NJ2045越野车可调减振器的研制和半主动悬架设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆悬架系统在保证汽车具有良好的行驶平顺性和操纵性方面起着至关重要的作用。它能把路面作用于车轮上的垂直反力、纵向反力和侧向反力以及这些反力所造成的力矩都要传递到车架上,以保证汽车的正常行驶。
     悬架系统分为:传统的被动悬架系统、半主动悬架系统以及主动悬架系统。然而,被动悬架系统由于其弹性元件和阻尼元件均不可控,所以实际上是一种同时满足行驶平顺性和操纵稳定性的折衷方案。另外,主动悬架虽然克服了被动悬架系统的缺陷,使悬架的参数能随路况、工况及速度的变化而变化,但主动悬架系统实现的造价很高,因此目前,实际应用较少。半主动悬架的性能虽然比不上主动悬架,但是其成本低,控制简单,使之更受到汽车生产厂商的重视,所以在一些车辆上得到了应用。悬架系统中的减震装置即减振器,是悬架中重要的部件,它能使弹性元件产生的振动迅速衰减,提高乘坐舒适性。我们所说的半主动悬架就是通过调节减振器的阻尼系数来改变悬架的参数,但是这种改变只是有级改变。
     本文在前人理论研究的基础上,针对NJ2045越野车,着重探讨并试制了半主动悬架控制器,对其软、硬件进行了详细的介绍,并进行在线仿真调试,证明了它的可行性和实用性。
     首先,本文建立了NJ2045越野车的七自由度车辆模型,根据运动微分方程建立了其状态方程表示式,然后,在频域下运用MATLAB软件编程,对直线行驶、加速制动及转向三种工况进行模拟仿真,得到了车身垂直加速度、俯仰角加速度、侧倾角加速度及悬架动行程、轮胎相对动载荷的均方根值随阻尼变化的曲线,并仿真分析了悬架阻尼系数对评价指标和各影响因素的影响趋势。基于模拟计算结果及经验参考,得到了两态可调减振器的软、硬阻尼值。
     然后,根据弹性圆环薄板的大挠曲变形理论,推导减振器阻尼阀阀片的变形上的现成理论,并把它应用在NJ2045越野车的压缩阀阀片的变形计算上,再根据流体力学计算公式研究减振器阻尼特性。试验结果很好地验证了理论计算的可靠性及正确性,为减振器的设计提供了很好的理论指导。根据所确定的软硬阻尼值,推导出了两态可调减振器的结构参数。
     再次,在借鉴前人经验的基础上,研制开发了半主动悬架的控制单元(ECU)。首先针对NJ2045越野车的实际情况,选择信号传感器,并设计输
    
    吉林大学硕士学位论文
    入硬件电路。根据控制要求及精度来选择控制计算单元即单片机,设计外围
    电路。在硬件开发的基础上,设计了半主动悬架控制软件。并针对NJ2045
    越野车设计了控制逻辑框图。
     最后,自行研制了电磁阀控制的阻尼可调的液力减振器,并对所研制的
    可调减振器进行了台架试验,得到了软、硬阻尼速度特性曲线,很好地验证
    了理论计算的准确性。
The semi -active suspension makes automobile possess good handling stability and ride comfort when it runs along straight line, speeds up, brakes and turns.
    My automotive control system control two modes of the variable dampers: soft and hard modes. In order to control the damping mode, the control signals from the ECU are applied to four damper actuators. Upon receiving the control signals from the ECU, the solenoid only operates to move an armature which opens and closes. When the damper control valve is open and the damper is operating under low damping force conditions, the associated vehicle experiences a relatively soft ride as a result. When the damper control valve is closed, the damper is operating under high damping force conditions and the associated vehicle experiences a relative firm ride as a result.
    Basing on the above considerations, firstly, in my paper, I set up a seven degree of freedom vehicle model to establish the state equation according to moving differential equation. With the state equation, in the time domain, I simulate four main working conditions: driving straight, speeding up, braking and steering to obtain their responses. Then considering the results of simulation and the experience, the two damping values of two-modes variable damper are obtained.
    Secondly, as for modeling for the damping valve, I use large deflection theory of thin elastic annular plate to analyze the deflection of the damping valve plate. Then I compute the velocity characteristic of variable damper by hydromechanic theory. That is to say to obtain the relation curve between damping force and piston velocity of variable damper.
    Thirdly, dampers of NJ2045 cross-country vehicle is my test coupon. Test result verify the reliability and accuracy of theoretical computation which gives the design of the damper an excellent guide, according to the two damping values obtained above structure parameters of the variable dampers are worked out.
    At last, I must develop the electrical control unit of semi-active suspension. The control system has a plurality of signal input sensors. The signals from the
    
