立式筒形行波磁场作用下铝合金凝固组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金由于其低密度、高比强度等显著特点,在交通运输工具、日常生活器具、传统装备领域等材料的选择上占有举足轻重的地位。然而铝合金铸件中存在着凝固组织粗大、气孔、疏松、偏析等缺陷使其越来越难以满足某些领域的需求,而外加电磁场在材料加工领域的应用,为制备新型的高性能铝合金提供了新的思路。
     本文以致密化并细化组织,同时去除熔体中气体及夹杂物为目的。基于对平面行波磁场感应器磁场分布的研究设计并制造了立式筒形行波磁场感应器。结合数值模拟与实验测量的方法研究了筒形行波磁场感应器内部磁感应强度分布、金属熔体受力和流动情况;最后通过了高能X射线断层扫描技术研究了电磁力和金属熔体的流动对铝合金凝固组织及缺陷的三维形貌的影响。上述研究为行波磁场在工业生产中的应用奠定了理论基础。
     筒形行波磁场感应器内部磁感应强度在面距较小时起伏剧烈,反之分布变得均匀;磁感应强度随着面距的增大呈指数规律衰减;磁感应强度随着输入电流安匝数的增加呈线性关系递增;磁感应强度各方向上的分量Br和Bz受磁感应器结构所决定,Br的极大值始终位于齿冠上,而Bz的极大值始终位于齿槽上;添加回磁铁芯可以有效地增强Br,衰弱Bz。
     通过数值模拟得到电磁力以及金属熔体流动的规律。金属熔体所受电磁力和流速均随着输入电流安匝数的增大而呈抛物线规律增大,两者均受电源频率的影响,但两者有着不同的规律。回磁铁芯可以影响金属熔体所受电磁力的分布,使得Fr减弱,Fz增强,而在本实验所用铸型情况下,回磁铁芯对金属熔体的流动影响甚微。
     通过对行波磁场作用下纯铝凝固组织的研究发现,施加行波磁场促使纯铝凝固凝固组织由柱状晶逐渐转变为等轴晶,并且有效地细化纯铝凝固组织。晶粒尺寸随着磁感应强度的增加先减小再增大,说明行波磁场存在一个临界值,当磁感应强度达到临界值时细化效果最明显。同时并不是行波磁场作用时间越长细化效果越好,综合考虑电磁场热效应,本实验条件下最佳的作用时间为液态降温阶段后期和凝固阶段前期。
     在行波磁场对于凝固组织缺陷影响方面,施加行波磁场可以有效地去除熔体中所含气体并致密化凝固组织。在铝合金凝固过程中施加行波磁场理论上可以有效地减小气泡的临界形核半径,促进气泡的非均质形核,同时加剧了熔体中气泡的排出。施加行波磁场可以有效地改善铝合金凝固组织中的孔洞,促使微观孔洞的形貌由复杂的树枝状转变为等轴状,并且微观孔洞的体积分数随着磁感应强度的增大而减小,使得试样从上而下致密度越来越高,且微观孔洞曲面的平均曲率随磁感应强度的增大而增大。
     实验研究了行波磁场作用对铝硅合金凝固组织的影响。在Al-10.3wt.%Si合金中,施加行波磁场可以使初生铝形貌由树枝晶向等轴晶转变,且等轴晶的尺寸随着磁感应强度的增大而减小,分布也越发均匀。通过高能X射线断层扫描再现了共晶硅的三维片状结构,片状共晶硅在行波磁场作用下得到了细化,并且磁感应强度存在一个临界值,共晶硅的面体比随着磁感应强度的增大先陡增然后平缓增大,当磁感应强度为临界值时此时面体比值最大,过了临界值后,面体比有所降低;此外共晶硅的长度、宽度以及厚度均随着磁感应强度的增大先陡减然后平稳减小至临界值时急剧减小,最后反弹。在Al-22.9wt.%Si合金中,施加行波磁场可以有效地控制初生硅的分布,细化初生硅颗粒,初生硅富集层的厚度随着磁感应强度的增大而减小,初生硅颗粒由原始的板状向类似球状结构发展。由于行波磁场可以影响金属熔体中不同导电率颗粒的分布,行波磁场不仅可以用作除杂,还可以用作制备自生梯度功能复合材料。同时结合数值模拟和实验结果,得出了制备铝合金筒形件的最佳工艺参数。
Aluminum alloys is one of the major concern light metal in the word and hasbeen widely used in aerospace, aviation, vehicle, mechanical and other styles ofproduction owing to its virtues of low density, high specific strength etc.. And nowaluminum alloy is more and more difficult to meet the needs in some special areabecause of the bulk grain and defects such as pores, microporosities and segregations.Owing to the development of the electromagnetic field applied on the materialsprocessing, a new clean and environmental protection method was applied to producehigh quality aluminum alloys.
     In this paper, the purpose of the dissertation is to purify molten aluminum,eliminate microporosities and refine structure. We have designed and manufactured anew cylindrical traveling magnetic field generator (CTMF) which could change thestructure if need, based on the analysis on the plane traveling magnetic fieldgenerator (PTMF). Then distribution of the magnetic flux density, theelectromagnetic force, the forced convection induced by TMF and the effect of TMFon the solidification microstructure of aluminum alloys have been investigated. Threedimensions of microstructure and microporosities have been reconstructured bysynchrotron-based X-ray tomography technique.
     Magnetic flux density in the CTMF varies violently when close to the magneticgenerator surface, but it is the opposite. The magnetic flux density decreasesaccording to the exponential law with the increasing L, and increases with theincreasing input ampere turns linearly. The relation between the Br and the Bz aredetermined by the position in the CTMF, the maximum points of the Br locate in theabove of the teeth, when the maximum points of the Bz locate in the above of thegrooves. The application of the iron core can enhance Br and weaken Bz.
     The distribution of the electromagnetic force and forced convection induced bythe TMF are obtained by simulations. Both of them increases with the increasinginput ampere turns according to the parabolic law, and influenced by the currentfrequency. The addition of the iron core can enhance Fz and weaken Fr, but very littleto the forced convection.
