wazwaz Abdul-Majid, Compacton solutions of the Kawahara-type nonlinear dis- persive equation,Applied Mathematics and Computation,2003,145(1):133-150.
    [224]张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,1978,17(3):23-27.
    [225]范恩贵,孤立子和可积系统:[博士学位论文].大连:大连理工大学,1998.
    [226]张鸿庆,吴方向,一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报,1992,24(6):700-707.
    [227]张鸿庆,吴方向,构造板壳问题基本解的一般方法,科学通报,1993,38(7):671-672.
    [228]张鸿庆,冯红,构造弹性力学位移函数的机械化算法,应用数学和力学,1995,16(4):315-322.
    [229]张鸿庆,冯红,非齐次线性算子方程组一般解的代数构造,大连理工大学学报,1994,34(3):249-255.
    [230]闫振亚,张鸿庆,一类非线性演化方程新的显式行波解,物理学报,1999,48(1):1-5.
    [231]闫振亚,张鸿庆,具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解,物理学报,1999,48(11):1957-1961.
    [232]闫振亚,张鸿庆,非线性浅水波近似方程组的显式精确解,物理学报,1999,48(11):1962-1968.
    [233]Li Jibin,Zhang Lijun,Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation,Chaos,Solitons and Fractals,2002,14(4):581-593.
    [234]Zhang Lijun,Li Jibin,Bifurcations of traveling wave solutions in a coupled nonlinear wave equation,Chaos,Solitons and Fractals,2003,17(5):941-950.
    [235]Li Jibin,Li Hong,Li Shumin,Bifurcations of travelling wave solutions for the generalized Kadomtsev-Petviashili equation,Chaos,Solitons and Fractals,2004,20(4):725-734.
    [236]Li Jibin,Li Ming,Bounded travelling wave solutions for the(n+1)dimensional sine- and sinh-Gordon equations,Chaos,Solitons and Fractals,2005,25(5):1037-1047.
    [237]Li Jibin,Exact explicit travelling wave solutions for(n+1)-dimensional KleinGordon-Zakharov equations,Chaos,Solitons and Fractals,2007,34(3):867-871.
    [238]Geng Yixiang,He Tianlan,Li Jibin,Exact travelling wave solutions for the(n+1)dimensional double sine- and sinh-Gordon equations,Applied Mathematics and Computation,2007,188(2):1513-1534.
    [239]Shen Jianwei,Xu Wei,Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,Chaos,Solitons and Fractals,2005,26(4):1149-1162.
    [240]Shen Jianwei,Li Jibin,Xu Wei,Bifurcations of travelling wave solutions in a model of the hydrogen-bonded systems,Applied Mathematics and Computation,2005,171(1):242-271.
    [241]Shen Jianwei,Xu Wei,Jin Yanfei,Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation,Applied Mathematics and Computation,2005,171(2):677-702.
    [242]Shen Jianwei,Xu Wei,Smooth and non-smooth travelling wave solutions of generalized Degasperis-Procesi equation,Applied Mathematics and Computation,2006,182(2):1418-1429.
    [243]Liu Zhengrong,Chen Can,Compactons in a general compressible hyperelastic rod,Chaos,Solitons and Fractals,2004,22(3):627-640.
    [244]Liu Zhengrong,Yang Chenxi,The application of bifurcation method to a higherorder KdV equation,Journal of Mathematical Analysis and Applications,2002,275(1):1-12.
    [245]Feng Dahe,Li Jibin,Lu Junliang et al,The improved Fan sub-equation method and its application to the Boussinesq wave equation,Applied Mathematics and Computation,in press,2007.
    [246]Feng Dahe,Li Jibin,Exact explicit travelling wave solutions for the(n+1)dimensional Ф~6 field model,Physics Letters A,2007,369(4):255-361.
    [247]Cole J D,Perturbation Methods in Applied Mathematics.Waltham:Blaisdell Publishing Company,1968.
