用户名: 密码: 验证码:
某些具有扩散和交错扩散的生态模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用线性非线性微分方程研究种群生态学和流行病学有非常久远的历史.然而在生态系统中流行病是不可忽略的,因此联合流行病因素研究生态学是有必要的.本文首先研究了两个描述流行病在被捕食者中传播的具有齐次Neumann边界条件的扩散方程组.接着考虑了两个具有交错扩散的捕食模型,其中捕食模型中的交错扩散在生物学上的解释为捕食者追逐猎物(被捕食者),而被捕食者逃离捕食者.这样的交错扩散现象在大部分生态环境中出现.最后研究了一个描述互惠模型的强耦合退化反应扩散方程组解的全局存在性和爆破.本文首先利用半群理论给出了两个描述生态-流行病模型的反应扩散方程组的耗散性,利用拓扑度理论证明了该模型的非常数正稳态解的存在性与分歧.发现对于不同的反应函数,扩散系数对非常数正稳态解的存在性的影响是不同的.然后分析了扩散以及交错扩散在两个捕食模型中对非常数正稳态解的影响.发现当没有交错扩散时常数稳态解是局部(甚至是全局)渐近稳定的,交错扩散的发生可以产生非常数正稳态解.最后利用正则化、作估计、抽子列的方法得到一个描述互惠模型的强耦合退化反应扩散方程组解的局部存在性,通过与常微分方程组比较得出该方程组正解全局存在的一个条件,同时利用反正法得到在互惠大于竞争,并且两物种栖息地充分大的情况下该方程组的解在有限时刻爆破.
In this paper some prey-predator models and eco-epidemiology models arestudied. Effect of diffusion and cross-diffusion on the stability of constantsolutions、existence and non-existence of non-constant steady state solutionsis mainly considered. Global existence and blow-up of positive solutionsfor a strongly coupled and degenerate quasilinear parabolic system for amutualistic model are also studied. This thesis consists of the following fiveparts.
     After briefly reviewing the history of the development of biomathematics,especially the history of dynamics model of biological groups、epidemiologymodels and eco-epidemiology models, in the introduction we give the mainresults of this thesis and the direction we will investigate next.
     To our knowledge, all the eco-epidemiology models are ODE systems. Wewill study two reaction-diffusion systems for eco-epidemiology models. Inthe first section of Chapter one, we consider the following eco-epidemiologymodel: where d1,d2,d3 are diffusion coeffcients, r,a,k and mi(i = 1···5) are posi- tive constants. We can rewrite (1) as Ut = D U +F(U). The ODE systemof (1) was proposed by J. Chattopadhyay and N. Bairagi in 2001 whenthey studied the relationship of the susceptible Tilapia population, infectedTilapia population and their predator Pelican birds population in Salton seaof California. They gave the dissipation, persistence of the ODE system andthe stability of constant solutions. We consider (1) in a bounded domain∈RN with smooth boundary with homogeneous Neumann boundary con-dition and non-negative initial value. Using analytic semigroup theory, wegive the dissipation of (1). Subsequently, we give some a priori estimatesof upper bound and the Harnack Inequality of the positive steady state so-lution of (1). Using these estimates and Poincar′e Inequality, we have thefollowing theorem:
     Theorem 1 Suppose constant d satisfy 0 < d min{d1,d2,d3}, thenthere exist positive constants Cd2 = Cd2(Λ, ,d,d1),Cd3 = Cd3(Λ, ,d,d1,d2)such that (1) has no non-constant positive steady state solution, when d2Cd2 or d3 Cd3, whereΛ= (r,a,k,m1,···,m5).
     Since we can’t give the uniformly lower bound, we can not prove theexistence of non-constant steady state solutions by degree theory directly.Here we use the bifurcation method proposed by M. X. Wang to prove thenon-constant steady state solutions can bifurcate from constant solution.Using Sp to denote the positive spectrum of on with the homogeneousNeumann boundary condition, that is, Sp = {μ1,μ2,μ3,···}. Define non-constant steady state solutions of (1).
     In this section, we find that non-constant positive steady state solutionsexist when d2 is in a suitable range.
     In the second section of Chapter one, we study a eco-epidemiology modelin which the functional response of predator is v/(aw+v), namely, we changethe functional response v/(a+v) of the first section to v/(aw +v). Y. Xiaoand L. Chen studied the systems without di usion. They found that thesystem is rich in boundary dynamics. Here we consider the inner dynamicsof the system (stability of positive constant solution) and the e ect of di u-sion on the existence of non-constant positive steady state solutions. Similarto the first section, we give the dissipation of this system and stability ofthe constant solution of the ODE system. Under some conditions, we givea priori estimates of upper bound and lower bound and Harnack Inequality.Using this estimates, we find that the system has no non-constant steadystate solution when d2 is large enough. Subsequently, using degree theory,we prove that non-constant positive steady state solutions exist when d2,d3satisfy some conditions and d1 is large enough. Finally, using d3 as thebifurcation parameter, we consider the bifurcation of non-constant positivesteady state solutions of the system.
