大件物流企业安全生产关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国工业化进程的加快,各类工业设备朝着大型化和重型化发展。石油化工、金属冶炼、矿业开采、电站建设等与国民经济建设和国防建设密切相关的重大项目中,单件重量逾百吨的大件设备越来越多,承运该类设备的大件物流企业也蓬勃发展。由于大件设备的特殊性,大件物流企业的安全生产不仅是其运营过程中的核心工作,也直接影响那些与国计民生密切相关的重点项目能否顺利建成。本文在系统研究大件物流企业安全生产特征的基础上,提出大件物流企业安全生产系统的概念,分析影响该类企业安全生产的主要因素,以安全第一,兼顾成本为优化目标,深入研究了承载车组子系统、牵引车组子系统和路径子系统的约束条件及其关键技术。全文的研究内容主要包括以下几个部分:
     首先,论文对大件物流安全生产进行了总体研究。针对大件物流企业安全生产过程呈现高度复杂性和不确定性的特点,研究了大件物流企业安全生产系统的主要特征,按照承载车组子系统、牵引车组子系统和运输路径子系统的系统结构,提炼出大件物流企业安全生产主要影响因素。研究了大件物流企业安全生产系统的优化目标及其关键约束条件,建立大件物流企业安全生产系统总体框架。
     其次,论文研究了大件物流企业安全生产系统的承载车组子系统和牵引车组子系统的模型。根据承载车组的静态物理属性和液压悬挂三点支撑模型,提出了承载车组受力可靠性模型,从主梁弯矩、主梁剪力、主梁变形和轴线载荷四个维度对承载车组的受力可靠性进行评估;根据承载车组的行进动态特征,提出行进稳定性模型,分别从承载车组的横向稳定性、纵向稳定性和塌点稳定性对整个车组的行进稳定性进行评估;根据承载车组的绑扎参数和绑扎特征,建立了承载车组绑扎可靠性模型,分别从承载设备向前滑动、向前翻倒、侧向滑动和侧向翻倒的倾向对承载车组绑扎可靠性进行评估。根据汽车行驶理论,建立大件车组的牵引可靠性模型,结合高海拔工况下牵引力损耗经验公式,从驱动力和牵引车配重两个方面对牵引车组可靠性进行评估。
     再次,针对大件车组弯道路径通过能力普遍较差的问题,通过对液压平板全挂车组、液压动力鹅颈车组和长货跨装车组进行建模,简化研究对象,对影响其转弯的关键物理量进行深入研究,提出了动态迭代算法,并在此基础上实现了计算机动态模拟仿真。针对大件车组桥梁路径通过能力较差的问题,利用荷载比较法,建立大件车组通过简支梁桥、连续梁桥和拱桥的模型,提出动态模拟算法,对大件车组的桥梁通过性进行评估。
     针对大件公路运输路径优化的问题,通过承载车组受力可靠性和绑扎可靠性评估结果选择承载车组;通过牵引车组可靠性评估结果选出牵引车组;根据行进稳定性评估结果、弯道路径和桥梁路径通过能力评估结果筛出备选路径,以安全为主要约束条件,以成本优化为目标,建立了带配送时间窗、车辆安全通过性、车辆载重限制、车辆容积限制等多约束条件的大件公路运输路径优化模型,采用三层序数编码方法产生满足载重和体积约束条件的初始种群,通过模拟退火操作和遗传算法对整个群体进行优化,进而得出大件物流企业安全生产资源最优配置方案的满意解。
     最后,基于本文研究成果设计了大件物流企业安全生产系统。基于WebService平台,采用B/S结构,设计了大件物流企业安全生产系统的各子系统模块,并通过应用示例验证本文所提出模型和算法的正确性和实用性。
In recent years, all kinds of industrial equipment have developed towards largeand heavy with the accelerated process of industrialization in China. More and moredevices’ single piece weight more than100tons in the significant projects related tothe national economic construction and national defense construction, such aspetrochemical, metal smelting, mining, and power plant construction. Large logisticsenterprises of the carriage of such equipment are also booming developments. Due tothe particularity of such equipment, the safe production of large logistics enterpriseshas not only become the core work of these enterprises’ concern in the process ofoperation, but also directly related to the successful completion of the key projectssuch as people's livelihood. In this paper, on the basis of studying the features of largelogistics enterprise safe production, the concept of large logistics enterprise safeproduction systems was proposed. This paper studied constraints and key technologiesof the carrying vehicle group subsystems, the tractor group subsystems and the pathsubsystem by abstracting the main factors that affect the safe production of largelogistics enterprises. The system optimization goals were safety first by taking cost intoaccount. The full text of research mainly includes the following sections:
     Firstly, the overall research on large logistics enterprise safe production systems.For a high degree of complexity and uncertainty of this process, the main features oflarge logistics enterprise safe production systems were studied. This paper extractedthe main factors that affect this system in accordance with system structure of thecarrying vehicle group subsystems, the tractor group subsystems and the pathsubsystem. It studied the optimization goals and key constraints of large logisticsenterprise safe production systems and established the overall framework of it.