    [248]Nayfeh A H,Problems in Perturbation.New York:John Wiley & Sons,1985.
    [249]Murdock J A,Perturbations:Theory and Methods.New York:John Wiley & Sons,1991.
    [250]戴世强,邓学莹,段祝平等,20世纪理论和应用力学十大进展,力学进展,2001,31(3):322-326.
    [251]汪淳,同伦分析方法在流体力学中的应用:[博士学位论文].上海:上海交通大学,2003.
    [252]廖世俊,超越摄动—同伦分析方法导论.北京:科学出版社,2006.
    [253]Hilton P J,An Introduction to Homotopy Theory.Cambridge:Cambridge University Press,1953.
    [254]Sen S,Topology and Geometry for Physicists.Florida:Academic Press,1983.
    [255]Liao Shijun,An approximate solution technique not depending on small parameters:A special example,International Journal of Non-Linear Mechanics,1995,30(3):371-380.
    [256]Liao Shijun,A kind of approximate solution technique which does not depend upon small parameters-Ⅱ.An application in fluid mechanics,International Journal of Non-Linear Mechanics,1997,32(5):815-822.
    [257]Liao Shijun,An explicit,totally analytic approximate solution for Blasius' viscous flow problems,International Journal of Non-Linear Mechanics,1999,34(4):759-778.
    [258]Liao Shijun,An analytic approximation of the drag coefficient for the viscous flow past a sphere,International Journal of Non-Linear Mechanics,2002,37(1):1-18.
    [259]Liao Shijun,A uniformly valid analytical solution of two-dimensional viscous flow over a semi-infinite flat plate,Journal of Fluid Mechanics,1999,385:101-128.
    [260]Liao Shijun,Campo A,Analytic solutions of the temperature distribution in Blasius viscous flow problems,Journal of Fluid Mechanics,2002,453:411-425.
    [261]He Jihuan,Variational principles for some nonlinear partial differential equations with variable coefficients,Chaos,Solitons and Fractals,2004,19(4):847-851.
    [262]He Jihuan,Application of homotopy perturbation method to nonlinear wave equations,Chaos,Solitons and Fractals,2005,26(3):695-700.
    [263]He Jihuan,Homotopy perturbation method for bifurcation of nonlinear problems,International Journal of Nonlinear Sciences and Numerical Simulation,2005;6(2):207-208.
    [264]王雨顺,孤立波方程的辛和多辛算法的构造和计算:[博士学位论文].北京:中国科学院数学和系统科学研究院,2001.
    [265]张芷芬,丁同仁,黄文灶等,微分方程定性理论.北京:科学出版社,2003.
    [266]廖晓昕,稳定性的理论、方法和应用.武昌:华中科技大学出版社,1999.
    [267]时宝,张德存,盖明久,微分方程理论及其应用.北京:国防工业出版社,2005.
    [268]高慧贞,黄启宇,微分方程定性与稳定性理论.福州:福建科学技术出版社,1993.
    [269]Poincare J,Memoire sur les courbes definies par une equation differentielle,Journal de Mathematiques Pures et Appliouees,1881,7(3):375-422.
    [270]Poincare J,Memoire sur les courbes definies par une equation differentielle,Journal de Mathematiques Pures et Appliouees,1882,8:251-296.
    [271]Poincare J,Memoire sur les courbes definies par une equation differentielle,Journal de Mathematiques Pures et Appliouees,1885,1(4):167-244.
    [272]Poincare J,Memoire sur les courbes definies par une equation differentielle,Journal de Mathematiques Pures et Appliouees,1986,2:151-217.
    [273]Birkhoff G D,Dynamical systems.New York:American Mathematical Society College Publication,1927.
    [274]Birkhoff G D,Stability and the equations of dynamics,American Journal of Mathematics,1927,49(1):1-38.
    [275]Birkhoff G D,Stabilita e periodicita nella dinamica,Periodico di Matematiche,1926,6(4):262-271.
