沥青路面层间处治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层间结合优劣是影响沥青路面使用寿命的重要因素之一,若层间结合不好,就会破坏路面结构的整体性,削弱路面结构的整体抗力,在车辆加速、减速的地方易发生层间剪切滑移,产生月芽形推挤裂纹。为了使路面多层组合体系具有良好的结构承载力和耐久性,应该加强沥青路面层间处治技术的研究。
     本文在调查沥青路面层间处治技术现状基础上,通过分析不同层间接触状况下的沥青路面受力,揭示了U形开裂的机理,分析了层间接触状况对沥青路面路用性能的影响。然后围绕粘层、封层和透层材料展开系统室内试验,通过直接剪切和直接拉拔试验对层间结构强度进行了深入研究,目的是分析层间强度的影响因素及其各个因素影响的显著性,以及测试方法的可行性和评价指标的合理性,为相关技术规范的修订提供依据。同时,对沥青路面层间剪切疲劳性能进行了研究,初步探讨了层间疲劳破坏的机理,提出了描述层间强度破坏的剪切模型和参数。最后,在力学分析和试验研究的基础上,提出了考虑抗剪强度的沥青路面结构设计方法。
     具体研究内容如下:
     (1)采用有限元分析软件ABAQUS,以半刚性基层沥青路面为研究对象,把试验参数应用到力学分析模型里面,研究水平荷载、层间接触条件和超载对沥青路面力学响应的影响以及分析U形开裂产生的原因。结果表明,水平荷载对路面应力场的分布有很大影响,尤其是对路面上面层的影响不可忽视;车辆超载和基面层间的不连续会加剧沥青路面的车辙,纵向滑移的产生主要是由超载和面层层间的不连续引起的,对路表弯沉影响最大的是荷载,其次是基面层间接触状况,最后是面层层间接触状况;U形底部开裂是拉应力导致的张开型裂缝,U形的两侧开裂是竖向剪应力导致的剪切型裂缝,面层层间的连续与否和水平荷载的作用对U形开裂产生的影响最为显著。
     (2)采用三种粘层材料——乳化沥青、改性乳化沥青和普通热沥青,对粘层油用量、粘层油种类、温度、层间界面清洁程度、浸水、冻融、行车荷载的作用、上下面层沥青混合料的级配类型等影向因素展开研究,并对每个影响因素进行方差分析。同时,从高温性能和耐久性能出发,研究不同接触条件对沥青路面路用性能的影响。结果表明,高温时确定的最佳用量比常温下小0.1-0.2kg/m~2;喷洒粘层油有利于提高层间抗剪切性能、沥青路面的高温稳定性能和耐久性能以及减轻层间污染、浸水、冻融对层间产生的不利影响。最后,综合粘层抗剪性能和透水性能,推荐了适合不同气候的粘层材料和喷洒量;在力学计算和试验研究的基础上,提出了沥青路面粘层结构抗剪性能的评价方法、评价指标和技术要求。
     (3)对同步碎石封层技术研究了各种影响因素对层间抗剪强度的影响程度,并将同步碎石封层与稀浆封层抗剪强度和层间透水性能进行比较。研究结果表明,沥青材料性质、集料岩性、集料的不同处理方式、沥青和集料撒布的同步与否对同步碎石封层抗剪强度产生了显著性影响,集料粒径大小对其产生一定程度的影响,但是影响不显著;作为下封层使用时,稀浆封层抗剪强度小于同步碎石封层的抗剪强度,但其防水性能明显优于同步碎石封层。最后,根据降雨量和面层类型推荐了合适的下封层材料。
     (4)采用三种透层材料——稀释沥青、乳化沥青和改性乳化沥青以及两种常见的半刚性基层类型——水泥稳定碎石基层和二灰稳定碎石基层进行研究,研究不同稀释率、不同种类透层材料的渗透性能以及基层类型、基层养生龄期对透层材料渗透性能的影响。研究结果表明,稀释沥青的渗透效果要远远优于乳化沥青,改性乳化沥青不适合作为透层油使用;相同喷洒量下,透层油在水泥稳定碎石基层上的渗透深度大于在二灰稳定碎石基层上的渗透深度,且二灰稳定碎石基层比水泥稳定碎石基层的喷洒用量要小;透层油的喷洒时机宜早不宜迟。最后,推荐出适合不同基层类型的透层材料。
     (5)通过自行研发的剪切试验,对沥青路面进行了层间剪切疲劳试验,研究有无粘层油、粘层材料种类和层间污染对疲劳性能的影响。通过分析,提出了层间剪切疲劳性能的评价方法和评价指标以及层间剪切简化模型,进行了剪切疲劳破坏机理分析,在此基础上,进一步提出了层间结合状态衰变的简单模型。
     (6)根据我国不同地区的气候特点,同时结合层间材料的路用性能要求,将七月平均最高气温和降雨量作为我国沥青路面层间材料的气候区划指标,提出了我国沥青路面层间材料的气候区划。并且,在力学分析和试验研究的基础上,提出了层间容许剪应力的计算方法和考虑抗剪强度的沥青路面结构设计方法。
The quality of layer interfaces is one of the important factors that influence the life of the asphalt pavement. A poor bond between pavement layers destroys the unity of pavement structure and reduces its bearing capacity. Slippage failure often occurring at the places where vehicles accelerate or decelerate, is the most commonly observed problem related to poor bond between layers. The typical distress is described as crescent cracking. In order to achieve the desired bearing capacity and a longer lifetime of a pavement structure, the research on the technology of adhesion at the interface between asphalt pavement layers is of great significance.