     Secondly, this paper studied the models and algorithms of the carrying vehiclegroup subsystems and the tractor group subsystems. The models and algorithms ofcarrying vehicle group force reliability were established according to the staticphysical properties and three-point support model of carrying vehicle group, and thecarrying vehicle group force reliability was evaluated from four dimensions whichincluded main beam moment, main beam shear, main beam deformation and axial load.Then, the models and algorithms of moving stability were proposed according to thedynamic characteristics of the carrying vehicle group moving, and the moving stabilityof a whole vehicle group was evaluated through lateral stability, longitudinal stability, and the collapse point stability. This paper put forward the models and algorithms ofbanding reliability by considering banding parameters and binding characteristics ofthe carrying vehicle group, and assessed the banding reliability from carryingequipment’s forward slide, forward overturn, lateral sliding and the tendency of lateraloverturn. On the basis of automobile driving theory, the models and algorithms oftraction reliability were established and evaluated through two aspects which includedriving force and tractor weight by considering the empirical formula of traction lossunder the high-altitude condition.
     Thirdly,according to the problem of poor ability to OS/OW car group through thecorner, a models was built for hydraulic flat-panel trailer group, hydraulic powergooseneck car group and Long cargo cross-loading group to simplify the study, andstudy deeply the key physical quantities impacting the turn. Dynamic iterativealgorithm about key physical quantities was proposed through mathematical modeling,and dynamic computer simulation was realized based on algorithm. According to theproblem of the poor ability to OS/OW car group through the bridge, the models ofOS/OW car group through simply supported bridge, continuous beam bridge and archbridge, dynamic algorithm was put forward to assess the bridge passing ability ofOS/OW car group.
     According to the highway transportation route selection optimization problem, inorder to minimize the transportation costs, highway transportation route selectionoptimization model was established based on delivery time window, customer servicetime, overloading punishment, vehicle loading, traffic volume restricted, and improvedgenetic simulated annealing algorithm was proposed, the two layer coding means aboutvehicle volume and carrying capacity was presented, so, initial multi-population wasgenerated, outstanding individual migration sharing was achieved by competing witheach other among all populations, eventually the optimal solution was found. So, thispaper provided a new solution about highway transportation routing problem.
     Finally, a large logistics enterprise safe production system was designed based onthe findings of this paper. Each subsystem module of this system was designed indetailed on the basis of web service platform by using B/S structure. Then, the validityof the models and algorithms proposed in this paper to solve this kind specialtransportation problem was verified through the application examples.
引文
[1]董千里.特种货物运输[M].北京:中国铁道出版社.2007:193-219.
    [2]王诺.工程物流学导论[M].北京:化学工业出版社,2007:2-5.
    [3]周爱莲.公路搭建运输计算机决策系统的研制与开发[J].公路交通科技,2004(2):106-108.
    [4]杨春兰.公路大件运输计算机决策系统建模与软件开发[J].武汉理工大学学报(TS&E),2003(2):106-108.
    [5]杨春兰.挂车装载后车架受力的计算机辅助分析[J].上海工程技术大学学报.2005.03:35-37.
    [6]赵丁选.铰接车辆稳定性及其仿真与控制[M].北京:中国铁道出版社,1999:58-60.
    [7]赵丁选,纪国军,陈秀捷等.求解铰接式车辆横向一级稳定性的能量法[J].农业机械学报,1998,29(4):17-20.
    [8]肖庆山.平板挂车纵向拼接转向系计算[J].汽车运输.1997.07.
    [9]夏长高.半挂汽车列车转弯制动性能的模拟计算[J].江苏理工大学学.1997.01.50-55.