     We find that the e ect of di usion on the existence of non-constant pos-itive steady state solution is di erent for di erent functional response.In Chapter two, we discuss the following strongly coupled predator-preysystem: with homogeneous Neumann boundary condition and non-negative initialvalues. The cross-di usion term is that consumers move upward along gra-dients of prey density.
     First of all, we consider the case d3 = 0. Using the the comparisonprinciple of parabolic equation, we give a condition of the dissipation andpersistence property of (2). Using the method proposed by M. X. Wang,we prove that the constant solution of (2) is locally asymptotically stablewhen
     By constructing a Lyapunov functional, we prove the following global asymp-totically stable theorem:
     Theorem 3 hold, then the constantsolution U of (2) is global asymptotically stable. Especially,(2) has nonon-constant positive steady state solution.
     Next, we consider the e ect of d3. Some a priori estimates of upper andlower bound independent of d3 are given. Using the estimates and Poincar′eInequality and Young’s inequality withε, we can prove the following theo-rem about non-existence of non-constant positive steady state solution:Theorem 4 Let (a,b,c,α,δ,β)∈(0,∞)6 be given. For any positive con-stantε, there exist positive constants D1,D2 depending on (a,b,c,α,δ,β),εand such that (2) has no non-constant positive steady state solution whend1 D2(d2) and d2 D1.
     Finally, using degree theory, we prove that non-constant positive steadystate solutions exist when d1,d3 satisfy some conditions and d2 is largeenough or for arbitrary d2 when d1 satisfy some conditions and d3 is largeenough.
     In this chapter, we find that the constant solution is locally asymptoticallystable without cross-diffusion, non-constant steady state solutions can befound when cross-diffusion occurs.
     In Chapter three, we study the following strongly coupled prey-predatorsystem with homogeneous Neumann boundary condition and Holling IIfunctional response:
     We have the following theorem about stability:
     Theorem 5 Let r,s be positive constants, positive constants q,αsatisfyα1, 1+α< q orα> 1, 1+α< qα(α+1)/(αff1), then the positiveconstant solution is asymptotically stable with respect to the dynamics (3).
     Theorem 6 If d3 = d4 = 0,q >α+ 1,qα(qα), then the positiveconstant solution of (3) is globally asymptotically stable, this implies that
     (3) has no non-constant positive steady state solution.Subsequently, we give some a priori estimates to the positive solutions of
     (3) which depend on min{1 + d3,1 + d4}. Denotewhere A11 = . Using a priori estimates and degree theory, wehave the following theorem about the existence of non-constant steady statesolution:Theorem 7 Assume thatα,q satisfy and (5).
     (a) Suppose d1,d3,d4 are given such thatΛ2∈(μj,μj+1) for some positiveeven integer j, then there exists a positive constant d2 such that (3) has atleast one non-constant positive steady state solution when d2 > d2 .
     (b) Suppose d1 and d3 are given such thatΛ4∈(μj,μj+1) for some positiveeven integer j. Then for any given d2 > 0, then there exists a positiveconstat d 4 such that (3) has at least one non-constant positive steady statesolution when d4 > d4 .
     However, we can not use the degree theory to prove the existence of non-constant steady state of (3) when d3 is large enough. At the end of thischapter, we give a condition of existence of non-constant steady state of (3)when d3 is large enough by the singular perturbation theory.
     Theorem 8 Let (α,k,q,d2,d4)∈(0,∞)4×[0,∞) be given. Ifhas only zero solution, where F(w) = w + d4w2/(k + w), G(w) =(w/d2)[q/(w+α) 1], then, for every d1 > 0, there exists a positive constantε0 such that (3) has at least one non-constant positive steady state solutionwhen d3ε10.
     From Theorem 6 and Theorem 7 we can conclude that the constant solu-tion is globally asymptotically stable without cross-di usion, non-constant steady state solutions can be found when cross-di usion occurs. This resultis stronger than the result we conclude in Chapter two.
     In Chapter four, global existence and blow-up of solutions for a degenerateOwing to the degeneracy of (6), we use the method of regularization toconstruct a sequence of approximation solutions to obtain the local existenceof positive classical solution of (6). Let T be the maximal existence timeof the ODE system:
     We have the following local existence theorem:Theorem 9 System (6) has a positive classical solution (u,v) with u,v∈C2,1( )×(0,T )∩C(×[0,T )).
     Comparing the solution of (6) with the solution of an ODE system, wehave the global existence theorem:
     Theorem 10 If b1c2 > b2c1, then System (6) has a global solution (u,v)which is uniformly bounded in×[0,∞). Strongly coupled, homogeneous Dirichlet boundary condition and havingabsorption terms b1u2 and c2v2, it is more complex to prove that the solutionof (6) blows up. Generally, the comparison principle no longer holds for thestrongly coupled system, so we can not find a lower solution which blowsup. Here we setwhereλ1 is the first eigenvalue of ?? on ? with homogeneous Dirichletboundary condition, constantθ> 0 satisfies(4 +λ1)θ+ 3θ2 +λ1 < min{(c1 ? b1)/α,a1/(1 ?α),(b2 ? c2)/β,a2/(1 ?β)}.Using reduction to absurdity, we have the following theorem:Theorem 11 If b1 < c1,c2 < b2 andα,β1, then the solution of (6)blows up provided that
     This theorem implies that the solution of System (6) blows up when thetwo species are strongly mutualistic and the habitat is large enough.