    [276]Andronov A A,Pontryagin,Systemes Grossiers,Doklady Akademii Nauk SSSR,1937,14:247-251.
    [277]李继彬,冯贝叶,稳定性,分支与混沌.昆明:云南科技出版社,1995.
    [278]刘式达,刘式适,叶其孝,非线性演化方程的显式行波解,数学的实践与认识,1998,28(4):289-301.
    [279]刘式达,刘式适,孤立波与同宿轨道,力学与实践,1991,13(4):9-15.
    [280]张芷芬,李承治,郑志明等,向量场的分叉理论基础.北京:高等教育出版社,1997.
    [281]陆启韶,分叉与奇异性.上海:上海科技教育出版社,1997.
    [282]Rosenau Philip,Nonlinear dispersion and compact structures,Physical Review Letters,1994,73(13):1737-1741.
    [283]Rosenau Philip,On nonanalytic solitary waves formed by a nonlinear dispersion,Physics Letters A,1997,230(5-6):305-318.
    [284]Rosenau Philip,On a class of nonlinear dispersive-dissipative interactions,Physica D,1998,123(4):525-546.
    [285]Li Y A,Olver P J,Convergence of solitary-wave solutions in a perturbed biHamiltonian dynamical system Ⅰ:Compactons and peakons,Discrete and Continuous Dynamical Systems,1997,3(3):419-432.
    [286]Li Y A,Olver P J,Convergence of solitary-wave solutions in a perturbed biHamiltonian dynamical system Ⅱ:Complex analytic behavior and convergence to non-analytic aolutions,Discrete and Continuous Dynamical Systems,1998,4(1):159-191.
    [287]Li Y A,Olver P J,Rosenau P,Non-analytic solutions on nonlinear wave models,Technical Report 1591,Institute of Mathematics and Applications,Minnesota,1998.
    [288]Li Jibin,Liu Zhengrong,Smooth and non-smooth traveling waves in a nonlinearly dispersive equation,Applied Mathematical Modelling,2000,25(1):41-56.
    [289]Li Jibin,Liu Zhengrong,Traveling wave solutions for a class of nonlinear dispersive equations,Chinese Annals of Mathematics,2002,23(3):397-418.
    [290]Li Jibin,Shen Jianwei,Travelling wave solutions in a model of the helix polypeptide chains,Chaos,Solitons and Fractals,2004,20(4):827-841.
    [291]Li Jibin,Zhang Jixiang,Bifurcations of travelling wave solutions for the generalization form of the modified KdV equation,Chaos,Solitons and Fractals,2004,21(4):899-913.
    [292]Li Hong,Sun Shaorong,Li Jibin,Bifurcations of travelling wave solutions for the Boussinesq equations,Applied Mathematics and Computation,2006,175(1):61-71.
    [293]Feng Dahe,He Tianlan,Lu Junliang,Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation,Applied Mathematics and Computation,2007,185(1):402-414.
    [294]Feng Dahe,Lu Junliang,Li Jibin et al,Bifurcation studies on travelling wave solutions for nonlinear intensity Klein-Gordon equation,Applied Mathematics and Computation,2007,189(1):271-284.
    [295]Shen Jianwei,Xu Wei,Li Wei,Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons,Chaos,Solitons and Fractals,2006,27(2):413-425.
    [296]Li Jibin,Wu Jianhong,Zhu Huaiping,Travelling waves for an integrable higher order KdV type wave equations,International Journal of Bifurcation and Chaos,2006,16(8):2309-2324.
    [297]Li Jibin,Dai Huihui,On the Study of Singular Nonlinear Travelling Wave Equations:Dynamical System Approach.Beijing:Science Press,2007.
    [298]黄琳,稳定性理论.北京:北京大学出版社,1992.
    [299]寇春海,变异Lyapunov方法与非线性系统的稳定性分析:[博士学位论文].上海:上海交通大学,2002.
    [300]邢秀侠,广义Fisher方程(组)及粘性平衡律方程行波解的稳定性:[博士学位论文].北京:首都师范大学,2005.
    [301]Henry D,Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840, New York: Springer-Verlag, 1981.
    