    [10]林熊熊.半挂汽车列车弯路运动轨迹计算机仿真[J].汽车工程,(1):60-65.
    [11]林熊熊.全挂汽车列车弯路运动轨迹计算机仿真[J].汽车工程,1998,(5):292-295.
    [12]唐岚,黄海波,邱小平.汽车列车转向轮迹重合控制原理研究[J],武汉理工大学学报.2005-
    [13]胡宁.半挂汽车列车转向运动学分析[J].汽车研究与开发.1998.(2):23-26.
    [14]王安顺,张景,施树明等.汽车转向轮侧滑及其影响因素的研究[J].中国公路学报,1998,11:122-128.
    [15]林逸,李胜.非独立悬架汽车转向轮自激型摆振的分岔特性分析[J].机械工程学报,2004,40(12):187-190.
    [16] Lamiraux F. LJP, Vangeem C.,et al.Trailer-truck trajectory optimization for AirbusA380component transportation [J].IEEE Robotics and Automation,2005,12(1):14-21.
    [17] Adams TMG-baooppM, Suphawut; Blazquez, Carola; Vonderohe, Alan Proceedings of the8th International Conference on Computing in Civil and Building Engineering, v279, p209-216,2000.
    [18] Gopalakrishna D. Woodrooffe J. Performance-based oversize and overweight permittingsystem[J]. Transportation Research Record n, p118-125,2006.
    [19] Alexander J.C. MJH, On the maneuvering of vehicles [J].SIAM Journal on AppliedMathematics,2005,38(1),38–51.
    [20]王阳阳,张代胜,孙海涛.重型汽车双前桥转向运动学仿真模拟[J].合肥工业大学学报(自然科学版),2005,28(5):505-507.
    [21]叶建龙,孙建渊,石洞.梁拱组合桥柔性吊杆张拉力的确定及分析[J].城币道桥与防洪,1999,(04):21-24
    [22] Khwaounjoo Y. R. KA, Sloane I., Hilton J. Torsional strengthening of substructure beamsof Mangatawhiri River Bridge[R] Proceedings of the4th International Conference onCurrent and Future Trends in Bridge Design, Construction and Maintenance, p271-282,2006.
    [23]易云馄,肖汝诚.均布荷载作用下梁拱组合桥梁的买用计算[J].同济大学学报(自然科学版),2008,(06):728-732.
    [24]谭冬莲.大跨径自锚式悬索桥合理成桥状态的确定方法[J1.中国公路学报,2005(2)
    [25]檀永刚,张哲,黄才良.自锚式悬索桥简化计算方法研究[J].土木工程学报,2008,4l(3).
    [26]吕丹,盛洪飞,郑传峰,刘远洋.自锚式悬索桥主梁面内稳定实用简化计算方法探索!月.华东公路,2008,(l).
    [27]李天飞.自锚式悬索桥动力及静风响应研究队].大连理工大学,2009.
    [28]胡明伟,唐浩.动态车辆路径问题的多目标优化模型与算法[J].深圳大学学报理工版,2010,27(2):230-235.
    [29]温惠英,徐建闽,林正春.适于物流配送车辆导航路径优化的遗传算法[J].华南理工大学学报(自然科学版),2009,37(2):82-91.
    [30]温惠英,李俊辉,周玮明.适于车辆路径规划的改进型粒子群优化算法[J].华南理工大学学报(自然科学版),2009,37(7):1-5.
    [31]孟凡江,高树喜,杨新安,等.多路径分配的车流径路优化模型[J].辽宁工程技术大学学报(自然科学版),2008,27:93-95.
    [32]高辉,徐光辉,王哲人,等.改进量子进化算法及其在物流配送路径优化问题中的应用[J].控制理论与应用,2007,24(6):969-972.
    [33] Ceschia S. SA, Tabu search techniques for the heterogeneous vehicle routing problem withtime windows and carrier-dependent costs[J].JOURNAL OF SCHEDULING,2011,14(6):601-615.
    [34] Ursani Z. ED, Cornforth D.Localized genetic algorithm for vehicle routing problem withtime windows[J].APPLIED SOFT COMPUTING,2011,11(8):5375-5390
    [35] ZIAUDDIN U. DE, DAVID C..et al.Localized genetic algorithm for vehicle routingproblem with time windows[J].Applied Soft Computing,2011,11(8):5375-5390
    [36] Macedo R. AC, Valerio D..Solving the vehicle routing problem with time windows andmultiple routes exactly using a pseudo-polynomial model[J].EUROPEAN JOURNAL OFOPERATIONAL RESEARCH,2011,214(3):536-545.