     Based on the current technology of asphalt pavement layer interfaces, the paper analyzed the mechanical response of pavement structure with different bond conditions between pavement layers. The results showed the mechanism of U-shaped cracking and evaluated the influence of different bond conditions between pavement layers on asphalt pavement performance. Then through comprehensive laboratory experiments, this paper mainly studied the properties of the tack coat, seal coat, prime coat in the asphalt pavement structure. The bond strength of the interfaces was systematically evaluated by direct shear test and direct pull-off test, aiming to analyze the influence of several factors on the adhesive bond at the interface between pavement layers. Each statistically significant level was also tested in this paper. The feasibility of test methods and the reasonableness of evaluation indexes were validated through laboratory experiments, so as to provide a basis for revising related technical specification. At the same time, the shear fatigue properties at the interface of asphalt pavement layers were studied. The discussion about fatigue failure mechanism of the interfaces was conducted. A model was put forward and three parameters were selected to characterize shear fatigue failure at the interface. Finally, on the base of mechanical analysis and testing research, the design method of the asphalt pavement, considering shear-resisting strength, was put forward.
     The details of the research can be described as follows:
     (1) For the semi-rigid base asphalt pavement, by inputting the test parameters into a finite element program (ABAQUS), the paper studied the influences of horizontal loads, bond conditions between pavement layers and overloading of vehicles on the pavement structure mechanical response and analyzed the causes of the U-shaped cracking. The results showed that horizontal loads had a significant influence on stress distribution of pavement structure, especially for top surface layer. The vehicle overloads and the discontinuation between the surface and the base exacerbated the rut of the asphalt pavement. For the longitudinal slipping, its occurring was mainly caused by overloading of vehicles, and then by the discontinuation between the surface layers. For the deflection, the greatest effect factor was the load, the next was the bond condition between the surface and base layers, and the last one was the bond condition between the surface layers. The bottom of U-shaped cracking was open tension-type cracking led by tensile stress while the both sides of U-shaped cracking were shear-type cracking led by vertical shear stress. The continuity of surface course interlayer and horizontal loads had a great effect on the development of U-shaped cracking.
     (2) This paper investigated the influence of several factors on the adhesive bond provided by the tack coat at the interface between pavement layers. These factors included application rate, tack coat type, testing temperature, the surface cleanliness, moisture, sudden change of environment, traffic and mixture type. The statistical significance of the differences in interface bond strength was evaluated. Emulsified asphalt, the polymer modified emulsion asphalt and hot asphalt binder were selected as the tack coat materials. At the same time, the influence of different bond conditions between pavement layers on pavement high temperature performance and durability was evaluated. The results showed that the optimum application at the test temperature of 60℃was 0.1~0.2kg/m~2 less than the application at that of 25℃Tack coat was good for improving interlayer shear performance, high-temperature stability and durablity of the asphalt pavement, and reducing the unfavorable effect of interlayer pollution, rain and environment change. Lastly, this paper recomended suitable tack coat materials and application rates for different climate conditions. On the base of mechanical analysis and testing research, the evaluation method, evaluation index and the technical requirements for the anti-shearing performance of asphalt pavement structure were put forward.