     The influence of TMF on the solidification macrostructure of pure Al has beeninvestigated. The results show that the macrostructure of the pure Al transforms fromcoarse columnar crystal into fine equiaxed crystal, and the grain size of the equiaxedcrystal decreases firstly and then increases with the increasing input ampere turns, theoptimum value of the magnetic field is32mT in this situation. Because of the electromagnetic heat effect, the TMF used in the last stage of liquid cooling and theearly stage of the solidification lead to the best refinement effect.
     The using of TMF is an effective way that can purify the aluminum alloy melts.The critical nucleation radius of the pore decreases with the increasing magnetic fluxdensity. And the TMF promotes the heterogeneous nucleation of the pores. After thegas dissolved in the metal liquid accumulated to form large bubbles, the travelingmagnetic field forced the bubbles to the surface of the molten metal, the gas is easy tobe separated from the melt in the liquid stage, and the number of the porosities in thesample decreases with the increasing magnetic flux density, until the magnetic fluxdensity equal to45mT, the porosity disappears. The3-D microstructure of themicroporosities was reconstructured by the X-ray tomography technique. The usingof TMF can eliminate the microporosities of the sample, the morphology ofmicroporosities are changed from dendritic to equiaxed, and the volume fraction ofthe microporosities decrease with the increasing magnetic field density, the bottompart of the sample is more compact than the upper, and the mean curvature of themicroporosities increases with the increasing magnetic flux density.
     Effect of TMF on microstructure of Al-10.3wt%Si alloys has been investigated,the results show that, the morphology of the primary α-Al transforms from dendriticto equiaxed, and the grain size decreases with the increasing B. The3-Dmicrostructure of the eutectic Si has been characterized by X-ray tomographytechnique. The results show that the eutectic Si is a kind of plate like structure, andeutectic Si could be refined when the TMF applied. The value of the surface/volumeincreases with the increasing magnetic flux density until the magnetic flux densityequal to the optimum value and then decreases, when the length, width and thicknessof the eutectic vary with a contrary tendency. In Al-22.9wt%Si alloys, the applicationof TMF can control the distribution of the primary Si phase and eutectic Si and refinethe primary Si particles, the thickness of the enriched primary Si particles layerdecreases with the increasing B, the microstructure of the sample changes fromhypereutectic to eutectic and then to hypoeutectic from outer to inner. A novelapproach was developed to prepare in situ Al–Si functionally graded materials(FGMs) using TMF. At last, the optimal parameters were obtained by the simulationand experimental results.
引文
[1] Lu K. The Future of Metal[J]. Science,2010(328):319-320.
    [2]贾利晓,兰晔峰,朱正锋.铸造有色合金的发展趋势[J].铸造设备研究,2004(5):45-47.
    [3]贾泮江,陈邦峰. ZL205A合金高强优质铸件在大飞机上的应用[J].材料工程,2009(1):77-80.
    [4]田荣璋编著.铸造铝合金[M].长沙:中南大学出版社,2006:5-15.
    [5]唐剑编著.铝合金熔炼与铸造技术[M].北京:冶金工业出版社,2009:108-168.
    [6]丁鸿远编著.铸造铝合金[M].北京:机械工业出版社,1960:68-73.
    [7] Campbell J. Castings[M]. london: Butterworth-heinemann,2003:260-400.
    [8] Zeng J, Gu P, Wang Y. Investigation of Inner Vacuum Sucking Method forDegassing of Molten Aluminum[J]. Materials Science and Engineering: B,2012(0):1-4.
    [9] Wu R, Qu Z, Sun B, et al. Effects of Spray Degassing Parameters on HydrogenContent and Properties of Commercial Purity Aluminum[J]. Materials Scienceand Engineering: A,2007,456(1-2):386-390.
    [10] Mi G, Qi S, Liu X, et al. Research on Water Simulation Experiment of theRotating Impeller Degassing Process[J]. Materials Science and Engineering: A,2009,499(1-2):195-199.
    [11] Ming P M, Zhu D, Hu Y Y, et al. Micro-Electroforming under PeriodicVacuum-Degassing and Temperature-Gradient Conditions[J]. Vacuum,2009,83(9):1191-1199.
    [12] Dispinar D, Akhtar S, Nordmark A, et al. Degassing, Hydrogen and PorosityPhenomena in A356[J]. Materials Science and Engineering: A,2010,527(16-17):3719-3725.
    [13]张忠涛.外场对铝熔体异相粒子运动及其凝固行为的影响研究[D].大连理工大学,2009:1-100.
    [14]疏达.电磁分离铝熔体中非金属夹杂物的理论研究[D].上海交通大学材料加工工程,2000:30-80.
    [15] Niyama E, Uchida T, Morikawa M. A Method of Shrinkage Prediction and itsApplication to Steel Casting Practice[J]. International Cast Metals Journal,1982,54:507-516.
    [16] Carlson K D, Beckermann C. Prediction of Shrinkage Pore Volume FractionUsing a Dimensionless Niyama Criterion[J]. Metallurgical and MaterialsTransactions A,2009,40(1):163-175.
    [17] Asai S. Electromagnetic Processing of Materials, Past, Present and Future: The5th International Symposium on Electromagnetic Processing of Materials,Sendai, Japan,2006[C]. The Iron and Steel Institute of Japan.
    [18] Hirata H, Hoshikawa K. Silicon Crystal Growth in a Cusp Magnetic Field[J].Journal of Crystal Growth,1989,96(4):747-755.
    [19] Peter R. Travelling Magnetic Fields Applied to Bulk Crystal Growth from theMelt: The Step from Basic Research to Industrial Scale[J]. Journal of CrystalGrowth,2008,310(7-9):1298-1306.
    [20] Braithwaite D, Beaugnon E, Tournier R. Magnetically Controlled Convectionin a Paramagnetic Fluid[J].1991,354(6349):134-136.
    [21] De Rango P, Lees M, Lejay P, et al. Texturing of Magnetic Materials at HighTemperature by Solidification in a Magnetic Field[J].1991,349(6312):770-772.