    [302] Sattinger D H, On the stability of waves of nonlinear parabolic systems, Advances in Mathematics, 1976,22(3):312-255.
    
    [303] Wu Yaping, The stability of travelling fronts for quasilinear Burgers-type equa-tions, Advance in Mathmatics (China), 2002,31(4):363-371.
    
    [304] Evans J W, Nerve axon equation: I. linear approximations, Indiana University Mathematics Journal, 1972,21(9):877-885.
    
    [305] Evans J W, Nerve axon equation: II. stability at rest, Indiana University Mathemat-ics Journal, 1972,22(1):75-90.
    
    [306] Evans J W, Nerve axon equation: III. stability of the nerve impulse, Indiana Uni-versity Mathematics Journal, 1972,22(6):577-593.
    
    [307] Evans J W, Nerve axon equation: IV. the stable and the unstable impulse, Indiana University Mathematics Journal, 1975,24(12):1169-1190.
    
    [308] Jones C K R T, Stability of the travelling wave solutions of the FitzHugh-Nagumo system, Transaction of the American Mathematical Society, 1984,286(2):431-469.
    
    [309] Alexander J, Gardner R, Jones T J, A topolocal invariant arising in the stability analysis of traveling waves, Journal fur die Reine und Angewandte Mathematik, 1990,410:167-212.
    
    [310] Pego R L, Weinstein M I, Eigenvalues, and instabilities of solitary waves, Philo-sophical Transactions of the Royal Society A, 1992,340(1656):47-94.
    
    [311] Kapitula Todd, The Evans function and generalized melnikov integrals, SIAM Journal on Mathematical Analysis, 1998, 30(2):273-297.
    
    [312] Kapitula Todd, Sandstede Bjorn, Stability of bright solitary-wave solutions to per-turbed nonlinear Schrodinger equations, Physica D, 1998,124(1):58—103.
    
    [313] Derks G, Doelman A, van Gils S A et al, Travelling waves in a singularly perturbed sine-Gordon equation, Physica D, 2003,180(1):40-70.
    
    [314] Oh M, Zumbrun K, Stability of periodic solutions of conservation laws with vis-cosity: analysis of the Evans function, Archive for Rational Mechanics and Analysis,2003,166(2):99-166.
    
    [315] Oh M, Zumbrun K, Stability of periodic solutions of conservation laws with vis-cosity: Pointwise Bounds on the Green Function, Archive for Rational Mechanics and Analysis, 2003,166(2): 167-196.
    
