混合动力汽车参数设计及电机控制系统仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业的发展把能源短缺和环境污染问题推到了日益严重的位置,因此研究汽车节能、降低排放和替代燃料的新技术成了当今汽车工业的重大发展方向。尽管电动汽车是解决这类问题的最好方式,然而目前在蓄电池没有取得突破性进展的情况下,其发展受到了极大的限制。混和动力汽车(HEV)是具有低污染和低油耗特点的新一代清洁汽车,是目前解决这类问题的最佳选择,因而混合动力汽车的研究成为国际、国内汽车发展的一个引人注目的新热点。
    在对混合动力汽车的结构型式和动力元件进行基础性理论分析后,针对我国汽车技术发展现状和混合动力汽车技术的发展趋势,设计了一种基于金属带式无级自动变速器CVT混合动力汽车动力传动系统方案,根据该传动系统方案制定了比较合理的控制策略和工作模式,并针对长安之星6350B设计了发动机功率和起始转矩、主减速比、电机的额定功率和转矩、转矩合成器速比等相关参数,为下一步的电机控制系统仿真实验打下基础。
    混合动力汽车的关键技术之一—电机控制技术对混合动力汽车的发展起着决定性的作用,它不仅要保证能满足整车的各种行驶工况,而且要提高整车的动力性和经济性。本文在直接转矩控制系统的基础上提出了一种基于误差等级的直接转矩控制DTC策略,它以电机定子磁链误差、电机电磁转矩误差及磁链位置角作为控制变量,然后根据直接转矩控制原理制定控制规则来选择开关状态,进而提高系统瞬态时的转矩响应。动力平顺切换是混合动力汽车的另外一个关键技术,本文以油门开度、油门开度变化率结合整车动力性和经济性作为动力切换的依据,以保证汽车的乘坐舒适性确定目标转矩作为动力平顺切换的依据,确定了动力转换策略。为了验证以上所提出的策略,建立了电机的动态数学模型和整车动力传动模型,在此基础上分别对6350B混合动力汽车纯电机启动工况、纯电机驱动工况、纯发动机驱动工况和混合驱动工况进行了仿真计算,并与原型CVT汽车进行了比较分析。仿真结果表明,电机的误差等级转矩控制系统转矩响应迅速,动态特性好;整车动力转换平顺;整车的动力性有较大的提高,达到了相关的技术要求,为进一步的样车研制提供了理论依据。
The development of automobile industry induces increasingly serious problems of environment pollution and the scarcity of oil source, so it is imperious to seek for a new technology of saving energy, reducing the exhaust emission of automobile and the replaceable material. The electric vehicle (EV) is the best method to solve these both problems, but its development is currently limited by no breakthrough in battery evolvement. Having the characters of low pollution and low oil-consumption, the hybrid electric vehicle (HEV) is an ideal choice to solve these existing problems at present. Therefore, the investigations on HEV become new hotspot in the field of international and national automobile.
     Based on the basic analysis of the structure and power elements of the hybrid vehicle, this thesis presents a powertrain system with a metal pushing belt CVT, aiming to the development status and trend of the hybrid vehicle technology in our country. A rational control strategy and its work mode of this powertrain system are determined, and correlative parameters such as the engine power, the starting torque, and the differential ratio, the rated power and torque of the motor, and the ratio of the torque synthesizer are systematically designed for the Changan Star 6350B. At the same time, the design of these parameters is considered as the base of the simulation of the motor control system in next step.
     As a key technology, the motor control technology plays an important role in developing the hybrid vehicle. It ensures to not only meet with all kinds of modes of the vehicle, but also improve fuel economy and dynamic performance. On the basis of the principle of Direct Torque Control, a control strategy of the grade of errors for induction motor has been proposed to improve the performance of powertrain system of hybrid vehicle in this thesis. The stator flux error, electric magnetic torque error and flux position angle are considered as control variables, and the switching states are determined by the control rules of the Direct Torque Control. Thereby this approach can acquire the faster response of the electric magnetic torque without the plenty of calculations. Another key technology is to realize the power switching steadily. According to accelerator pedal angle and accelerator pedal angle ratio, and fuel
    
    economy and dynamic performance,the time for power switching is determined. Then, based on the target torque required by the automobile easement, power switching steadily is obtained. After synthesizing the above information, the control strategy on power switching steadily is achieved in this thesis. The dynamic mathematical model of the motor and the whole powertrain model were built to verify the validity of the strategy in the above. At last, the starting mode of single motor, the driving mode of single motor, the driving mode of single engine, and the driving mode of hybrid power were simulated for the Changan Star 6350B, and the result of the simulation is compared with the prototype CVT. Results show that the presented control strategies are ideal for hybrid vehicle, which can make the motor generate the electric magnetic torque efficiently, steadily and quickly. And dynamic performance of whole vehicle is largely increased to achieve the related technology requirements. This investigation provides a theoretic foundation for the development of the hybrid vehicle.