    [22] Hwang Y H Y, Cha P C P, Nam H N H, et al. Numerical Analysis of theInfluences of Operational Parameters on the Fluid Flow and Meniscus Shape inSlab Caster with EMBR [Z].1997:37,659-667.
    [23]白云峰,周月明,严彪,等.电磁场在材料凝固加工领域的应用[J].铸造,2008,57(2):105-109.
    [24] Ma M, Ogawa T, Watanabe M, et al. Study on Defects in CZ-Si Crystals Grownunder Three Different Cusp Magnetic Fields by Infrared Light ScatteringTomography[J]. Journal of Crystal Growth,1999,205(1-2):50-58.
    [25] Hirata H, Hoshikawa K. Homogeneous Increase in Oxygen Concentration inCzochralski Silicon Crystals by a Cusp Magnetic Field[J]. Journal of CrystalGrowth,1989,98(4):777-781.
    [26] YU H, WANG J, SUI Y, et al. Simulation of Heat Transfer and OxygenTransport in a Czochralski Silicon System with and Without a Cusp MagneticField[J]. Chinese Journal of Chemical Engineering,2006,14(1):8-14.
    [27]李喜,任忠鸣,邓康,等.纵向强磁场对MnBi/Bi共晶定向凝固组织的影响[J].金属学报,2005,41(6):588-592.
    [28]孙延辉,任忠鸣,李喜,等.强磁场对Al-4.5%Cu合金枝晶生长行为影响的初步研究[J].自然科学进展,2005,15(9):1148-1152.
    [29] Li X, Fautrelle Y, Ren Z. Influence of an Axial High Magnetic Field on theLiquid-Solid Transformation in Al-Cu Hypoeutectic Alloys and on theMicrostructure Of The Solid[J]. Acta Materialia,2007,55(4):1377-1386.
    [30]王强,王春江,王恩刚,等.强磁场对不同磁化率非磁性金属凝固组织的影响[J].金属学报,2005(02):128-132.
    [31]邓志杰,郑安生,武希康,等.水平磁场中GaSb单晶的生长[J].稀有金属,1993(06):467-469.
    [32]孙茂友,万群,秦福.水平磁场对熔体热对流的抑制作用[J].稀有金属,1992(04):61-64.
    [33] Takehiko S. Thermal Convection in a Horizontal Magnetic Field[J]. Journal ofCrystal Growth,1988,92(3-4):407-414.
    [34] Alboussière T, Neubrand A C, Garandet J P, et al. Segregation DuringHorizontal Bridgman Growth under an Axial Magnetic Field[J]. Journal ofCrystal Growth,1997,181(1-2):133-144.
    [35] Lavers J D, Tallb ck G R, Lavers E D, et al. Flow Control in ContinuousCasting Mold with Dual Coil EMS:Computational Simulation Study: The5thInternational Symposium on Electromagnetic Processing of Materials, Sendai,Japan,2006[C]. The Iron and Steel Institute of Japan.
    [36]徐林,张金山,宿忠旺.旋转磁场及其对合金凝固冷却曲线的影响[J].铸造设备研究,1995(06):36-43.
    [37] Eisa G F, Wilcox W R, Busch G. Effect of Convection on the Microstructure ofthe MnBi/Bi Eutectic[J]. Journal of Crystal Growth,1986,78(1):159-174.
    [38]徐振湖.对旋转磁场作用下的Al-Si合金的研究[J].铸造,2000(02):115-117.
    [39] Willers B, Eckert S, Michel U, et al. The Columnar-To-Equiaxed Transition inPb-Sn Alloys Affected by Electromagnetically Driven Convection[J]. MaterialsScience and Engineering: A,2005,402(1-2):55-65.
    [40] Za dat K, Ouled-Khachroum T, Vian G, et al. Directional Solidification ofRefined Al-3.5wt%Ni under Natural Convection and under a Forced FlowDriven by a Travelling Magnetic Field[J]. Journal of Crystal Growth,2005,275(1-2):1501-1505.
    [41] Shinmura T Y H. Study on a New Internal Finishing Process of aNonferromagnetic Tube by the Application of a Linearly Traveling MagneticField on the Process Principle and the Behaviors of Magnetic Finishing Tool[J].International Journal of the Japan Society for Precision Engineering,1994:28,29-34.
    [42] Trapaga N O G. A Numerical Study of the Effects of Electromagnetic Stirringon the Distributions of Temperature and Oxygen Concentration in SiliconDouble-Crucible Czochralski Processing[J]. Journal of the ElectrochemicalSociety,1997:144,764-772.
    [43] Ono N T G. A numerical Study of the Effects of Electromagnetic Stirring on theDistributions of Temperature and Oxygen Concentration in Silicon Doublecrucible Czochralski Processing[J]. Journal of the electrochemical society,1997(144):764-772.
    [44] Tomzig E, Virbulis J, von Ammon W, et al. Application of Dynamic andCombined Magnetic Fields in the300mm Silicon Single-Crystal Growth[J].Materials Science in Semiconductor Processing,5(4-5):347-351.
    [45] Abricka M, Gelfgat Y, Krūmi J. Influence of Combined ElectromagneticFields on the Heat/Mass Transfer in the Bridgman Process[J]. EnergyConversion and Management,2002,43(3):327-333.
    [46] Schwesig P, Hainke M, Friedrich J, et al. Comparative Numerical Study of theEffects of Rotating and Travelling Magnetic Fields on the Interface Shape andThermal Stress in the VGF Growth of InP Crystals[J]. Journal of CrystalGrowth,2004,266(1-3):224-228.
    [47] Medina M D T Y D. Channel Segregation During Solidification and the Effectsof an Alternating Traveling Magnetic Field[J]. Metallurgical and MetalsTransactions B-process Metallurgy and Materials Processing Science,2004,4:743-745.
    [48] S K. Electromagnetic stirring for continuous casting-Part I[J]. Revue DeMetallurgie-cahiers D Information Techniques,2003,100(4):395-408.
