空气弹簧电子控制单元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气悬架以其优良的减振性能,在汽车振动控制中得到越来越广泛的应用。本文建立了空气悬架两自由度振动控制模型,分析了空气弹簧刚度调节原理和控制特性,研制了空气弹簧刚度可调的电子控制单元。
     本文讨论了以调节空气弹簧刚度的方式,改善汽车的行驶平顺性。在硬件系统研制过程中,应用EDA软件完成电路原理图的设计,分析了硬件系统的各个组成部分及其功能,选用ATMEL公司的AT89C51单片机作为微处理器,设计了滤波放大电路、采样/保持电路、A/D转换电路、看门狗电路、输出控制电路以及电源电路。在系统软件开发中,根据可靠与实用的原则,基于汽车振动控制系统的复杂非线性,采用结构化和模块化方法,设计了一种不依赖于精确数学模型的变参数模糊PID控制算法,应用模糊控制理论,在线调整增量式PID算法中的控制参数,改变空气弹簧的空气压力,进而调节空气弹簧的刚度。
     本控制单元以空气弹簧的刚度作为控制量,把车身的垂直加速度信号作为目标量。控制单元将加速度传感器送入的加速度电信号进行一定的处理,并与设定的目标值相比较,得到空气弹簧刚度的调节趋势,通过控制电磁阀的通、断电,改变空气弹簧内的空气压力,实现无级调节空气弹簧刚度参数。通过单频激振实验验证,此空气弹簧电子控制单元可根据检测到的垂直加速度信号,及时改变空气弹簧内的空气压力,有效调节空气弹簧刚度,提高汽车的行驶平顺性。该电子控制单元具有响应速度快、抗干扰能力强、工作稳定可靠、体积小、价格低等优点。
More and more application of air suspension are presented in automotive suspension system due to their performances. In the paper, two-degree-of-freedom vibration model of air suspension is built and stiffness adjustment theory and control characteristic of air suspension are discussed. On the basis, electronic control unit for air spring is developed.
    This paper discussed that the driving smoothness may be improved by altering stiffness of air spring. In the course of developing the hardware system, the circuits diagram is finished by the mean of EDA software. On the basis of analyzing function of hardware circuit, choose the AT89C51 as single chip microprocessor. Filter and amplifier circuit, sample and hold circuit, Analog-to-Digital conversion circuit, watchdog circuit, out port control circuit and power supply circuit were designed. In the course of software development, structure and modular design method is adopted in the principle of reliability and practice. With complex nonlinear of vehicle control system, variable parameter fuzzy-PID control algorithm was designed without mathematical precise model. Applying fuzzy control theory, it adjust parameters of increment PID algorithm on-line for efficiently controlling stiffness of air spring by altering ah" pressure in the air spring.
    This control unit take stiffness parameter of air spring as control value and acceleration in vertical vibration is looked as aim value. The control unit can processes electrical signal of acceleration measured by accelerometer in order to obtain altering trend of stiffness parameter of air spring. Air pressure can be changed by switching on and off valve so that stiffness parameter can may be continuously altered. Single frequency excitation experiments show that the control unit for air spring can efficiently alter stiffness parameter according to connected acceleration signal in vertical vibration and the driving smoothness is improved. It has some advantages, such as ability of anti-interference, fast response, high stability and reliability ,small size, low price.
引文
[1] 李东江,宋良玉.现代汽车电子控制技术[M].北京:科学技术文献出版社,1998.
    [2] 王政光,高斌,戴澹潜.电控技术在汽车上的全面应用[J].自动化与仪器仪表,1998(3):1~5.
    [3] Hrovat D. Survey of Advanced Suspension Developments and Related Optimal Control Applications[J]. Automatica, 1997, 33(10).
    [4] 王世明,王孙安,李天石.半主动悬架及其控制[J].汽车技术,1999(12):1~3.
    [5] 喻凡,黄宏成,管西强.汽车空气悬架的现状及发展趋势[J].汽车技术,2001(8):6~9.
    [6] 方瑞华,解跃清,雷雨成.空气悬架理论及其关键技术.同济大学学报,2003,31(9):1072~1076.
    [7] 庄继德著.汽车电子控制系统工程[[M].北京:北京理工大学出版社,1998:114~122.
    [8] 余强,郑慕侨.汽车悬架技术的发展[J].汽车技术,1994(9):1~6.
    [9] Thompson A C. Design of Active Suspension on Proc. ImeehE Automobile Division, 1970(71).
    [10] 杨清梅.单片机在车辆悬架振动控制中的应用[J].机电工程,2000(01):32~33.