引文
[1] 张承宁,“电动汽车21世纪的重要交通工具”,北京理工大学出版社,1997年1月第一版。
    [2] Edward Bass, Bruce Mabrito, etc. "A Competition of Hybrid Electric Vehicle", SAE paper 921544;
    [3] 庾晋,“机动车尾气污染的危害及治理研究”,汽车与配件,Vol.11,1999;
    [4] C.Anderson and E.Pettit, "The effects of APU Characteristic on the Design of Hybrid Control Strategies for Hybrid Electric Vehicles", SAE paper 950493;
    [5] “三菱汽车自身发电电力汽车”,三菱自动车工业株式会社;
    [6] 陈小复,“美国复合动力电动汽车发展计划”,世界汽车,Vol.01,1998;
    [7] 冯卓津,“俄罗斯开发复合动力装置“,世界汽车,Vol.06,1998;
    [8] 林海友,祈建华,“复合式驱动的VOLVOFL6”,重型汽车,Vol.02,1998;
    [9] 成森,“车用混合动力系统技术发展分析“,车用发动机,Vol.01,1999;
    [10] 豪彦,“贯彻新标准 驶入新世纪-记99上海机动车与环境研讨会”,汽车与配件,Vol.36,
    1999;
    [11] 林木,“通用下一代环保车亮相”,汽车之友,Vol.02,1999;
    [12] 干文,“本田挑战丰田—本田、丰田混合动力之争”,汽车之友,Vol.06,1999;
    [13] 科电,“迎接新世纪的国际电动车盛会”,汽车之友,Vol.01 1999;
    [14] “丰田与通用联合开发高科技环保汽车技术”,科技日报,1999年6月9日第一版;
    [15] Catherine Anderson and Erin Pettit, The Effects of APU Characteristics on the Design of Hybrid Control Strategies for Hybrid Electric Vehicle[J],SAE paper, 1995,95043:66~68;
    [16] Brain Johnston, Timoty McGoldrick, David Funston, Harry Kwan, Mark Alexander, Frank Alioto.Nicolas Culaud, Olivier Lang, H.A.Mergen, and Richard Carlson, The Continued Design and Development of the University of California, Davis Future Car[J], SAE paper, 1998, 980487:459~462;
    [17] Feng An, Matthew Barh, and George Scora, Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance[J], SAE paper, 1997,972646:36~38;
    [18] K.L.Bulter, K.M.Stavens, A versatile computer simulation tool for design and
    
    analysis of electric and hybrid drive trains[J],SAE paper,1997,970199:22~24;
    [19] S.R.Cikanek, K.E.Baily, R.C.Baraszu, and B.K.Powell, Control System and Dynamic Model Validation for a Parallel Hybrid Electric Vehicle, proceedings of the American control conference, SanDiefo, California *June 1999;
    [20] Sebastian DELPRAT&PAGANELLI, Alogorithmic optimization tool for evaluation of HEV strategies, EVS16;
    [21] Gino PAGANELLI&jean-jacques ANTIN, Conception and control of parallel hybrid car powertrain, EV15;
    [22] Ulrich zoelch, Dierk schrode,Optimization method for rating the components of a hybrid vehicle,EVS14;
    [23] Chunho Kim, Eok Nam Goong and Secongchulee, Fuel Economy Optimization for Parallel Hybrid Vehicle with CVT[J], SAE paper, 1999-01-1148:337~342;
    [24] 苏彦民,李宏,“交流调速系统的控制策略”,机械工业出版社,1998年6月第一版;
    [25] 李夙,“异步电动机直接转矩控制”,机械工业出版社,1994年12月第1版;
    [26] 王颍,“电动汽车交流异步电机控制系统研究”,清华大学出版社,2001年12月第1版;
    [27] Ying Wang , Wenlong Qu, Quabshi Chen, Jingguang Lun, A New Fuzzy Torque Control System for Electric Vehicle, EVS16;