    [49] Za dat K, Mangelinck-No l N, Moreau R. Control of Melt Convection by aTravelling Magnetic Field During the Directional Solidification of Al-NiAlloys[J]. Comptes Rendus Mécanique,2007,335(5-6):330-335.
    [50] Tomzig E, Virbulis J, von Ammon W, et al. Application of Dynamic andCombined Magnetic Fields in the300mm Silicon Single-Crystal Growth[J].Materials Science in Semiconductor Processing,2002,5(4-5):347-351.
    [51] Krauze A, Muiznieks A, Mühlbauer A, et al. Numerical2D Modelling ofTurbulent Melt Flow in CZ System with Dynamic Magnetic Fields[J]. Journalof Crystal Growth,2004,266(1-3):40-47.
    [52] Greer A L, Bunn A M, Tronche A, et al. Modelling of Inoculation of MetallicMelts: Application to Grain Refinement of Aluminium by Al-Ti-B[J]. ActaMaterialia,2000,48(11):2823-2835.
    [53] Ch. A G. From Constrained to Unconstrained Growth During DirectionalSolidification[J]. Acta Materialia,2000,48(10):2483-2501.
    [54] Vandyoussefi M, Greer A L. Application of Cellular Automaton-Finite ElementModel to the Grain Refinement of Directionally Solidified Al-4.15wt%MgAlloys[J]. Acta Materialia,2002,50(7):1693-1705.
    [55] Liu S, Lu S, Hellawell A. Dendritic Array Growth in the Systems NH4Cl-H2Oand [CH2CN]2-H2O: the Detachment of Dendrite Side Arms Induced byDeceleration[J]. Journal of Crystal Growth,2002,234(4):740-750.
    [56] Zhong Yun-bo, Zhong-ming R, Kang D. Separation of Inclusions from LiquidMetal Contained in a Triangle/Squre Pipe by Traveling Magnetic Field[J].Trans. Nonferrous Met. Soc. China,2000,10(2):240-245.
    [57] Su Yan-qing, Zhang Tie-jun, Guo Jing-jie. Physical Simulation of Mold-FillingProcessing of Thin-Walled Castings under Traveling Magnetic Field[J]. J.Mater. Sci. Technol,2004,20(1):27-30.
    [58] http://www.imr.cas.cn/jgsz/kyxt/syxjclyjfzzx/tshjclyjs/.
    [59] Okress E C, Wroughton D M, Comenetz G. Electromagnetic Levitation of Solidand Molten Metals[J]. J. Appl. Phys,1952,23(5):525-547.
    [60] Begley R T, Comenetz G, A F P. Vacuum Levitation Melting[J]. Rev. Sci. Instrum,1959,324(9):248-253.
    [61] Beeley P. Foundry Technology[M]. London: Butterworths,1972:25-120.
    [62] Miki. Y. Applications of MHD to Continuous Casting of Steel[C]. The5thInternational Symposium on Electromagnetic Processing of Materials, Sendai,Japan,2006.
    [63] Masahiro Tani, Kazuhisa Tanaka, Shinichi Fukunaga, et al. The PulsativeElectromagnetic Casting Technique for Slab Casting[C]. The5th InternationalSymposium on Electromagnetic Processing of Materials, Sendai, Japan,2006
    [64]葛丰德,何洪亮,霍树海.脉动磁场铸造[J].机械工程学报,1989,25(1):1-6.
    [65] A E T. Effect of Electromagnetic Forces on Aluminum Cast Structure.[J]. lightmetals[J]. light metals,1983,33(12):733-741.
    [66]汪明月.钛铝基合金方形冷坩埚定向凝固工艺研究[D].哈尔滨工业大学,2007:1-50.
    [67] Vivès C. Effects of Forced Electromagnetic Vibrations during the Solidificationof Aluminum Alloys: Part I. Solidification in the Presence of CrossedAlternating Electric Fields and Stationary Magnetic Fields[J].1996,27(3):445-455.
    [68] Vivès C. Effects of Forced Electromagnetic Vibrations during the Solidificationof Aluminum Alloys: Part II. Solidification in the Presence of CollinearVariable and Stationary Magnetic Fields[J].1996,27(3):457-464.
    [69] Radjai A, Miwa K, T. N. An investigation of the effects caused byelectromagnetic vibrations in a hypereutectic Al-Si alloy melt[J]. Metallurgicaland Materials Transactions A-physical metallurgy and materials science,1998,29(5):1477-1484.
    [70] Radjai A, Miwa K, T. N. An Investigation of the Effects Caused byElectromagnetic Vibrations in a Hypereutectic Al-Si Alloy Melt[J]. Metallurgical andMaterials Transactions A-physical metallurgy and materials science,2000,31(3):755-762.
    [71] Cramer A, S E, Ch H. Efficient Melt Mixing due to the Combined Action of aRotating and a Traveling Magnetic Field[C]. Proceedings of EPM2003,4th Int.Conference on Electromagnetic Processing of Materials, Lyon, France,2003
    [72] Mizutani Y, Ohura Y, Miwa K. Effect of the Electromagnetic Vibration Intensity onMicrostructural Refinement of Al-7%Si Alloy[J]. Materials Transactions,2004,45(6):1944-1948.
    [73] Sugiura K, Iwai K. Effect of Operating Parameters of an ElectromagneticRefining Process on the Solidified Structure[J]. ISIJ International,2004,44(8):1410-1415.
    [74] Yoshiki Mizutani, Jun Kawata, Kenji Miwa, et al. Effect of the Frequency ofElectromagnetic Vibrations on Microstructural Refinement of AZ91D MagnesiumAlloy[J].2004,19(10):2997-3003.
    [75]訾炳涛,刘文今,姚可夫,等.电磁场在材料凝固过程中的应用[J].天津冶金,2002(5):5-10.
    [76] Erb R M, Libanori R, Rothfuchs N, et al. Composites Reinforced in ThreeDimensions by Using Low Magnetic Fields[J]. Science,2012,335(6065):199-204.