    [316] Sandstede Bjorn, Stability of travelling waves, Handbook of Dynamical Systems Ⅱ,North-Holland,2002,pp.983-1055.
    [317]Bridges T J,Derks G,Gottwald G,Stability and instability of solitary waves of the fifth-order KdV equation:a numerical framework,Physica D,2002,172(4):190-216.
    [318]Brin L Q,Numerical testing of the stability of viscous shock waves,Mathematics of Computation,2000,70(235):1071-1088.
    [319]曹瑞,一些非线性发展方程的精确解:[硕士学位论文].成都:四川师范大学,2006.
    [320]李继彬,浑沌与Melnikov方法.重庆:重庆大学出版社,1989.
    [321]Byrd P F,Friedman M D,Handbook of Elliptic Integrals for Engineers and Physicists.Berlin:Springer-Verlag,1954.
    [322]Matveev V B,Salle M A,Darboux Transformation and Solitons.Berlin:SpringerVedag,1991.
    [323]Hirota Ryogo,Satsuma Junkichi,Soliton solutions of a coupled Korteweg-de Vries equation,Physics Letters A,1981,85(8-9):407-408.
    [324]Tian Lixin,Yin Jiuli,New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations,Chaos,Solitons and Fractals,2004,20(4):289-299.
    [325]Wazwaz Abdul-Majid,Solutions of compact and noncompact strucures for nonlinear Klein-Gordon-type equation,Applied Mathematics and Computation,2003,134(2-3):487-500.
    [326]Wazwaz Abdul-Majid,Solitons and periodic solutions for the fifth-order KdV equation,Applied Mathematics Letters,2006,19(11):1162-1167.
    [327]Wazwaz Abdul-Majid,Analytic study on nonlinear variants of the RLW and the PHI-four equations,Communications in Nonlinear Science and Numerical Simulation,2007,12(3):314-327.
    [328]Yan Zhenya,Zhang Hongqing,New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics,Physics Letters A,1999,252(6):291-296.
    [329]Yan Zhenya,New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations,Physics Letters A,2001,292(1-2):100-106.
    [330]Zhou Yubin,Wang Mingliang,Wang Yueming,Periodic wave solutions to a coupled KdV equations with variable coefficients,Physics Letters A,2003,308(1):31-36.
    [331]Wang Mingliang,Zhou Yubin,The periodic wave solutions for the Klein-GordonSchrodinger equations,Physics Letters A,2003,318(1-2):84-92.
    [332]Zhang Sheng,New exact solutions of the KdV-Burgers-Kuramoto equation,Physics Letters A,2006,358(5-6):414-420.
    [333]Fan Engui,Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics,Chaos,Solitons and Fractals,2003,16(5):819-839.
    [334]El-Wakil S A,Abdou M A,The extanded Fan sub-equation method and its applications for a class of nonlinear evolution equations,Chaos,Solitons and Fractals,in press,2006.
    [335]Sawada Katuro,Kotera Takeyasu,A method for finding N-soliton solutions of the KdV equation and KdV-like equation,Progress of Theoretical Physics,1974,51(5):1355-1367.
    [336]Zait R A,Backlund transformations,cnoidal wave and travelling wave solutions of the SK and KK equations,Chaos,Solitons and Fractals,2003,15(4):673-678.
    [337]Caudrey P J,Dodd R K,Gibbon J D,A new hierarchy of Korteweg-de Vries equations,Proceedings of the Royal Society of London,Series A:Mathematical and Physical Sciences,1976,351(1666):407-422.
    [338]Satsuma Junkichi,Kaup D J,A Backlund transformation for a higher order Korteweg-de Vries equation,Journal of the Physical Society of Japan,1977,43(2):692-697.
    [339]Hu Xingbiao,Bullough Robin,A Backlund transformation and nonlinear superposition formula of the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy,Journal of the Physical Society of Japan,1998,67(3):772-777.
    [340]徐惠益,Sawada—Kotera方程的Backlund变换及其精确解,苏州大学学报,2005,21(1):24-27.
    [341]Parker A,On soliton solutions of the Kaup-Kupershmidt equation.Ⅰ.Direct bilinearisation and solitary wave,Physica D,2000,137(1):25-33.
    [342]Parker A,On "regular" and "anomalous " solitons of fifth-order equations and an iteration method,Reports on Mathematical Physics,2000,46(2):217-224.