    
    signal input members are processed by an ECU in accordance with a preset program. After processing the signals, the ECU determines the desirable damping force for controlling the variable dampers which are fixed to the wheels of a vehicle. The above semi-active suspension thus provide comfortable ride to a driver and passengers and secure steering safety of the vehicle.
引文
[1] 汽车设计手册整车.底盘卷 长春汽车研究所
    [2] 盛敬超编 液压流体力学
    [3] 李晓雷等编著 机械振动基础
    [4] 庄表中 王行新 编著 随机振动概论
    [5]周云山,于秀敏编著 汽车电控系统理论与设计 北京理工大学出版社
    [6] 陈家瑞.汽车构造[M] 人民交通出版社,1993.
    [7] 郑晓静.圆薄板大挠度理论及应用[M].长春:吉林科学技术出版社,1990
    [8] 余志生.汽车理论[M].北京:机械工业出版社,1982.
    [9] 丁元杰.单片微机原理及应用[M].北京:机械工业出版社,1997.
    [10] 宋大凤.CA6440半主动悬架研究及控制系统设计长春:吉林大学汽车工程学院,
    [11] 李静.车辆悬架阻尼控制与可调减振器的研制.长春:吉林大学汽车工程学院,2000.
    [12] 李双义,毕凤荣,邹立明.双筒减振器阀片的大挠曲变形及特性分析.汽车技术,1999(12):22~25.
    [13] 李智超 耿艳萍 陈朝阳等 一种可调阻尼减振器的设计与试验 合肥工业大学学报1998.6
    [14] 李世民 吕振华 清华大学 汽车筒式液阻减振器技术的发展汽车技术 2001.8
    [15] 高晶敏 张少华等 电流变液体减振器的研究 汽车工程 1999.5
    [16] 曾志华.车辆半主动悬挂系统的研究[D].北京:北京理工大学,1991.
    [17] 金达峰.可调阻尼减振器的试验研究[J].汽车技术,1992(2):17-22.
    [18] 曾志华,章一鸣.三级可调阻尼减振器的设计[J].汽车技术,1992(12):14-19.
    [19] 章一呜,曾志华.车辆悬挂阻尼的微机控制.北京理工大学学报,1992(1):58-455.
    [20] 张志涌等 精通Matlab 6.5 北京航空航天大学
    [21] 李树雄.电路基础与模拟电子技术[M].北京:北京航空航天大学出版社,2000.
    [22] 赵健.四轮驱动汽车TCS制动压力调节装置及附着系数分离路面控制方法的研究 长春:吉林大学汽车工程学院.2003
    [23] 张毅刚,彭喜源等.MCS-51单片机应用设计[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [24] 胡汉才.单片机原理及其接口技术[M].北京:清华大学出版社,1995.
    [25] 苏伟斌.51系列单片机应用手册[M].科学技术出版社,1994.
    [26] 董辉.汽车用传感器[M].北京理工大学出版社,2000.
    [27] Ryohei Kizu Motor Coo.Toyota High Speed Control of Damping Force Using Piezoelectric Elements 910661 SAE paper
    [28] Changki Mo Sangju Polytechnic University National Bistate Control of a Semiactive Automotive Suspention SAE paper 1999-01-0725
    [29] G.D.Buckner and K.T.Schuetze the University of Texas at Austin Intelligent Estimation of System Parameters For Active Vehicle Suspention Control SAE paper
    
    1999-01-0725
    [30] EHerr, T.Mallin,J.Lane and S.Roth Tenneco Automotive A Shock Absorber Model Using CFD Analysis and Easy5 SAE paper 1999-01-1322
    [31] Nancy L.Saxon and William R.Meldrum,Jr. U.S.Army Tank-Automotive & Armaments Command Semiactive Suspension:A Field Tesitng Case Study SAE paper 981119
    [32] Aleksander Hac and Albert V.Fratini Jr. Delphi Chassis System Elimination of Limit Cycles Due to Signal Estimation in Semi-active Suspension SAE paper 1999-01-0728
    [33] David Vetturi,Marco Gadola, Danilo Cambiaghi,and Luca Manzo University of Brescia Semi-active Strategies for Racing Car Suspension Control SAE paper 962553
    [34] M.A.H.VAN DER AA,J.H.E.A. MUILDERMAN and F.E. VELDPAUS. Constrained Optimal Control of Semi-Active Suspension Systems with Preview[J]. Vehicle System Dynamics, 1997 (28): 307~323。
    [35] STEFAAN, RANDY STIENS and KOENRAAD REYBROUCK. Evaluation of Shock Absorber Models[J]. Vehicle System Dynamics, 1997 (27): 109~127。
    [36] S.Rakheja, A.K.W.Ahmed and X.Yang.Optimal Suspension Damping for Improved Driver-and Road-Friendliness of Urban Buses[A ].SAE 1999-01-3728:523~534.
    [37] United States Patent Patent Number: 5730261, Date of Patent: Jan. 2, 1996.
    [38] United States Patent Patent Number: 5987369, Date of Patent: Nov. 16, 1999.
    [39] United States Patent Patent Number: 6206152, Date of Patent: Mar. 27, 2001.
    [40] United States Patent Patent Number: 4988967 Date of Patent: Jan.29,1991.
    [41] United States Patent Patent Number: 5071757 Date of Patent: Dec.10,1991
    [42] United States Patent Patent Number: 5425436. Date of Patent: Jun.20,1995.
    [43] United States Patent, Patent Number: 6352145. Date of Patent: Mar. 5, 2002.
    [44] United States Patent, Patent Number: 5503258. Date of Patent: Apr.2,1996.
    [45] United States Patent, Patent Number: 5431259. Date of Patent: Jul. 11,1995.
    [46] 麻友良.汽车底盘电子控制系统原理与检修 辽宁科学技术出版社
    [47] 吴基安.汽车电子技术 人民邮电出版社
    [48] 张洪欣.汽车设计 机械工业出版社
    [49] 汽车筒式减振器台架试验方法,JB3901-85,中华人民共和国机械工业部标准
    [50] 汽车筒式减振器尺寸系列及技术条件.JB1459-85,中华人民共和国机械工业部标准

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700