    [37] Salani M. VI, Branch and price for the vehicle routing problem with discrete splitdeliveries and time windows[J]. EUROPEAN JOURNAL OF OPERATIONALRESEARCH,2011,213(3):470-477.
    [38] Lin C..A vehicle routing problem with pickup and delivery time window acotrJCOR,2011,38(11):1596-1609.
    [39] Gulczynski D. GB, WASIL E.. The period vehicle routing problem:New heuristics andreal-world variants[J].TRANSPORTATION RESEARCH PART E-LOGISTICS ANDTRANSPORTATION REVIEW,2011,47(5):648-668
    [40] Groer C. GB, WASIL E..A Parallel Algorithm for the Vehicle RoutingProblem[J].INFORMS JOURNAL ON COMPUTING,2011,23(2):315-330.
    [41]张孝军,刘少林.超重车辆过桥的等待荷载判别法[J].水利水电快报,1998,11(8):13-14.
    [42]廖昭鼎.超大件设备运输过桥验算及加固方案介绍[J].公路,2001,(6).
    [43]何博渊.超重车辆过桥运输的几点认识与实践[J].甘肃科技,2001,15(6):17-20.
    [44]李斐,杨育,申世杰,邢青松.基于灰色网络评价法的大件设备公路运输项目风险评价研究[J].机械,2011,(6).
    [45]周颂.超限大件设备的汽车运输组织问题[J].宝钢技术,2010,(4).
    [46] Kovalev P.I. Composite foundations for heavy equipment[J].1958
    [47]章剑.装运大件设备的拖航检验注意事项[J].航海技术,2006,(5).
    [48] ZheWei D, XiaoyiWang, Jinlong Wang. Multi-objectives optimal model of heavyequipment using improved Strength Pareto Evolutionary Algorithm[J].2009,(3-4).
    [49]张建军,霍亚邦,封茂龙.岭澳二期核岛大件设备运输及吊装项目“一体化”管理模式探讨[J].中国高新技术企业,2010,(21).
    [50]赵龙.组合式液压全挂车专用汽车,1994(4):42-44.
    [51] Wivagg A.P. DEVELOPMENT OF A36-AXLE SCHNABEL RAIL CAR[J]. AmericanSociety of Mechanical Engineers
    [52] Zong C-QL, Zhi-Yong; Li, Jiang-Tao Research on safety evaluation foroverweight/oversized cargo's transportation on road ICTIS2011: Multimodal Approach toSustained Transportation System Development-Information, Technology, Implementation-Proceedings of the1st Int. Conf. on Transportation Information and Safety, p1890-1895,2011.
    [53] Siekmann AC, G.; Hudson, Preliminary Assessment of Overweight Mainline Vehicles[R]M.B.L.(Oak Ridge National Lab., TN.) Sponsor: Department of Energy, Washington, DC.:ORNL/TM-2011/463,25p, Oct2011
    [54] Zong CY, Xinping; Lu, Zhiyong Study on the measuring system for vehicle's passingability in space[R] Proceedings of ICCIA2010-2010International Conference onComputer and Information Application, p309-313.
    [55]胡胜来,郑国华,刁荣亭.超重车辆运输中桥梁承载能力的评估[J].研究与讨论,2005,12(8):505-50.
    [56]林健安.超重车辆过围墩高架桥的即时监控与分析[J].公路交通技术,2007-
    [57]杨雪英,张书或.大件运输顺利实现的常用手段.中外物流,206(11):64-66
    [58]薛金莲,孔庆忠,姚景利.液压挂车装载运输强度、变形、预拱的校核及优化[J].一重技术,2001(1):39-40.
    [59]马晓军,秦颖军.大件运输液压挂车装载参数的校核及优化[J].重型机械科技,2003,4:13-14.
    [60]成凯,黄海东,秦四成.大吨位可拼装式挂车的液压悬架系统。专用汽车,1995(10):48-53.
    [61]郭正康.现代汽车列车设计与使用[M].北京:北京理工大学出版社,2006:56-70.
    [62]闵行,诸文俊.材料力学[M].西安:西安交通大学出版社,2009:55-180.