引文
[1] LOTKA A J. Elements of Physical Biology[M]. New York: Williams and Wilkins,1925.
    [2] VOLTERRA V. Variazionie ?uttuazioni del numero d,individui in specie animaliconviventi[J], Mem. Acad. Lecei., 1926, 2: 31-113.
    [3] VERHULST P F, Notice sur la loi que la population suit dans son accroissemet[J].Corr. Math. Phys., 1838,10:113-121.
    [4] QUETELET A. Sur I homme e,t le d′eveloppement de ses facultes; Quessai dephysique sociale[M]. Bachelier Pairs, 1835.
    [5] MURRAY J D. Mathematical biology [M]. 2nd Ed., Berlin: springer-Verlag, 1998.
    [6] COLEMAN B O. Nonautonomous logistic equations as models of the adjustmentof populations to environmental change[J]. Math. Biosci, 1979, 45: 159-176.
    [7] HALLAM T G, CLARK C E. Nonautonomous logistic equations as models of pop-ulations in a deteriorating environment[J]. J. Theor. Biol, 1982, 93: 303-311.
    [8] HUTCHINSON G H. Circular causal systems in ecology[J]. Ann. N. Y. Acad. Sci,1948, 50: 221-246.
    [9] DUNKEL G. Single-species model for population growth depending on past his-tory[C]. Seminar on Di?erential Equations and Dynamical systems, Springer-Verlag,1968.
    [10]马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社, 1996.
    [11] HOLLING C S. The funetional response of predator to prey density and its role inmimiery and population regulation[J]. J. Mem. Ent.Sec.can,1965, 45:1-60.
    [12] HASSELL M P. The dynamics of arthropod predator-prey systems[M]. PrincetonNJ: Princeton Univ. 1978.
    [13] TAYLOR R J. Predation[M]. New York: Chapman and Hall 1984.
    [14] HOLLING C S. Principles of insect predation[J]. Ann. Rev. Entomol. 1961, 6: 163-182.
    [15] ANDREWS J F. A mathematical model for the continuous of microorganisms uti-lizing inhibitory substrates[J]. J. Biothechnol. Bioeng., 1968, 10: 707-723.
    [16] IVLEV V S, SCOTT D. Experimental Ecology of the Feeding of Fishes[M]. NewYork: Yale university press, 1961.
    [17] ARDITI R, GINZBURG L R. Coupling in predator-prey dynamics: ratio-dependence[J]. J. Theoretical Biol., 1989, 139: 311-326.
    [18] BEDDINGTON J R. Mutual interference between parasites or predators and itse?ect on searching e?ciency[J], J. Animal Ecol., 1975, 44: 331-340.
    [19] DEANGELIS D L, GOLDSTEIN R A and O’NEILL R V. A model for trophicinteraction[J]. Ecology., 1975, 56: 881-892.
    [20] COLLINGS J B. The e?ects of the functional response on the bifurcation behaviorof a mite predator-prey interaction model[J]. J. Math. Biol., 1997, 36: 149-168.
    [21] CHEN L S. Models and Research Methods of Mathematical Ecology[M]. Beijing:Science Press, 1988.
    [22] FREEDMAN H. I. Deterministic Mathematical Models in Population Ecology[M].New York : Marcel Dekker, 1980.
    [23] HSU S B, HWANG T W. KUANG Y. Global analysis of the Michaelis-Menten typeratio-dependent predator-prey system[J]. J. Math. Biol., 2001, 42: 489– 506.
    [24] KUANG Y, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J. Math. Biol., 1998, 36: 389-406.
    [25] XIAO D, RUAN S. Global dynamics of a ratio-dependent predator-prey system[J].J. Math. Biol., 2001, 43: 268-290.
    [26] XIAO D, JENNINGS L S. Bifurcations of a ratio-dependent predator-prey systemwith constant rate harvesting[J]. SIAM J. Appl. Math., 2005, 65(3): 737-753.
    [27] TANG S Y, CHEN L S. Global Qualitative Analysis for a Ratio-DependentPredator-Prey Model with Delay[J]. J. Math. Anal. Appl., 2002, 266: 401-419.
    [28] FREEDMAN H I, MATHSEN R M., Persistence in predator-prey systems withratio-dependent predator in?uence[J], Bulletin of Mathematical Biology., 1993,55(4): 817-827.
    [29] ZHU H, Campbell S A and Wolkowicz G S K. Bifurcation analysis of a predator-prey system with nonmonotonic function response[J]. SIAM J. Appl. Math., 2002,63: 636-682.