    [343]Wazwaz Abdul-Majid,Aboundant solitons solutions for several forms of the fifthorder KdV equations by using the tanh method,Applied Mathematics and Computation, 2006,182(1):283-300.
    [344]Wazwaz Abdul-Majid,The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations,Applied Mathematics and Computation,2007,184(2):1002-1014.
    [345]Kaya Dogan,Salah M.El-Sayed,On a generalized fifth order KdV equations,Physics Letters A,2003,310(1):44-51.
    [346]Qasem M.Al-Mdallal,Muhammad I.Syam,Sine-Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation,Chaos,Solitons and Fractals,2007,33(5):1610-1617.
    [347]Zhang Yi,New n-soliton solutions for the Sawada-Kotera equation,Journal of Shanghai University(English Edition),2004,8(2):132-133.
    [348]Lou Shenyue,Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-SawadaKotera equation,Physics Letters A,1993,175(1):23-26.
    [349]林机,局域空间激子的相互作用和对称约化的研究:[博士后学位论文].上海:上海交通大学,2004.
    [350]唐云,对称性分岔理论基础.北京:科学出版社,1998.
    [351]韩茂安,顾圣士,非线性系统的理论和方法.北京:科学出版社,2001.
    [352]顾圣士,微分方程和动力系统.上海:上海大学出版社,2000.
    [353]Benjamin T B,Bona J L,Mahoney J J,Model equations for long waves in nonlinear dispersive media,Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1972,272(1220):47-78.
    [354]廖毕丰,邵喜高,王廷春,RLW方程的一个新的守恒差分格式,烟台大学学报,2006,19(1):12-15.
    [355]张鲁明,常谦顺,正则长波方程的一个新的差分方法,数值计算与计算机应用,2000,21(4):247-254.
    [356]Parker A,On exact solutions of the regularized long-wave equation:A direct approach to partially integrable equations.Ⅰ.Solitary wave and solitons,Journal of Mathematical Physics,1995,36(7):3498-3505.
    [357]Parker A,On exact solutions of the regularized long-wave equation:A direct approach to partially integrable equations.Ⅱ.Periodic solutions,Journal of Mathematical Physics,1995,36(7):3506-3519.
    [358]Yan Zhenya,New soliton solutions with compact support for a family of twoparameter regularized long-wave Boussinesq equations,Communications in Theoretical retical Physics,2002,37(6):641-644.
    [359]Yan Zhenya,New families of exact solitary patterns solutions for the nonlinearly dispersive R(m,n)equations,Chaos,Solitons and Fractals,2003,15(5):891-896.
    [360]Inc Mustafa,New compacton solutions of nonlinearly dispersive R(m,n)equations,Communications in Theoretical Physics,2006,45(3):389-394.
    [361]Inc Mustafa,New exact solitary pattern solutions of the nonlinearly dispersive R(m,n)equations,Chaos,Solitons and Fractals,2006,29(2):499-505.
    [362]韩茂安,朱德明,微分方程分支理论.北京:煤炭工业出版社,1994.
    [363]张锦炎,冯贝叶,常微分方程几何理论与分支问题.北京:北京大学出版社,2000.
    [364]罗定军,张祥,董梅等,动力系统的定性与分支理论.北京:科学出版社,2001.
    [365]Wiggins S,Global Bifurcations and Chaos.New York:Springer-Verlag,1988.
    [366]李保安,李向正,罗娜等,n维Klein-Gordon方程的一种解法,河南科技大学学报,2004,25(1):78-81.
    [367]张学龙,游阳明,k~-原子体系与强相互作用,原子与分子物理学报,2000,17(1):162-165.
    [368]田立新,于水猛,非线性强度KG型方程精确解和多重Copacton解,江苏大学学报,2005,26(3):227-230.
    [369]Tian Lixin,Yu Shuimeng,Nonsymmetrical compacton and multi-compacton of nonlinear intensity Klein-Gordon equation,Chaos,Solitons and Fractals,2006,29(2):282-293.
    [370]周渊,陈静,赖绍永,二维Boussinesq水波系统的孤立子波解,四川师范大学学报,2007,30(2):164-166.
    [371]李正彪,戴正德,经典 Boussinesq方程的新同宿轨和孤立子解,云南大学学报,2006,28(4):285-288.
    [372]谢元喜,唐驾时,用改进的试探函数法求解Boussinesq方程,安阳工学院学报,2005,6:73-76.
    [373]Allen M A,Rowlands G,On the transverse instabilities of solitary waves,Physics Letters A,1997,235(2):145-146.
    [374]曾昕,张鸿庆,(2+1)维Boussinesq方程的Backlund变换与精确解,物理学报,2005,54(4):1476-1480.
    [375]Chen Yong,Yan Zhenya,Zhang Hongqing,New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and(3+1)-dimensional KP equation,Physics Letters A,2003,307(2):107-113.
    [376]林麦麦,段文山,吕克璞,Hirota方法求解Boussinesq方程,西北师范大学学报,2007,43(1):39-53.
    [377]Wazwaz A M,Variants of the two-dimensional Boussinesq equation with compactons,solitons,and periodic solutions,Computers and Mathematics with Applications,2005,49(2-3):295-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700