    [77] Za dat K, Mangelinck-No l N, Moreau R. Control of Melt Convection by aTravelling Magnetic Field during the Directional Solidification of Al-NiAlloys[J]. Comptes Rendus Mécanique,2007,335(5-6):330-335.
    [78] Rudolph P, Czupalla M, Lux B. LEC growth of Semi-Insulating GaAs Crystalsin Traveling Magnetic Field Generated in a Heater-Magnet Module[J]. Journalof Crystal Growth,2009,311(21):4543-4548.
    [79] MIN Z, SHEN J, WANG L, et al. Effect of Traveling Magnetic Field on DendriteGrowth of Pb-Sn alloy during Directional Solidification[J]. Transactions ofNonferrous Metals Society of China,2011,21(9):1976-1980.
    [80] Y. M. Gel Fgat, Krumin Y P, Meshkov V P. Effect of Traveling ElectromagneticField on Velocity of Metal Casting into the Mould.[J]. Magnetohydrodynamics,1990,26(2):129-132.
    [81] Rabinovich B V. Production of Thin-walled Light Alloy Castings in TravellingMagnetic Field[J]. Liteinoe Proizvodstvo,1992,10:6-8.
    [82] International Search Report: PCT/SU.91/00153[J].
    [83]王晓东,李廷举.永磁驱动的行波磁场理论及对凝固组织微细化作用[J].稀有金属材料与工程,2002,31(001):26-30.
    [84]张琦.复合电磁场对连铸空心管坯质量的影响[D].大连理工大学,2007:20-50.
    [85]张琦,李廷举,王同敏,等.连铸空心管坯内置行波磁场对凝固组织的影响[J].稀有金属材料与工程,2007,36(9):1566-1569.
    [86]耿佃桥,雷洪,赫冀成.行波磁场对RH精炼过程混合特性的影响[J].东北大学学报:自然科学版,2010(1):64-67.
    [87]王芳.移动磁场作用下钢液湍流的大涡模拟及气液两相流行为的研究[D].东北大学,2008:39-54.
    [88]杨院生,于力,贺幼良,等.真空行波电磁细化高温合金精密铸造方法[P].2001-8-29.
    [89] Takamitsu S, Hideo T, Shuji O, et al. An Induction Heating Method withTraveling Magnetic Field for Long Structure Metal[J]. Translated from DenkiGakkai Ronbunshi,2007,127(8):912-917.
    [90]王江波.行波磁场感应加热[D].河北工业大学电工理论与新技术,2006:18-35.
    [91]钟云波,任忠鸣,康邓,等.行波磁场净化液态金属时矩形管及三角形管内夹杂物去除效率的理论解析效率分析[J].金属学报,1999,35(5):503-508.
    [92]钟云波,任忠鸣,邓康,等.行波磁场净化液态金属时磁感应强度分布对净化效果的影响[J].上海大学学报(英文版),1999,3(2):157-161.
    [93]钟云波,任忠鸣,邓康,等.行波磁场净化液态金属时金属液流动控制的初步探讨[J].上海大学学报(自然科学版),1999,5(1):42-45.
    [94]钟云波,任忠鸣,邓康,等.行波磁场连续净化铝合金液实验[J].中国有色金属学报,2001(02):167-171.
    [95]袁庆波.行波磁场用于铝合金熔体净化的研究[D].昆明理工大学,2006:21-48.
    [96]袁庆波,刘新华,钟云波,等.行波磁场净化铝熔体中的感生电流分布[J].云南冶金,2003,32(4):18-21.
    [97]贾均,陈利军,丁宏升,等.大型薄壁铝合金铸件磁流铸造技术[J].特种铸造及有色合金,1999:137-139.
    [98]陈利军.大型薄壁板状铝合金铸件磁流铸造技术研究[D].哈尔滨工业大学哈尔滨工业大学材料加工工程,1999:15-45.
    [99]张铁军.大型薄壁铝合金件移动磁场铸造充型过程基础研究[D].哈尔滨工业大学哈尔滨工业大学材料加工工程,2003:20-50.
    [100]吕国伟.铸造用移动磁场分布规律的研究[D].哈尔滨工业大学,2005:40-50.
    [101]西泽泰二.微观组织热力学[M].北京:化学工业出版社,2006:2-15.
    [102]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨工业大学出版社,1998:145-205.
    [103] Miller M K, Forbes R G. Atom Probe Tomography[J]. Materials Characterization,2009,60(6):461-469.
    [104] Gault B, De Geuser F, Stephenson L T, et al. Estimation of the ReconstructionParameters for Atom Probe Tomography[J]. Microscopy and Microanalysis,2008,14(4):296-305.
    [105] Gault B, Moody M P, de Geuser F, et al. Advances in the Calibration of AtomProbe Tomographic Reconstruction[J]. Journal of Applied Physics,2009,105(3):349-413.
    [106] Seidman D N, Stiller K. An Atom-Probe Tomography Primer[J]. MRS bulletin,2009,34(10):717-724.
    [107] Gault B, Moody M P, De Geuser F, et al. Spatial Resolution in Atom ProbeTomography[J]. Microscopy and Microanalysis,2010,16(01):99-110.
    [108] Knott G, Marchman H, Wall D, et al. Serial Section Scanning ElectronMicroscopy of Adult Brain Tissue using Focused Ion Beam Milling[J]. TheJournal of Neuroscience,2008,28(12):2959-2964.
    [109] Shim S, Bei H, Miller M K, et al. Effects of focused ion Beam Milling on theCompressive Behavior of Directionally Solidified Micropillars and theNanoindentation Response of an Electropolished Surface[J]. Acta Materialia,2009,57(2):503-510.
    [110] Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: AdvancedAnalytical Tools for Studies of Chemical Composition, Microstructure andCrystal Structure in Geomaterials on a Nanometre Scale[J]. Chemical Geology,2009,261(3):217-229.
    [111] Iwai H, Shikazono N, Matsui T, et al. Quantification of SOFC AnodeMicrostructure Based on Dual Beam FIB-SEM Technique[J]. Journal of PowerSources,2010,195(4):955-961.