    [30] RUAN S, XIAO D. Global analysis in a predator-prey system with nonmonotonicfunctional response[J]. SIAM J. Appl. Math., 2001, 61: 1445-1472.
    [31] LIU Z H, YUAN R. Stability and bifurcation in a delayed predator-prey systemwith Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl. 2004, 296:521-537.
    [32] FAN M, KUANG Y. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system[J]. Math. Comput. Modelling., 2002, 35: 951-961.
    [33]韩欣利,反应扩散方程的行波解及相关的反应方程的持续生存性研究[D].上海:上海交通大学数学系, 2007.
    [34] ARONSON D, WEINBERGER H. Nonlinear di?usion in population genet-ics,Combustion and Nerve Propagation[C]. Proc. Tulane Program in PDEs, LectureNotes in Math. 446, New York: Springer-verlag, 1975, 5-49.
    [35] FIFE P C. Mathematical Aspects of Reacting and Di?using Systems,Lecture Notesin Biomathematics 28, Berlin: SPringer, 1979.
    [36] OKUBO A. Di?usion and Ecological Problems: Mathematical Models[M]. Berlin:SPringer-Verlag, 1980.
    [37] CONWAY E D, SMOLLER J. A comparison technique for systems of reaction-di?usion equations[J], Comm. Partial Di?erential Equations, 1977, 7: 679-697.
    [38] SMOLLER J. Shock waves and reaction-di?usion equations[M]. New York:Springer-Verlag, 1983.
    [39] CANTREL R S, COSNER C. On the steady-state problem for the Lotka-Volterracompetition model with di?usion[J]. Houston J. Math., 1987, 13: 337-352.
    [40] BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems ofelliptic equations[J]. SIAM J. Math. Anal., 1986, 17(6): 1339-1353.
    [41]陈滨,王明新,带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J],数学年刊., 2007, 28A(4): 495-506.
    [42] COSNER C, LAZER A C. Stable coexistence states in the Volterra-Lotka compe-tition model with di?usion[J]. SIAM J. Appl. Math., 1984, 44: 1112-1132.
    [43] FAN G, LEUNG A. Existence and stability of periodic solutions for competingspecies di?usion systems with Dirichlet boundary conditions[J]. Appl. Anal., 1990,39: 119-149.
    [44] DU Y.H, LOU Y. S-Shaped Global Bifurcation Curve and Hopf Bifurcation ofPositive Solutions to a Predator-Prey Model[J], J. D. E., 1998, 144: 390-440.
    [45] DU Y H, LOU Y. Some uniqueness and exact multiplicity resulets for a predator-prey model[J], Trans. Amer. Math. Soci., 1997, 349: 2443-2475.
    [46] HSIAO L, SU Y, XIN Z P. On the asymptotic behavior of solutions of a reacting-di?using system: a two predators-one prey model[J]. SIAM J. Math. Anal., 1987,18: 647-669.
    [47] DANCER E N, DU Y H. E?ects of certain degeneracies in the predator-preymodel[J]. SIAM J. Math. Anal., 2002, 34: 292-314.
    [48] HEI L J. Global bifurcation of co-existence states for a predator-prey-mutualistmodel with di?usion[J]. Nonlinear Analysis: RWA., 2007, 8: 619-635.
    [49] PENG R, WANG M X. On multiplicity and stability of positive solutions of adi?usive prey– predator model[J]. J. Math. Anal. Appl., 2006, 316: 256-268.
    [50] DANCER E N. On Positive Solutions of Some Pairs of Di?erential Equations, II[J],J. D. E., 1985, 60: 236-258.
    [51] PENG R, WANG M X, CHEN W Y. Positive Steady States of a Prey-predatorModel with Di?usion and Non-monotone Conversion Rate[J]. Acta MathematicaSinica, English Series, 2007, 23: 749-760.
    [52] PENG R, WANG M X. Spatial patterns of a prey-predator model in a degenerateenvironment[J]. Math. Comp. Modelling., 2006, 44: 735-741.
    [53] DU Y H. E?ects of a Degeneracy in the Competition Model Part II: Perturbationand Dynamical Behaviour[J]. J. D. E., 2002, 181: 133-164.
    [54] KO W, RYU K. Coexistence states of a predator-prey system with non-monotonicfunctional response[J]. Nonlinear Analysis: RWA., 2007, 8: 769-786.
    [55] LIU Y P, Positive solutions to general elliptic systems[J]. Nonlinear Analysis: TMA.,1995, 25: 229-246.
    [56] LI L G, LIU Y P. Spectral and nonlinear e?ects in certain elliptic systems of threevariables[J]. SIAM J. Math. Anal., 1993, 24: 480-498.
    [57] HETZER G, SHEN W X. Uniform presistence, coexistence and extinction in almostperiodic/nonautomomous competition di?usion systems[J]. SIAM J. Math. Anal.,2002, 34: 204-227.
    [58]黑力军,一类具有扩散的三种群生态模型正解的存在性[J],应用数学学报, 2006,29: 184-189.