     (3) For the technology of synchronous surface dressing, the effect factors of the interface shear strength were examined and the statistical significance of the differences in interface shear strength was evaluated. The comparison on the interface shear strength and permeability between synchronous surface dressing and slurry seal was made. The results showed that asphalt properties, aggregate lithological composition, processing mode, and the asphalt binder and aggregate spreading synchronization provided a significantly better bond at the interface between the pavement layers, while the aggregate particles size did not significantly affect the bond strength at the interlayer. As seal course use, the shearing strength of slurry seal was smaller than that of the synchronous surface dressing, but its waterproof performance was obviously better than that of the synchronous surface. Lastly, the paper recommended the suitable seal coat materials for different rainfall and mixture types.
     (4) The experiment included three types of prime coat materials (cutback, emulsified asphalt and the polymer modified emulsion asphalt) and two types of semi-rigid base materials (cement stabilized granular base and lime-flyash stabilized granular base). The influence of different dilution ratio, prime coat type, base type and curing time of semi-rigid base on penetrability was evaluated. The results showed that the permeability of the cutback asphalt was far better than that of the emulsion asphalt while the polymer modified emulsion asphalt was unsuitable to be used as the prime coat. At the same application rate, the penetrability of prime coat on the cement stabilized granular base was better than lime-flyash stabilized granular base, and the application rate on the lime-flyash stabilized granular base was smaller than on the cement stabilized granular base. The spraying occasion of the prime coat was good for early. Lastly, the paper recommended the suitable prime coat materials for different bases.
     (5) A shearing test method was developed to conduct the interlayer shearing-fatigue test. The paper studied the effects of existence of tack coat, tack coat type and the surface cleanliness on the shear fatigue property. By analysis, the paper put forward evaluating method, evaluating indexes and a simple shear mechanical model for interlayer to assess the shear fatigue properties of the interlayer between the pavement layers. Based on the analysis of the mechanism of shear fatigue failure, a simple performance declination model for interface was put forward.
     (6) According to the climatic characteristics of our country and the performance requirements of interlayer materials, the average highest temperature in July and rainfall were selected as the climatic zoning indexes of asphalt pavement interlayer materials. Based on mechanical analysis and testing research, the paper put forward a calculation method of interlayer allowable shear stress and the design method of asphalt pavement considering shear strength.
引文
1.沈金安.高速公路沥青路面早期损坏分析与防治措施[M].北京:人民交通出版社,2004
    2.孙立军等.沥青路面结构行为理论[M].上海:同济大学出版社,2003
    3.Romanoschi S.A.,Characterization of Pavement Layer Interfaces[D].Louisiana State University,Baton Rouge,1999
    4.M.Shane Buchanan and Mark E.Woods.Field Tack Coat Evaluator (Attacke~(TM))[R].FHWA/MS-DOT-RD-04-168,2004
    5.交通部.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2004