    [11] 董波.主要类型可控悬架的原理简介及发展[J].汽车技术,2002(5):14~17.
    [12] Sharp R S et al. On the Performance Capability of Active Automobile Suspension Systems of Limited Bandwidth. Vehicle System Dynamics.
    [13] 孙建民,杨清梅.汽车悬架系统电控减振技术及应用现状[J].汽车电器,2000(6):4~6.
    [14] 张庙康,胡海岩.车辆悬架振动控制系统的研究进展[J].振动、测试与诊断,1997,17(1):7~13.
    [15] Y J Tsao and R Chen. The Design of an Active Suspension Force Controller Using Genetic Algorithms with Maximum Stroke Constraints[J]. ImechE, 2001: 317~324.
    [16] Ianj.Fialho and Gary J. Balas. Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-Varying Control Synthesis[J]. Vehicle System Dynamecs,2000(33): 351~370.
    [17] 陈龙,李德超,周孔亢.一种新的车辆半主动悬架控制器设计[J].农业工程学报,2002(3):54~57.
    [18] Crosby M Jet al. Active Damper-a New Concept for Shock and Vibration on Control. 43rd Shock and Vibration Bulletin, Part H, 1973(6).
    
    
    [19] 麻友良,丁卫东主编.汽车电器与电子控制系统[M].北京:机械工业出版社,2002:416~432.
    [20] 刘后毅.空气悬架的原理和使用[J].山东交通科技,2001(01):67~69.
    [21] 朱宗林,郭世民.自动控制装置系统综合评研究[J].自动化学报,1999(2):199~203.
    [22] 张保国.电子控制技术在汽上的应用与发展[J].山西机械,2002(2):52~54.
    [23] 齐志鹏主编.汽车悬架和转向系统的结构原理与检修[M].北京:人民邮电出版社,2002.
    [24] 陈小东,黄永勇.电子控制空气悬架系统在城市客车上的应用[J].客车技术与研究,2003,25(5):18~19.
    [25] 李德超,陈龙等.自适应模糊控制半主动悬架[J].江苏理工大学学报,2001,22(2):38~41.
    [26] 高树新.汽车行驶平顺性评价方法评述[J].汽车技术,1995(12):16~17.
    [27] 郑郧.汽车振动的舒适性测量与评价[J].陕西汽车,1994(3):9~18.
    [28] 郑郧.汽车振动的舒适性测量与评价[J].客车技术与研究,2000,22(4):23~26.
    [29] 赵迎生.半主动悬架电子控制系统的研究[J].汽车电器,2002增刊:24~26.
    [30] 张毅刚,彭喜源,谭晓昀编著.MCS-51单片机应用设计[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [31] 孙涵芳,徐爱卿编著.MCS-51/96系列单片机原理及应用[M].北京:北京航空航天大学出版社,1996.
    [32] 王三胜,徐茵等.MAX813L工作原理及其在51单片机系统抗干扰中的应用[J].工业仪表与自动化装置,2001(3):53~55.
    [33] 何小艇主编.电子系统设计[M].浙江:浙江大学出版社,1998:433~442.
    [34] 张智杰.AD574在数据采集中的应用[J].国外电子元器件,2003(6):55~56.
    [35] 柯永星.汽车仪表的电源稳压器[J].汽车电器,1999(4):25~30.
    [36] 王鸣.基于模糊控制理论的一种PID参数自整定控制器的设计与仿真[J].自动化与仪器仪表,2000(01):14~17.
    [37] Yong-ZaiLu, Min He, Chen-WeiXu. Fuzzy Modeling and Expert Optimization Control for Industrial Process IEEE Transaction on Control Systems Technology, 1997, 5(1): 2~12.
    [38] Wu ZhiQiao,Masaharu Mizumoto. PID Type Fuzzy Controller and Parameters Adaptive Method. Fuzzy Sets and Systems, 1996, 78: 23~35.
    [39] 王成恺.汽车电子装置的抗干扰对策[J].车辆养护,2000(4):42~43.
    
    
    [40] 王彦平,任延群,危胜军等编著.Protel 99电路设计指南[M]。北京:清华大学出版社,2000
    [41] 杨龙,于红.固态继电器在89C51单片机控制系统中的应用[J].电测与仪表,1999(5):52~53.
    [42] 周航慈著.单片机应用程序设计技术(修订版)[M].北京:北京航空航天大学出版社,2002.
    [43] 尹雪飞,陈克安编.集成电路速查大全[M].西安:西安电子科技大学出版社,1997.
    [44] 李人厚编著.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999:39~91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700