    [59] LIU Z H, Yuan R. The e?ect of di?usion for a predator prey system with nonmono-tonic functional respones[J], International Journal of Bifurcation and Chaos, 2004,14: 4309-4316.
    [60] WANG M X. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and di?usion[J]. Math. Biosci., 2008, 212: 149-160.
    [61] KAN-ON Y, MIMURA M. Singular perturbation approach to a 3-componentreaction-di?usion system arising inpopulation dynamics[J]. SIAM J. Math. Anal.,1998, 29: 1519-1536.
    [62] CHEN W Y, WANG M X. Qualitative analysis of predator-prey models withBeddington-DeAngelis functional respones and di?usion[J]. J. Math. Comp. Mod-eling., 2005,45: 31-44.
    [63] NISHIURA V. Global strucure of bifurcating solutions of some reaction-di?usionsystems[J]. SIAM J. Math. Anal., 1982, 13: 555-593.
    [64] XU R, CHAPLAIN M A J, DAVIDSON F A. Global convergence of a reaction-di?usion predator-prey model with stage structure for the predator[J]. Appl. Math.Comp., 2006, 176: 388-401.
    [65] PAO C V. Global asymptotic stability of Lotka-Volterra 3-species reaction-di?usionsystems with time delays[J]. J. Math. Anal. Appl., 2003, 281: 186-204.
    [66] YI F Q, WEI J J., SHI J P. Di?usion-driven instability and bifurcation in theLengyel-Epstein system[J]. Nonlinear Analysis: RWA., 2008, 9: 1038-1051.
    [67] DU Y H, SHI J P. Allee e?ect and bistability in a spatially heterongeneous perdator-prey model[J]. Trans. Amer. Math. Soci., 2007, 359: 4557-4593.
    [68] ZENG X Z. A ratio-dependent predator-prey model with di?usion[J]. NonlinearAnalysis: RWA., 2007, 8: 1062-1078.
    [69] SHIGESADA N, KAWASAKI K, TERAMOTO E. Spatial segregation of interactingspecies[J]. J. Theoret. Biol., 1979, 79: 83-99.
    [70] AMANN H. Dynamic theory of quasilinear parabolic systems-III: Global exis-tence[J]. Math. Z., 1989, 202: 219-250.
    [71] CHEN L, JU¨NGEL A. Analysis of a parabolic cross-di?usion population modelwithout self-di?usion[J]. J. D. E., 2006, 224: 39-59.
    [72] CHOI Y S, LUI R, YAMADA Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-di?usion[J]. Discrete and ContinuousDynamical Systems., 2003, 9: 1193-1200.
    [73] LE D. Global existence for a class of strongly coupled parabolic systems[J]. Annalidi Matematica., 2006, 185: 133-154.
    [74] LI Y, ZHAO C S. Global existence of solutions to a cross-di?usion system in higherdimensional domains[J]. Discrete and Contionuous Dynamical Systems., 2005, 12:185-192.
    [75] SEONG-A SHIM. Uniform boundedness and convergence of solutions to the systemswith a single nonzero cross-di?usion[J], J. Math. Anal. Appl., 2003, 279: 1-21.
    [76] LOU Y, NI W M, WU Y P. On the global existence of a cross-di?usion system[J].Discrete and Continuous Dynamical Systems., 1998, 4: 193-203.
    [77] LE D. Regularity of solutions to a class of cross di?usion systems[J]. SIAM J. Math.Anal., 2005, 36: 1929-1942.
    [78] MART′INEZ S, NI W M. Periodic solutions for a 3×3 competitive system withcross-di?usion[J]. Discrete and Continuous Dynamical systems., 2006, 15: 725-746.
    [79] GAN W Z, LIN Z G. Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model[J/OL]. J. Math. Anal. Appl., (2007), doi:10.1016/j.jmaa.2007.04.022.
    [80] RYU K, AHN I. Positive steady-states for two interacting species models with linearself-cross di?usions[J]. Discrete and Continuous Dynamical systems., 2003, 9: 1049-1061.
    [81] PAO C V. Strongly coupled elliptic systems and applications to Lotka-Volterramodels with cross-di?usion[J], Nonlinear Analysis., 2005, 60: 1197-1217.
    [82] CHEN W Y, PENG R. Stationary patterns created by cross-di?usion for thecompetitor-competitor-mutualist model[J]. J. Math. Anal. Appl., 2004, 291: 550-564.
    [83] KERMACK W O, MACKENDRICK A G. Contributions to the mathematical the-ory of epidemics: Part I[J]. Proc. Roy. Soc., 1927, 115: 700-721.
    [84] KERMACK W O, MACKENDRICK A G. Contributions to the mathematical the-ory of epidemics: Part II[J]. Proc. Roy. Soc., 1932, 138: 55-83.
    [85]马知恩,周义仓,王稳地,靳祯,传染病动力学的数学建模与研究,北京:科学出版社, 2001.
    [86] CHATTOPADHYAY J, ARINO O. A predator-prey model with disease in theprey[J]. Nonlinear Anal., 1999, 36: 747-766.