    6.王家主.长大纵坡沥青路面材料组成设计与性能研究[D].武汉:武汉理工大学,2006
    7.苏凯.山区公路沥青路面基面层滑移分析[D].西安:长安大学,2004
    8.陈平雁等.SPSS13.0统计软件应用教程[M].北京:人民卫生出版社,2005
    9.Tschegg E.K.,Kroyer G.,Tan D.M.,et al.Investigation of Bonding Between Asphalt Layers on Road Construction[J].Journal of Transportation Engineering,1995,Vol.121:309-316
    10.Shaat A.A..Investigation of slippage of bituminous layer in overlaid pavement in Northern Ireland[R].DOE,Belfast,Ireland,1992
    11.Uzan J.,Livneh M.and Y.Eshed.Investigation of Adhesion Properties between Asphaltic-Concrete Layers[J].Journal of Asphalt Paving Technology,1978,Vol.47:495-521
    12.Hachiya Y.and Sato K..Effect of Tack Coat on Bonding Characteristics at Interface between Asphalt Concrete Layers[A].Proceedings 8th International Conference on Asphalt Pavements[C],University of Washington,Seattle,1997,Vol.1:349-362
    13.Brown S.F.and Brunton J.M..The influence of bonding between bituminous layers[J].Highways Transportation,1984,Vol.31:16-17
    14.Al Hakim B..An improved backcalculation method to predict flexible pavement layers moduli and bonding condition between wearing course and base course[D].Liverpool John Moores Univ.,Liverpool,U.K.,1997
    15.King G.and R.May.New Approaches to Tack Application.the 83~(rd) Annual Meeting of the Transportation Research Board,Washington D.C.,2003
    16.Roffe J.C.and Chaignon F..Chatacterisaton Tests on Bond Coats:Worldwide Study[A].3~(rd) International Conference Bituminous Impact,Tests,and Recommendations[C],Mixtures and Pavements,Thessaloniki,2002:603-609
    17.Mariana R.Kruntcheva,Andrew C.Collop,et al.Effect of Bond Condition on Flexible Pavement Performance[J].Journal of Transportation Engineering,2005:880-888
    18.关昌余,王哲人,郭大智.路面结构层间结合状态的研究[J].中国公路学报,1989,2(1):70-80
    19.黄志义,潘伟兵,徐兴等.路面接触非线性特性研究[J].公路交通科技,2005,Vol.22,No.5:1-4
    20.刘炳辉.高等级公路沥青路面透层油、下封层施工技术探讨[J].公路交通科技,2002(1):22-23
    21.宋宇.沥青路面面层与基层间结合状态试验与评价方法研究[D].哈尔滨:哈尔滨工业大学,2005
    22.严二虎,沈金安.半刚性基层与沥青层之间界面条件对结构性能的影响[J].公路交通科技,2004,Vol.21,No.1:38-41
    23.戴许明.沥青路面抗裂防水技术研究[D].长沙:长沙理工大学,2006
    24.唐承铁,袁腾方,黄开宇.不同层间接触条件下半刚性路面结构疲劳特性分析研究[J].中南公路工程,2007,Vol.32,No.2:36-40
    25.薛亮,张维刚,梁鸿颉.考虑层间不同状态的沥青路面力学响应分析[J].沈阳建筑大学学报(自然科学版),2006,Vol.22,No.4:575-578
    26.胡小弟,孙立军,刘兆金.沥青路面非均布荷载下层间接触条件不同时力学响应的三维有限元分析[J].公路交通科技,2003,Vol.20,No.3:1-4
    27.戴震.沥青路面结构受力机理分析[D].南京:东南大学,2004
    28.刘红坡.层间接触对半刚性沥青路面力学响应的影响[D].成都:西南交通大学,2006
    29.陈祥.大厚度半刚性基层沥青路面结构计算及其层间处理技术研究[D].长沙:长沙理工大学,2006
    30.黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界状态值的计算方法[J].东南大学学报(自然科学版),2007,Vol.37,No.4:666-670
    31.艾长发,邱延峻,毛成等.考虑层间状态的沥青路面温度与荷载藕合行为分析[J].土木工程学报,2007,Vol.40,No.12:99-104
    32.Transport Road Research Laboratory (TRRL).Final report on the working party on the slippage of rolled asphalt wearing courses[R].TRRL,Crowthorne,U.K.,1979
    33.Peattie K.R..The performance of rolled asphalt road surfacings.The incidence and investigation of slippage failures,Institution of Civil Engineers,London,1980:3-15
    34.Pell P.S..The performance of rolled asphalt road surfacings.Discussion on slippage of rolled asphalt wearing courses,Institution of Civil Engineers,London,1980:15-30
    35.Kennedy C.K.and Lister N.W..The performance of rolled asphalt road surfacings.Experimental studies of slippage,Institution of Civil Engineers,London,1980:31-56
    36.封基良.新疆油田公路层间滑移分析[D].西安:西安公路交通大学,2000
    37.杨桂新.水泥混凝土桥面柔性防水层应用技术研究[D].南京:东南大学,2006
    38.李杰武.复合式沥青层结构研究[D].西安:西安公路交通大学,1999