    [112] Wirth R. Focused Ion Beam (FIB) Combined with SEM and TEM: AdvancedAnalytical Tools for Studies of Chemical Composition, Microstructure andCrystal Structure in Geomaterials on a Nanometre Scale[J]. Chemical Geology,2009,261(3):217-229.
    [113] Chang H, Higginson R L, Binner J. Interface Study by Dual-Beam FIB-TEM ina Pressureless Infiltrated Al-(Mg)-Al2O3Interpenetrating Composite[J]. Journal ofMicroscopy,2009,233(1):132-139.
    [114] Song S A, Zhang W, Sik Jeong H, et al. In situ Dynamic HR-TEM and EELSStudy on Phase Transitions of Ge2Sb2Te5Chalcogenides[J]. Ultramicroscopy,2008,108(11):1408-1419.
    [115] Ni D R, Geng L, Zhang J, et al. TEM Characterization of Symbiosis StructureOf In Situ TiC and TiB Prepared by Reactive Processing of Ti-B4C[J].Materials Letters,2008,62(4-5):686-688.
    [116] Janbroers S, Louwen J N, Zandbergen H W, et al. Insights Into the Nature ofIron-Based Fischer-Tropsch Catalysts from Quasi in situ TEM-EELS andXRD[J]. Journal of Catalysis,2009,268(2):235-242.
    [117] Gao P, Wang Z, Fu W, et al. In situ TEM Studies of Oxygen Vacancy Migration forElectrically Induced Resistance Change Effect in Cerium Oxides[J]. Micron,2010,41(4):301-305.
    [118] Chen L J, Wu W W. In situ TEM Investigation of Dynamical Changes ofNanostructures[J]. Materials Science and Engineering: R: Reports,2010,70(3-6):303-319.
    [119] Kang H, Bae J, Yoon J, et al. In situ TEM Characterization of InterfacialReaction in Sn-3.5Ag/electroless Ni(P) Solder Joint[J]. Scripta Materialia,2011,64(7):597-600.
    [120] Yan M, Wang D J, Shen J, et al. In situ TEM Observations of UnusualNanocrystallization in a Ti-based Bulk Metallic Glass[J]. Scripta Materialia,2011,64(8):701-704.
    [121] K. A. Structure Determination of Nanocomposites Through3D Imaging usinglaboratory XPS and Multivariate Analysis[J]. Journal of Electron Spectroscopyand Related Phenomena,2010,178–179(0):292-302.
    [122] Rack A, Zabler S, Müller B R, et al. High Resolution Synchrotron-BasedRadiography and Tomography using Hard X-rays at the BAMline (BESSYII)[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008,586(2):327-344.
    [123] Germann M, Morel A, Beckmann F, et al. Strain Fields in Histological Slices ofBrain Tissue Determined by Synchrotron Radiation-Based Micro ComputedTomography[J]. Journal of Neuroscience Methods,2008,170(1):149-155.
    [124] Wang M Y, Williams J J, Jiang L, et al. Dendritic Morphology of α-Mg during theSolidification of Mg-based Alloys:3D Experimental Characterization by X-raySynchrotron Tomography and Phase-Field Simulations[J]. Scripta Materialia,2011,65(10):855-858.
    [125] Laurencin J, Quey R, Delette G, et al. Characterisation of Solid Oxide Fuel CellNi-8YSZ Substrate by Synchrotron X-ray Nano-Tomography: from3DReconstruction to Microstructure Quantification[J]. Journal of Power Sources,2012,198(0):182-189.
    [126] Stiller M, Rack A, Zabler S, et al. Quantification of Bone Tissue RegenerationEmploying β-tricalcium Phosphate by Three-Dimensional Non-Invasive SynchrotronMicro-Tomography-A Comparative Examination with Histomorphometry[J]. Bone,2009,44(4):619-628.
    [127] Rack A, Weitkamp T, Bauer Trabelsi S, et al. The Micro-Imaging Station of theTopoTomo Beamline at the ANKA Synchrotron Light Source[J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2009,267(11):1978-1988.
    [128] Bleuet P, Gergaud P, Lemelle L, et al.3D Chemical Imaging based on aThird-Generation Synchrotron Source[J]. TrAC Trends in Analytical Chemistry,2010,29(6):518-527.
    [129] Xu F, Hu X, Miao H, et al. In situ Investigation of Ceramic Sintering bySynchrotron Radiation X-ray Computed Tomography[J]. Optics and Lasers inEngineering,2010,48(11):1082-1088.
    [130] Korsunsky A M, Baimpas N, Song X, et al. Strain Tomography of PolycrystallineZirconia Dental Prostheses by Synchrotron X-ray Diffraction[J]. ActaMaterialia,2011,59(6):2501-2513.
    [131] Mark tter H, Manke I, Krüger P, et al. Investigation of3D Water TransportPaths in Gas Diffusion Layers by Combined In-Situ Synchrotron X-rayRadiography and Tomography[J]. Electrochemistry Communications,2011,13(9):1001-1004.
    [132] Krüger P, Mark tter H, Hau mann J, et al. Synchrotron X-ray Tomography forInvestigations of Water Distribution in Polymer Electrolyte Membrane FuelCells[J]. Journal of Power Sources,2011,196(12):5250-5255.
    [133]汪明月. α-Mg枝晶凝固微观组织三维形貌研究[D].清华大学,2011:10-60.
    [134] Mendoza R, Savin I, Thornton K, et al. Topological Complexity and theDynamics of Coarsening[J].2004,3(6):385-388.
    [135] Dinnis C M, Dahle A K, Taylor J A. Three-Dimensional Analysis of EutecticGrains in Hypoeutectic Al–Si Alloys[J]. Materials Science and Engineering: A,2005,392(1-2):440-448.
    [136] Dahle A K, Nogita K, McDonald S D, et al. Eutectic Modification andMicrostructure Development in Al-Si Alloys[J]. Materials Science andEngineering: A,2005,413-414(0):243-248.
    [137] Glicksman M E. Principles of Solidification[M]. New York: Springer-VerlagInc,2010:
    [138] Felberbaum M, Rappaz M. Curvature of Micropores in Al-Cu alloys: An X-rayTomography Study[J]. Acta Materialia,2011,59(18):6849-6860.