    [63]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2009:100-205
    [64]申世杰.大件产品公路运输安全管理系统研究及应用[D].重庆:重庆大学,200920-24.
    [65]刘鸿文.材料力学[M].北京:高等教育出版社,2009:99-150
    [66]罗灯明,司鹏昆,梅彦利.组合式全挂车液压系统设计.承德石油专科学校学报,2000,2(3):10-13.
    [67]罗灯明,司鹏昆,梅彦利.组合式全挂车液压动力机组研制.承德石油专科学校学报,2001,3(1):8-11
    [68]路中,牟玉杰,李淑华.圆柱形大件货物的装载加固[J].一重技术,1991(1):96-115
    [69]孔江生,刘振生,陈奕.半挂拖车侧向振动问题分析[J].公路交通科技,2006,23(5):134-137.
    [70]高术振,孔江生,姬鹏.半挂车侧向稳定性分析[J].水利电力机械,2005,27(4):17-20
    [71]赵丁选.铰接车辆稳定性及其仿真与控制[M].北京:中国铁道出版社,1999.
    [72]罗灯明,司鹏昆,梅彦利.组合式全挂车液压系统设计[J].承德石油专科学校学报,2000,2(3):10-13.
    [73] Fernando E. G. MD, Park D. W., Liu, W. Evaluation of Effects of Tire Size and InflationPressure on Tire Contact Stresses and Pavement Response[R] Sponsor: Texas Dept. ofTransportation, Austin. Research and Technology Implementation Office.;Federal HighwayAdministration, Austin, TX. Texas Div. Report: REPORT-0-4361-1,288p, Aug2006.
    [74] Fernando E. G. Evaluation of Effects of Tire Size and Inflation Pressure on Tire ContactStresses and Pavement Response[R] Federal Highway Administration A, TX. Texas Div.Report: TTI-PSR-0-4361-S,4p, Aug2006.
    [75]李镇,刘春和.谈谈加固的必要性[J].铁道货运.1996(6):30-31.
    [76]盖宇仙.多件非均重货物装载方案的优化方法[J].兰州铁道学院学报(自然科学版),2000,(19)6:87-90.
    [77]戴学英.大件物体翻转电算成学[J].鞍钢技术,1996(10):35-39.
    [78]邵兴.理论力学[M].北京:清华大学出版社,2009:20-198.
    [79]焦岗耀.牵引车的选型与设计[J].重型汽车,2007(2):20-23.
    [80]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2009.
    [81]浪良贵,纪名刚,机械设计[M].北京:高等教育出版社,1996.
    [82]徐达.半挂气车列车的牵引动力学计算[J]..专用汽车,1995(3):14-18.
    [83]苟才德.高原环境对柴油机动车性能的影响及对策[J].15-16.
    [84]李志玉.高原对汽车运行的影响与对策[J].青海交通科技,2006:58-60.
    [85]果继辉.提高高原地区发动机动力性和经济性的措施[J].性能研究,2005(2)16-18.
    [86]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [87]刘锐.汽车使用与技术管理[M].北京:人民交通出版社,1998,64-74.
    [88] Ray Julian J. A web-based spatial decision support system optimizes routes foroversize/overweight vehicles in Delaware[J] Decision Support Systems v, n4, p1171-1185,August2007.
    [89]徐辅仁,顾佩芝.大型车辆能否通过狭曲公路路段的依据[J].广西交通科技,1994,19(1):34-36.
    [90] Osegueda R. A.; Milchor-Lucero O.; Carrasco C. J. Improvements on Automated Routingof Overweight/Oversize Vehicles[R] Sponsor: Texas Dept. of Transportation AFH
    [91]王阳阳,张代胜,孙海涛.重型汽车双前桥转向运动学仿真模拟[J].合肥工业大学学报(自然科学版),2005,28(5):505-507.
    [92]王威,李瑰贤,宋玉玲.汽车转弯高维非线性动力学特性研究[J].哈尔滨工程大学学报,2009,14(6):402-409.
    [93]姜丰,洪岩,王铁光,贾书惠.半挂汽车列车高速行驶转弯制动特性分析[J].东北大学学报,1998,19(6):652-655.
    [94]张增太,房景仕.雷达半挂汽车列车机动运输设计中的若干性能参数分析[J].电子机械工程,2009,25(3):17-19.
    [95]张伯根,陈国,陈园.三维动画在模拟公路行车中的实现与应用[J].公路,2000,13(6)22-25.