    39.张占军.水泥混凝土桥面沥青混凝土铺装结构研究[D].西安:西安公路交通大学,2000
    40.阳宏毅.连续配筋混凝土复合式路面层间应力分析与结合技术研究[D].长沙:长沙理工大学,2005
    41.胡长顺,王秉纲.复合式路面设计原理与施工技术研究[M].北京:人民交通出版社,1999
    42.Molenaar A.A.A.,J.C.P.Heerkens and J.H.M.Verhoeven.Effects of Stress Absorbing Membrane Interlayers.Proceedings of the Association of Asphalt Paving Technologists,1986,Vol.55
    43.Mrawira D.and Damude D.J..Revisiting the effectiveness of Tack coats in HMA Overlays:The Shear Strength of Tack Coats in Young Overlays[A].Proceedings of 14~(th) Annual Conference[C].Canadian Technical Asphalt Association Proceedings,1999,vol.44:116-129
    44.Romanoschi S.A.and Metcalf J.B..The Effects of Interface Condition and Horizontal Wheel Loads on the Life of Flexible Pavement Structures.Transportation Research Record,2001 b
    45.Romanoschi S.A.and Metcalf J.B..Characterization of Asphalt Concrete Layer Interfaces.Transportation Research Record 1778,TRB,National Research Council,Washington D.C.,2001:132-139
    46.Mohammad L.N.,M.Abdur Raqib and Baoshan Huang.Influence of Asphalt Tack Coat Materials on Interface Shear Strength[J]. Transportation Research Record 1789,Transportation Research Board, 2002: 56-65
    
    47. Hakim B. A.. The importance of good bond between bituminous layers[A]. Proceedings of the 9~(th) International Conference on Asphalt Pavements[C], Copenhagen, Denmark, 2002
    
    48. Stubstad R.. LTPP Data Analysis: Feasibility of Using FWD Deflection Data to Characterize Pavement Construction Quality[R]. National Cooperative Highway Research Program, NCHRP Web Document 52, 2002
    
    49. Xu B., Ranjithan, SR, et al. New Relationships Between Falling Weight Deflectometer Deflections and Asphalt Pavement Layer Condition Indicators. Transportation Research Record 1806, 2002
    
    50. Al Hakim B., Cheung L.W. and Armitage R. L.. Use of FWD Data for Prediction of Bonding Between Pavement Layers[J]. The International Journal of Pavement Engineering, 2000, Vol. 1 (1): 49-59
    
    51. Collep A.C., N.H. Thorn and C. Sangiorgi.. Assessment of Bond Condition Using the Luetner Shear Test[J]. Institution of Civil Engineering Journal of Transport, 2003
    
    52. Goodman S.. Design, Development and Validation of the In-Situ Shear Stiffness Test (InSiSST~(?)) for Asphalt Concrete Pavements[D]. Carleton University, Ottawa, Canada,2000
    
    53. Bekheet W.. Investigation of the In-Situ Shear Properties of Asphalt Concrete[D].Carleton University, Ottawa, Ontario, Canada, 2002
    
    54. Bekheet W., Y. Hassan and A.O. Abd El Halim.. Modeling In-Situ Shear Strength Testing of Asphalt Concrete Pavements Using the Finite Element Method[J]. Canadian Journal of Civil Engineering, 2001, Vol. 28(3): 541—544
    
    55. Wael Bekheet, Stephen Goodman, A.O. Abd El Halim et al. Evaluation of In-Situ Shear Stiffness of Asphalt Concrete Mixtures. Superpave Implementation and Experience in Canada Session of the 2003 Annual Conference of the Transportation Association of Canada
    
    56. Steve Goodman, Wael Bekheet, Yasser Hassan et al. Rapid In-Situ Shear Testing of Asphalt Pavements for Runway Construction Quality Control and Assurance[R]. The 2002 Federal Aviation Administration Airport Technology Transfer Conference, 2002
    57.Abd El Halim,A.O.Design.Development and Validation of an Advanced In-Situ Shear Stiffness Test Facility for Asphalt Concrete Pavements[R].NCHRP IDEA #55 Final Report,TRB,2001