    [139] Terzi S, Taylor J A, Cho Y H, et al. In situ Study of Nucleation and Growth ofthe Irregular α-Al/β-Al5FeSi Eutectic by3-D Synchrotron X-rayMicrotomography[J]. Acta Materialia,2010,58(16):5370-5380.
    [140]Terzi S, Salvo L, Suery M, et al. Coarsening Mechanisms in a Dendritic Al-10%Cu alloy[J]. Acta Materialia,2010,58(1):20-30.
    [141] Thornton K, F P H. Three-Dimensional Materials Science[J]. Materials ResearchSociety Bulletin,2008,33:587-629.
    [142]唐统一.电测测量[M].清华大学出版社,1997:181-189.
    [143] http://ssrf.sinap.ac.cn/6/BL13W1.htm.
    [144] Saikin S K, Chu Y, Rappoport D, et al. Separation of Electromagnetic and ChemicalContributions to Surface-Enhanced Raman Spectra on Nanoengineered PlasmonicSubstrates[J]. The Journal of Physical Chemistry Letters,2010,1:2740-2746.
    [145] Afshar R. Modeling of Electromagnetic Separation of Inclusions from MoltenMetals[J]. International Journal of Mechanical Sciences,2010,52(9):1107-1114.
    [146] Feth N, K O Nig M, Husnik M, et al. Electromagnetic Interaction of Split-RingResonators: The Role of Separation and Relative Orientation[J]. Opt. Express,2010,18(7):6545-6554.
    [147] Yesilyurt S, Motakef S, Grugel R, et al. The Effect of the Traveling MagneticField (TMF) on the Buoyancy-Induced Convection in the Vertical BridgmanGrowth of Semiconductors[J]. Journal of Crystal Growth,2004,263(1-4):80-89.
    [148]张三慧编著.大学物理学,电磁学[M].北京:清华大学出版社,2008:249.
    [149] Mazuruk K, Ramachandran N, P V M. Use of Traveling Magnetic Fields toControl Melt Convection: Conference on Materials Research in Low Gravity,1999[C].
    [150] Derby J J, Atherton L J, Gresho P M. An Integrated Process Model for theGrowth of Oxide Crystals by the Czochralski Method[J]. Journal of CrystalGrowth,1989,97(3-4):792-826.
    [151]宋维锡主编.金属学[M].北京:冶金工业出版社,152-159.
    [152]李秋书.脉冲磁场凝固细晶技术基础研究[D].上海大学,2005:30-49.
    [153] Dantzig J A, Rappaz M. solidification[M]. Lausanne: EPFL,2009:10-268.
    [154] Fisher J C. The Fracture Of Liquids[J]. Journal Of Applied Physics,1948,19:1062-1067.
    [155] Couturier G, Rappaz M. Effect of Volatile Elements on Porosity Formation inSolidifying Alloys[J]. Modelling and Simulation in Materials Science andEngineering,2006,14(2):253-271.
    [156] Sigworth G K, Engh T A. Chemical and Kinetic Factors Related to HydrogenRemoval From Aluminum[J]. Metallurgical and Materials Transactions B,1982,13(3):447-460.
    [157] Kammer D, Voorhees P W. The Morphological Evolution of DendriticMicrostructures during Coarsening[J]. Acta Materialia,2006,54(6):1549-1558.
    [158] Haque M M, Maleque M A. Effect of Process Variables on Structure and Properties ofAluminium-Silicon Piston Alloy[J]. Journal of Materials Processing Technology,1998,77(1-3):122-128.
    [159] Watkins K G, McMahon M A, Steen W M. Microstructure and Corrosion Properties ofLaser Surface Processed Aluminium Alloys: A Review[J]. Materials Science andEngineering: A,1997,231(1-2):55-61.
    [160] Lu D, Jiang Y, Guan G, et al. Refinement of Primary Si in Hypereutectic Al-Si Alloyby Electromagnetic Stirring[J]. Journal of Materials Processing Technology,2007,189(1-3):13-18.
    [161] Abouei V, Shabestari S G, Saghafian H. Dry Sliding Wear Behaviour ofHypereutectic Al-Si Piston Alloys Containing Iron-Rich Intermetallics[J].Materials Characterization,2010,61(11):1089-1096.
    [162] Feng H K, Yu S R, Li Y L, et al. Microstructure and Properties of Sip/Al–SiSurface Composites Prepared by Ultrasonic Method[J]. Materials and Design,2009,30(7):2420-2424.
    [163] Di Sabatino M, Arnberg L. Castability of Aluminium Alloys[J]. Transactions ofthe Indian Institute of Metals,2009,62(4):321-325.
    [164] Abu-Dheir N, Khraisheh M, Saito K, et al. Silicon Morphology Modification in theEutectic Al-Si Alloy using Mechanical Mold Vibration[J]. Materials Science andEngineering: A,2005,393(1-2):109-117.
    [165] Chirita G, Stefanescu I, Cruz D, et al. Sensitivity of Different Al-Si Alloys toCentrifugal Casting Effect[J]. Materials and Design,2010,31(6):2867-2877.
    [166] Chirita G, Stefanescu I, Soares D, et al. Influence of Vibration on theSolidification Behaviour and Tensile Properties of an Al-18wt%Si Alloy[J].Materials and Design,2009,30(5):1575-1580.
    [167] Wang R, Lu W, Hogan L M. Self-Modification in Direct Electrolytic Al-SiAlloys (DEASA) and Its Structural Inheritance[J]. Materials Science andEngineering: A,2003,348(1-2):289-298.
    [168] Liu Q, Zhai Q, Qi F, et al. Effects of Power Ultrasonic Treatment onMicrostructure and Mechanical Properties of T10Steel[J]. Materials Letters,2007,61(11–12):2422-2425.
    [169] Kwang Seok H, Chul Lee J, In Lee H. Extrusion of Spray-Formed Al-25Si-XComposites and Their Evaluation[J]. Journal of Materials Processing Technology,2005,160(3):354-360.