    [96]陈正斌,白凯,马健等.三维建模及动画在拱桥中的应用[J].重庆交通学院学报,2009,9(3).23-28.
    [97]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真[J].铁道学报,2004,22(6.):40-45.
    [98]朴明伟,丁彦闯,李繁等.大型钢耦合车辆动力学系统仿真研究[J].计算机集成制造系统,2008,14(5):875-881.
    [99] NEGRUT D. RR, OTTARSSON G., et al.On an implementation of the HHT method in thecontext of index3differential algebraic equations of multi-body dynamics[J].ASMEJournal of Computational and Nonlinear Dynamics,2007,2(1):73-85.
    [100]王安顺,张景,施树明等.汽车转向轮侧滑及其影响因素的研究[J].中国公路学报,1998,11(S1):122-128.
    [101]吴海翔.公路收费口通行能力研究[D].南京:东南大学硕士论文[D],1998.63-66.
    [102]许少白,大件设备公路运输中有关问题的探讨[J],福建电力与电工,2001,11(4),66-69.
    [103]张琪昌,李小涛,田瑞兰.汽车转向轮摆振的稳定性及分岔行为分析[J].振动与冲击,2008,27(1):84-88.
    [104]杜瑞国,王中元,李振军.汽车转弯不容忽视的力学问题[J].力学与实践.2011,4(33):90-91.
    [105]阳思,马寿锋,钟石泉.基于元胞自动机的拖挂车弯道转弯模型及仿真[J].交通信息与安全.2011,4(29):33-39.
    [106]游景玉.实时仿真技术及其应用[M].海南:珠海出版社,1997.111-113.
    [107] Teresa M. BC, Lueck S., et al. Enterprise-wide data integration and analysis foroversize/overweight permitting[J]. Journal of Computing in Civil Engineering,2002,16,(1):11-22.
    [108] Gindy M. PA, Assessment of Road and Bridge Data for the Development of an AutomatedOversize/Overweight Vehicle Routing and Permitting System[C].//Research TechnologyDevelopment Div. Federal Highway Administration, Providence, RI. Rhode IslandDiv.2007:87.
    [109]徐进,罗庆,彭其渊等.回旋线设置对弯道行驶速度的影响[J].中国公路学报.2011,1(24):25-33.
    [110]宋年秀,苏建,苏丽俐等.半挂汽车列车弯道行驶工况下轴偏角对行驶稳定性影响的仿真分析.汽车技术.2010,2(33):33-37.
    [111]李钱.半挂车轴偏角对其行驶性能影响的研究[D].长春:吉林大学,2008.
    [112]刘宏飞.半挂汽车列车直线行驶横向摆振研究.汽车技术,2005(1):11-14.
    [113]张建国.半挂汽车列车制动稳定性仿真分析[D].长春:吉林大学,2007.
    [114]朱建平.大件运输通过前对桥梁的检测[J].青海交通科技,2002,14(2):13-15.
    [115]鲍卫刚.大件运输车辆过桥能力检算分析软件编制[J].公路,2003,9(9):106-109.
    [116]邢文榜.大件运输中桥梁通过性快速评定方法研究[J].中外公路,2011,33(3):217-220.
    [117]李德月.超重车运输中桥梁承载能力的评估[J].华东公路,2001,8(2)9-10.
    [118]贾海英,王淑萍.超重车辆过桥时桥梁承载能力的验算方法[J].黑龙江交通科技,2004,13(3):25-27.
    [119]易建国.混凝土简支梁桥[M].北京:人民交通出版社.2008,3.
    [120]中交公路规划设计院.2004年公路桥涵设计通用规范[M].北京:人民交通出版社.2004,9.
    [121]邹毅松,王银辉.连续梁桥[M].北京:人民交通出版社.2009,4.
    [122]中交公路规划设计院.公路桥涵设计手册——拱桥(上).北京:人民交通出版社.1998,2.
    [123] Melchor-Lucero O, Osegueda R. A. Conversion of Automated Routing ofOverweight/Oversize Vehicles to ArcView[R] Texas Dept. of Transportation,Austin.;Federal Highway Administration, Austin, TX. Texas Div.,76p, May2000.
    [124] Kurt C. E. Feasibility of Automated Routing and Permitting of Oversize/OverweightVehicles[R] South Dakota Dept. of Transportation POoR,88p, Aug1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700