    [87] CHATTOPADHYAY J, SRINIVASU P D N, BAIRAGI N. Pelicans at risk in Saltonsea- an eco-epidemiological model-II[J]. Ecological Modelling., 2003, 167: 199-211.
    [88] XIAO Y, CHEN L. Analysis of a three species Eco-Epidemiological model[J]. J.Math. Anal. Appl., 2001, 258: 733-754.
    [89] XIAO Y, CHEN L. A ratio-dependent predator-prey model with disease in theprey[J]. Appl. Math. Comput., 2002, 131: 397-414.
    [90] XIAO Y, FRANK. VAN DEN BOSCH, The dynamics of an eco-epidemic modelwith biological control[J]. Ecological Modelling., 2003, 168: 203-214.
    [91] FREEDMAN H I. A model of predator-prey dynamics modified by the action ofparasite[J]. Math. Biosci., 1990, 99: 143-155.
    [92] BELTRAMI E, CARROLL T O. Modelling the role of viral disease in recurrentphytoplankton blooms[J]. J. Math. Biol., 1994, 32: 857-863.
    [93] VENTURINO E, Epidemics in predator-prey models: disease in prey[C], In: O.Arino, D. Axelrod, M. Kimmel, M. Langlais, (Eds.), Mathematical Population dy-namics, Analysis of Heterogeneity, c1995, 1: 381-393.
    [94] VENTURINO E. The e?ects of diseases on competing species[J]. Math. Biosc., 2001,174: 111-131.
    [95] VENTURINO E, Epidemics in predator-prey model: disease in the predators[J].IMA J. Math. Appl. Med. Biol., 2002, 19: 185-205.
    [96] KADOTA T, KUTO K. Positive steady states for a prey-predator model with somenonlinear di?usion terms[J]. J. Math. Anal. Appl., 2006, 323: 1387-1401
    [97] XIAO Y, CHEN L. Modelling and analysis of a predator-prey model with diseasein prey[J]. Math. Biosci., 2001, 171: 59-82.
    [98] CHATTOPADHYAY J, PAL S. Viral infection on phytoplankton-zooplanktonsystem-a mathematical model[J]. Ecological Modelling., 2002, 151: 15-28.
    [99] HADELER K P, FREEDMAN H I. Predator-prey population with parasite infec-tion[J]. J. Math. Biol., 1989, 27: 609-631.
    [100] BAIRAGI N, ROY P K, CHATTOPADHYAY J. Role of infection on the stabilityof a predator-prey system with several response functions–A comparative study[J].J. Theor. Biol., 2007, 248: 10-25
    [101] BROWN P N. Decay to uniform states in ecological interactions[J]. SIAM J. Appl.Math., 1980, 38: 22-37.
    [102] PAO C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: PlenumPress, 1992.
    [103] WANG M X. Stationary patterns for a prey-predator model with prey-dependentand ratio-dependent functional responses and di?usion[J], Physica D., 2004, 196:172-192.
    [104] CHATTOPADHYAY J, BAIRAGI N. Pelicans at risk in Salton sea an eco-epidemiological model[J]. Ecological Modelling., 2001, 136: 103-112.
    [105] CHATTOPADHYAY J, SARKAR R R, PAL S. Dynamics of nutrient-phytoplankton interaction in the presence of viral infection[J]. BioSystems., 2003,68: 5 -17.
    [106] DU Y H, LOU Y. Qualitative behaviour of positive solutions of a predator-preymodel: E?ects of saturation[J]. Proc. Roy. Soc. Edinburgh., 2001, 131: 321-349.
    [107] PANG P Y H, WANG M X. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and di?usion[J]. Proc. LondonMath. Soc., 2004, 88 (3): 135-157.
    [108] LI L. Coexistence theorems of steady states for predator-prey interacting system[J].Trans. Amer. Math. Soc., 1988, 305: 143-166.
    [109] LOU Y, NI W N. Di?usion vs cross-di?usion: An elliptic approach[J]. J. D. E.,1999, 154: 157-190.
    [110] PANG P Y H, WANG M X. Strategy and stationary pattern in a three-speciespredator-prey model, J. D. E., 2004, 200: 245-273.
    [111] HENRY D. Geometric Theory of Semilinear Parabolic Equations[M]. Lecture Notesin Mathematics, vol. 840, Berlin: Springer-Verlag, 1993.
    [112] LE D , SMITH H L. A parabolic system modelling microbial competition in anunmixed bio-reactor[J] J. D. E., 1996, 130: 59-91.
    [113] ALIKAKOS N, Lp Bounds of Solutions of Reaction-Di?usion Equations[J], Comm.P. D. E., 1979, 4(8): 827-868.
    [114] LOU Y, NI W M. Di?usion, self-di?usion and cross-di?usion[J]. J. D. E., 1996,131: 79-131.
    [115] LIN C S, NI W M and TAKAGI I. Large amplitude stationary solutions to achemotaxis system[J]. J. D. E., 1988, 72: 1-27.