    [170] Lu D, Jiang Y, Guan G, et al. Refinement of Primary Si in Hypereutectic Al-SiAlloy by Electromagnetic Stirring[J]. Journal of Materials Processing Technology,2007,189(1-3):13-18.
    [171] Mahato A, Perry T A, Jayaram V, et al. Pressure and Thermally Induced Stagesof Wear in Dry Sliding of a Steel Ball Against an Aluminium-Silicon AlloyFlat[J]. Wear,2010,268(9-10):1080-1090.
    [172] R D. Property Improvement in Al-Si Alloys through Rapid SolidificationProcessing[J]. Journal of Materials Processing Technology,1997,72(3):380-384.
    [173] Zuo M, Liu X F, Sun Q Q, et al. Effect of Rapid Solidification on theMicrostructure and Refining Performance of an Al-Si-P Master Alloy[J].Journal of Materials Processing Technology,2009,209(15-16):5504-5508.
    [174] Lu D, Jiang Y, Guan G, et al. Refinement of Primary Si in Hypereutectic Al-SiAlloy by Electromagnetic Stirring[J]. Journal of Materials Processing Technology,2007,189(1-3):13-18.
    [175] Srirangam P, Kramer M J, Shankar S. Effect of Strontium on Liquid Structureof Al-Si Hypoeutectic Alloys Using High-Energy X-ray Diffraction[J]. ActaMaterialia,2011,59(2):503-513.
    [176] Wang R, Lu W, Hogan L M. Self-Modification in Direct Electrolytic Al-SiAlloys (DEASA) and Its Structural Inheritance[J]. Materials Science andEngineering: A,2003,348(1-2):289-298.
    [177] Xi L, Yves F, Zhongming R. Influence of an Axial High Magnetic Field on theLiquid–Solid Transformation in Al-Cu Hypoeutectic Alloys and on theMicrostructure of the Solid[J]. Acta Materialia,2007,55:1377-1386.
    [178] Biswas K, Hermann R, Das J, et al. Tailoring the Microstructure and MechanicalProperties of Ti-Al Alloy Using a Novel Electromagnetic Stirring Method[J].Scripta Materialia,2006,55:1143-1146.
    [179] Radjai A, Miwa K, Nishio T. An Investigation of the Effects Caused byElectromagnetic Vibrations in a Hypereutectic Al-Si alloy Melt[J]. Metallurgicaland Materials Transactions A,1998,29(5):1477.
    [180]李秋书.脉冲磁场凝固细晶技术基础研究[M].上海大学出版社,2009:24-83.
    [181]朗道,栗弗席兹,周奇.连续媒质电动力学[M].人民教育出版社,1979:36-87.
    [182]毛卫民,李树索,赵爱民,等.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响[J].材料科学与工艺,2001,9(2):117-121.
    [183]王强,王春江,庞雪君,等.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报,2004,18(6):568-576.
    [184] Mazuruk K R N V M. Use of Traveling Magnetic Fields to Control MeltConvection: Conference on Materials Research in Low Gravity,1999[C].
    [185] Flemings M C. Behavior of Metal Alloys in the Semisolid State[J].Metallurgical and Materials Transactions A,1991,22(5):957-981.
    [186] Koke J, Modigell M. Flow Behaviour of Semi-Solid Metal Alloys[J]. Journal ofNon-Newtonian Fluid Mechanics,2003,112(2-3):141-160.
    [187] Carrera E, Brischetto S, Robaldo A. Variable Kinematic Model for the Analysisof Functionally Graded Material Plates[J]. AIAA journal,2008,46(1):194-203.
    [188] Traini T, Mangano C, Sammons R L, et al. Direct Laser Metal Sintering as aNew Approach to Fabrication of an Isoelastic Functionally Graded Material forManufacture of Porous Titanium Dental Implants[J]. Dental Materials,2008,24(11):1525-1533.
    [189] Xu H, Yao X, Feng X, et al. Dynamic Stress Intensity Factors of a Semi-InfiniteCrack in an Orthotropic Functionally Graded Material[J]. Mechanics of Materials,2008,40(1-2):37-47.
    [190] Ibrahim H H, Tawfik M, Al-Ajmi M. Non-linear Panel Flutter forTemperature-Dependent Functionally Graded Material Panels[J]. ComputationalMechanics,2008,41(2):325-334.
    [191] Li Q, Iu V P, Kou K P. Three-Dimensional Vibration Analysis of FunctionallyGraded Material Sandwich Plates[J]. Journal of Sound and Vibration,2008,311(1-2):498-515.
    [192] Pei Y T, De Hosson J T M. Functionally Graded Materials Produced by LaserCladding[J]. Acta Materialia,2000,48(10):2617-2624.
    [193] Watanabe Y, Eryu H, Matsuura K. Evaluation of Three-Dimensional Orientationof Al3Ti Platelet in Al-Based Functionally Graded Materials Fabricated by aCentrifugal Casting Technique[J]. Acta Materialia,2001,49(5):775-783.
    [194] Peng X, Yan M, Shi W. A New Approach for the Preparation of FunctionallyGraded Materials via Slip Casting in a Gradient Magnetic Field[J]. ScriptaMaterialia,2007,56(10):907-909.
    [195] Zhang Z, Li T, Yue H, et al. Study on the Preparation of Al-Si FunctionallyGraded Materials using Power Ultrasonic Field[J]. Materials and Design,2009,30(3):851-856.
    [196] Konstantin M. Control of Melt Convection Using Traveling Magnetic Fields[J].Advances in Space Research,2002,29(4):541-548.
    [197] Derby J J, Atherton L J, Gresho P M. An Integrated Process Model for theGrowth of Oxide Crystals by the Czochralski Method[J]. Journal of CrystalGrowth,1989,97(3-4):792-826.
    [198] Lu D, Jiang Y, Guan G, et al. Refinement of primary Si in hypereutectic Al-Sialloy by electromagnetic stirring[J]. Journal of Materials Processing Technology,2007,189(1-3):13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700