    58.Sholar G.A.,G.C.Page,J.A.Musselman,et al.Preliminary Investigation of a Test Method to Evaluate Bond Strength of Bituminous Tack Coats[J].Journal of the Association of Asphalt Pavement Technologists,2004,Volume 73:107-137
    59.ATACKER~(TM),A Tack Coat Testing Device,Operator's Guide,InstroTek,Inc.,2005
    60.Mark Everett Woods..Laboratory Evaluation of Tensile and Shear Strength of Asphalt Tack Coats[D].Mississippi State University,2004
    61.Randy C.West,Jingna Zhang and Jason Moore..Evaluation of Bond Strength Between Pavement Layers[R].NCAT Report No.05-08,National Center for Asphalt Technology,Auburn,AL,2005
    62.Laith Tashman,Kitae Nam and Tom Papagiannakis.Evaluation of the Influence of Tack Coat Construction Factors on the Bond Strength between Pavement Layers[R].Report WCAT 06-002,2006
    63.高雪池.桥面排水与防水的研究[D].南京:东南大学,2002
    64.刘细军.沥青混合料及路面层间抗剪特性研究[D].西安:长安大学,2006
    65.王朝锋.基于高聚物的桥面防水材料应用技术研究[D].西安:长安大学,2006
    66.王正文.沥青路面基面层粘结材料与性能研究[D].西安:长安大学,2006
    67.于静涛.沥青铺装与桥面板层间粘结改善技术研究[D].西安:长安大学,2006
    68.张志勇.沥青路面夹层抗裂及粘结性能研究[D].长沙:长沙理工大学,2006
    69.王涓.水泥混凝土桥面沥青混凝土铺装防水粘结层的性能研究[D].南京:东南大学,2004
    70.岳学军.半刚性基层沥青路面层间功能层的性能研究[D].南京:东南大学,2002
    71.于良溟.排水性沥青路面防水粘结层研究[D].南京:东南大学,2006
    72.陈忠.排水性沥青路面粘层材料性能与防反射裂缝的研究[D].南京:东南大学,2004
    73.Stephen A.Cross and Pramed Prasad Shrestha.Guidelines for Using Prime and Tack Coats[R].Federal Highway Administration,Publication No.FHWA-CFL-04-001,2004
    74.姜云焕,钦兰成,王立志.《改性稀浆封层施工技术要求》[M].北京:石油工业出版社,2001
    75.陈素丽,许福文,李桂芝.同步碎石封层技术研究及在公路养护中的应用[J].公路,2005年,第6期:174-181
    76.张宗辉.同步碎石封层技术在中国的快速发展及应用[J].筑路机械与施工机械化,2004年,11月:5-8
    77.王克中.关于半刚性基层的透层油问题[J].公路交通科技,2000,Vol.17,No.5:23-26
    78.张旺松.扶项高速公路沥青路面层间结合技术研究[D].长沙:长沙理工大学,2007
    79.张冰.车辆超载对沥青路面使用性能的影响分析研究[D].哈尔滨:哈尔滨工程大学,2006
    80.翟根旺,乔朝增.高速公路沥青路面层间处理技术研究[J].公路,2002(2):39-43
    81.傅香如.稀浆封层和微表处施工技术研究[D].西安:长安大学,2006
    82.黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998
    83.石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006
    84.王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006
    85.庄茁.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005
    86.谢水友.轮胎接触压力对沥青路面结构的影响研究[D].西安:长安大学,2003
    87.沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    88.邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001
    89.叶遇春.沥青路面下封层材料结构力学性能的研究[J].石油沥青,2004(4):22-26
    90.张艳华.半刚性基层沥青路面封层研究[D].西安:长安大学,2005
    91.虎增福.乳化沥青及稀桨封层技术[M].北京:人民交通出版社,2001
    92.张俊,朱浮声,李庆昌.稀浆封层路面层间黏结性能试验研究[J].东北大学学报(自然科学版),2007,Vol.28,No.6:875-878
    93.秦永春,黄颂昌,李剑等.透层油应用现状及高渗透乳化沥青[A].2004年道路工程学术交流会论文集[C].北京:人民交通出版社,2004
    94.吕伟民.沥青混合料设计原理与方法[M].上海:同济大学出版社,2001
    95.P.S.Pell and I.F.Taylor.Asphalt Road Materials in Fatigue.AAPT,1969,Vol 38
    96.S.C.S.Rao Tangella,J.Craus,J.A.Deacon,et al.Summary Report on Fatigue Response of Asphalt Mixtures -Prepared for Strategic Highway Research Program Project A-003-A.Institute of Transportation Studies,University of California,Berkeley,California,1990
    97.交通部公路科学研究所译.壳牌路面设计手册,1993
    98.交通部重庆公路科学研究所译.沥青混合料的疲劳响应,美国公路战略研究计划(SHRP)专题情报资料,1995
    99.沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004
    100.中华人民共和国行业标准.城市道路设计规范(CJJ37-90)[S].北京:中国建筑工业出版社,1981
    101.赵亚兰.连续配筋混凝土基层沥青路面沥青层力学分析与设计指标研究[D].西安:长安大学,2007
    102.Standard Specifications for Road and Bridge Construction,2000
    103.Guide Specifications for Highway Construction,AASHTO
    104.中华人民共和国行业标准.公路沥青路面设计规范(JTJ 014-97)[S].北京:人民交通出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700