    [116] NIRENBERG L. Topics in Nonlinear Functional Analysis[M], Providence: Ameri-can Mathematical Society, 2001.
    [117] TANNER J T. The stability and the intrinsic growth rates of prey and predatorpopulations[J]. Ecology.,1975, 56: 855-867.
    [118] SAEZ E, GONZALEZ-OLIVARES E. Dynamics of a predator-prey model[J]. SIAMJ. Appl. Math., 1999, 59: 1867-1878.
    [119] MAY R M. Stability and Complexity in Model Ecosystems[M]. NJ: Princeton Uni-versity Press, 1974.
    [120] BRAZA P A. The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing[J]. SIAM J. Appl. Math., 2003, 63: 889-904.
    [121] HSU S B, HUANG T W. Global stability for a class of predator-prey systems[J].SIAM J. Appl. Math., 1995, 55: 763-783.
    [122] PENG R, WANG M X. Positive steady-states of the Holling-Tanner prey-predatormodel with di?usion[J]. Proc. Roy. Soc. Edinburgh Sect. A., 2005, 135: 149-164.
    [123] PENG R, WANG M X. Global stability of the equilibrium of a di?usive Holling-Tanner prey-predator model[J]. App. Math. Lett., 2007, 20: 664-670.
    [124] PENG R, WANG M X, Yang G Y. Stationary patterns of the Holling-Tanner prey-predator model with di?usion and cross-di?usion[J]. Appl. Math. Comput., 2008,196: 570-577.
    [125] DU Y H, HSU S B. A di?usive predator-prey model in heterogeneous environ-ment[J]. J. D. E., 2004, 203(2): 331-364.
    [126] KO W, RYU K. Non-constant positive steady-states of a di?usive predator-preysystem in homogeneous environment[J], J. M. A. A., 2007. 327: 539-549.
    [127] WANG M X, PANG P Y H, CHEN W Y. Sharp spatial Patterns of the di?usiveHolling-Tanner prey-predator model in heterogeneous environment[J]. IMA J. Appl.Math., 2008,73: 815-835.
    [128] KAREIVA P, ODELL G. Swarms of predators exhibit”preytaxis”if individualpredators use area restricted search[J], The American Naturalist., 1987, 130: 233-270.
    [129] FARNSWORTH K, BEECHAM J. How do grazers achieve their distribution? acontinuum of models from random di?usion to the ideal free distribution usingbiased random walks[J]. The American Naturalist., 1999,153: 509-526.
    [130] FAN M, KUANG Y. Dynamics of nonautonomous predator-prey system with theBeddington-DeAngelis functional response[J]. J. M. A. A., 2004, 295: 15-39.
    [131] KARA T K, PAHARI U K. Modelling and analysis of a prey-predator system withstage-structure and harvesting[J], Nonlinear Analysis: RWA., 2007, 8: 601-609.
    [132] CANTRELL R S, COSNER C. On the dynamics of predator-prey models withBedding’ton-De Angelis functional response[J]. J. M. A. A., 2001, 257: 206-222,.
    [133] HWANG Z W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J. M. A. A., 2002, 281: 395-401.
    [134] LU Z, LIU X. Analysis of a predator-prey model with modified Holling-Tannerfunctional response and time delay[J]. Nonlinear Analysis: RWA., 2008, 9: 641-650.
    [135] CHEN X F, et al. A strongly coupled predator-prey system with non-monotonicfunctional response[J/OL], Nonlinear Analysis., 2006, doi:10.1016/j.na.2006.08.022.
    [136] WANG M X. Stationary patterns of strongly coupled prey-predator models[J], J.M. A. A., 2004, 292(2): 484-505.
    [137] WANG M X. Stationary patterns caused by cross-di?usion for a three-species prey-perdator model[J]. Comput. Math. Appl., 2006, 52: 707-720.
    [138] CHEN B, WANG M X. Qualitative analysis for a di?usive predator-prey model[J].Comput. Math. Appl., 2008, 55: 339-355.
    [139] WANG M X, Non-constant positive steady-states of the Sel’kov model[J]. J. D. E.,2003, 190(2): 600-620.
    [140] WANG M X, PANG P Y H. Global asymptotic stabilty of positive steady statesof a di?usive ratio-dependent prey-predator model[J]. Appl. Math. Letters., 2008,21: 1215-1220.
    [141] WANG M X, PANG P Y H. Qualitative analysis of a di?usive variable-territoryprey-predator model[J]. Discrete Contin. Dyn. Syst., 2009, 23(3): 1061-11072.
    [142] DU Y H, PANG P Y H, WANG M X. Qualitative analysis of a prey-predatormodel with stage structure for the predator[J]. SIAM J. Appl. Math., 2008, 69(2):596-620.
    [143] PENG R, SHI J P, WANG M X. On stationary patterns of a reaction-di?usionmodel with autocatalysis and saturation law[J]. Nonlinearity., 2008, 21(7): 1471-1488.