    [28] M.A.Pichot, J.M.Kramer, R.C.Thpmpson etc. "Flywheel Energy Storage System", Automotive Engineering, Vol.106NO.2p262;
    [29] Kozo Yamaguchi,Shuzo Moroto,etc. "Development of a new Hybrid System_Dual system", SAE paper 960231;
    [30] I.Forster and J.R.Bumby, MIEE, "A Hybrid Internal Combustion Engine/Barrery Electric Passenger Car for Petroleum Displacement", Proc.Inst.Mech.Engrs.Vol.202NOD1;
    [31] Ehsani Mehrdad, Gao Yimin, Butler Karen L.Apllication of electrically peaking hybrid(ELPH) propulsion system to a full-size passenger car with simulated design verification, IEEE Transactions on vehicular technology, 1999,48(6):1779~1781;
    [32] Ehsani Mehrdad, Rahman Knwaja M, Toliyat Hamid A.Propulsion design of electric and hybrid vehicles, IEEE Transactions on industrial electronic, 1991,44(1):19~21;
    [33] 余志生编,汽车理论,北京:机械工业出版社,1990;
    
    
    [34] Yimin Gao,Khwaja M.Rahman and Mehrdad Ehsani, "Parametric Design of the Drive Train of an Electrically Peaking Hybrid(ELPH) vehicle", SAE paper 970294
    [35] Mehrdad Ehsani, Khwaja M. Rahman and Hamid A.Toliyat, "Propulsion System Design of Electric and Hybrid Vehicle", IEEE Transactions on Industrial Electronics,Vol.44,No.1,1997.2;
    [36] 李理光,李东军,“中国典型城市车辆行驶状况的测试统计”,汽车技术,Vol.03 1998;
    [37] 王红岩,金属带式无级变速器传动系统分析、匹配与综合控制的研究:[博士学位论文].长春:吉林工业大学,1998;
    [38] 舒红,秦大同,杨为,混合动力汽车动力传动系参数设计研究,农业机械学报,Vol33,2001,19~22;
    [39] 王庆年,何洪文,李幼德等,并联混合动力汽车传动系参数匹配,吉林工业大学自然科学学报,2000,30(1):73~75;
    [40] Mutoh N, Kaneko S, Miyazaki T, et al. Torque controller suitable for electric vehicle. IEEE Trans on Industrial Electrics,1997,44(1):55~63;
    [41] Kenji Yamada, Katsuyuki Walanabe ,Takashi Kotlama ,et al. An efficiency maximizing induction motor drive system for transmissionless electric vehicle. In: Hisashi Ishitani eds. Proceedings of EVS13, Japan Tokyo:JEVA,1996,2:529~536;
    [42] 王颖,陈全世,伦景光,用于电动汽车的模糊转矩控制系统的仿真,清华大学学报(自然科学版),1998年第8期96~98;
    [43] 蒲斌,秦大同,舒红,胡明辉,混合动力汽车电机转矩控制系统的仿真,重庆大学学报(自然科学版),2003年5月第5期;
    [44] 葛安林,车辆自动变速理论与设计,机械工业出版社,1995年5 月第1版;
    [45] Peter Coenen, Paul Van Tichelen, Development of a Simple Permanent Magnet DC Motor Control with Field Weakening, Traffic and Environment, 1998 12(2) :34~35;
    [46] 秦曾煌,电工学(电工技术),高等教育出版社,1990年5月底4版;
    [47] Michael Paul. CVT's driving the future of transmission technology. CVT'99,1999.1~8;
    [48] Stephane Rimaux, Michel Delhon and Emmanuel Combs. Hybrid vehicle powertrain: Modeling and Control.EVS 16,paper No:116,1999;
    [49] 王红岩,轿车金属带式无级变速传动系统综合控制的研究,重庆大学博士后研究工作报告,2001;
    [50] 汤毅,长安之星微车装备自动变速器后的动态特性仿真研究:[硕士学位论文].
    
    重庆:重庆大学,2002。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700