    [144] PENG R, SHI J P, WANG M X. Stationary pattern of a ratio-dependent foodchain model with di?usion[J]. SIAM J. Appl. Math., 2007, 67(5): 1479-1503.
    [145] KUTO K, YAMADA Y. Multiple coexistence states for a prey-predator systemwith cross-di?usion[J]. J. D. E., 2004, 197: 315-348.
    [146] NAKASHIMA K, YAMADA Y. Positive steady states for prey-predator modelswith cross-di?usion[J]. Adv. Di?erential Equations., 1996, 6: 1099-1122.
    [147] YAMADA Y. Stability of steady states for prey-predator di?usion equations withhomogeneous Dirichlet conditions[J]. SIAM J. Math. Anal., 1990, 21: 327-345.
    [148] NI W M. Di?usion, cross-di?usion and their spike-layer steady states[J]. NoticesAmer. Math. Soc., 1998, 45(1): 9-18.
    [149] CHEN X F, et al. Steady states of a strongly coupled prey-predator model[J].Discrete Contin. Dyn. syst., Supplement Volume 2005, 173-180.
    [150] ZENG X Z. Non-constant positive steady states of a prey-predator system withcross-di?usions[J]. J. M. A. A., 2007, 332: 989-1009.
    [151] KIM K I, Lin Z. A degenerate parabolic system with self-di?usion for a mutualisticmodel in ecology[J]. Nonlinear Analysis. RWA., 2006, 7(4): 597-609.
    [152] WANG M X, XIE C H. A degenerate and strongly coupled quasilinear parabolicsystem not in divergence form[J]. Z. angew. Math. Phys., 2004, 55: 741-755.
    [153] LI Y, DENG W, XIE C. Global existence and nonexistence for degenerate parabolicsystems[J]. Proc. Amer. Math. Soc., 2002, 130: 3661-3670.
    [154] WIEGNER M. Blow-up for solutions of some degenerate parabolic equations[J].Di?. and Int. Eqns., 1994, 7: 1641-1647.
    [155] FRIEDMAN A, MCLEOD B. Blow-up of solutions of nonlinear degenerateparabolic equations[J]. Arch. Rational. Mech. Anal., 1986, 96: 55-80.
    [156] CHEN S. Global existence and nonexistence for some degenerate and quasilinearparabolic systems[J/OL]. J. D. E., 2008, doi:10.1016/j.jde.2007.11.008.
    [157] FENG P, Global and blow-up solutions for a mutualistic model[J]. Nonlinear Anal-ysis., 2008, 68: 1898-1908.
    [158] LOU Y, NAGYLAKI T, NI W M. On di?usion-induced blowups in a mutualisticmodel[J]. Nonlinear Analysis: TMA., 2001, 45: 329-342.
    [159] MIZOGUCHI N, NINOMIYA H, YANAGIDA E. On the blowup induced by di?u-sion in nonlinear systems[J]. J. Dyn. D. E., 1998, 10: 619-638.
    [160] WANG M X. Some degenerate and quasilinear parabolic system not in divergenceform[J]. J. M. A. A., 2002, 274: 424-436.
    [161] WEINBERGER H F. Di?usion-induced blowup in a system with equal di?usions[J].J. D. E., 1999, 154: 225-237.
    [162]彭锐,几类捕食模型平衡态模式的定性分析[D] ,南京:东南大学数学系, 2006.
    [163] LADYZHENSKAJA O A, SOLONIKOV V A and URAL’CEVA N N. Linear AndQuasilinear Equations Of Parabolic Type[M]. Providence: American MathematicalSociety, 1968.
    [164] HSU S B, HWANG T W, KUANG Y. A ratio-dependent food chain model and itsapplications to biological control[J]. Math. Biosci., 2003, 181: 55-83.
    [165] EBERT D, LIPSTICH M, MANGIN K L. The e?ect of parasites on host pop-ulation density and extinction: experimental epidemiology with Daphnia and sixmicroparasites[J]. The American Naturalist, 2000, 156: 459-477.
    [166] AKCAKAYA H R, ARDITI R, GINZBURG L R. Ratio-dependent prediction: Anabstraction that works[J]. Ecology., 1995, 79: 995-1004.
    [167] COSNER C, DEANGELIS D L, AULT J S, OLSON D B. E?ects of spatial groupingon the functional response of predators[J]. Theor. Pop. Biol., 1999, 56: 65-75.
    [168]叶其孝,李正元.反应扩散方程引论[M],北京:科学出版社, 1999.
    [169] KO W, RYU K. Qualitative analysis of a predator-prey model with Holling typeII functional response incorporating a prey refuge[J]. J. D. E., 2006, 231: 534-550.
    [170] YANG X H, LI F C, XIE C H. Global existence and blow-up of solutions forparabolic systems involving cross-di?usions and nonlinear boundary conditions[J],Acta Mathematica Sinica, English Series., 21(2005), 923-928.
    [171] TURING A. The chemical basis of morphogenesis, Philos. Trans. Royal Soc[J].1952, 237: 37-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700