汽车列车轴偏角对行驶性能影响分析及其检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半挂汽车列车是经济、方便、快捷和重要的运输工具。半挂汽车列车轴偏角大小对半挂汽车列车行驶稳定性有重大的影响。为了全面研究半挂汽车列车轴偏角对半挂汽车列车行驶稳定性的影响机理,本文应用虚拟样机技术,对半挂汽车列车系统进行了动力学和运动学分析,建立了半挂汽车列车行驶稳定性数学模型,进而探索了半挂汽车列车轴偏角对其行驶稳定性的影响,并进行了半挂汽车列车轴偏角检测方法研究。
     应用ADAMS仿真分析软件创建了半挂汽车列车整车模型,应用实车和所建立的半挂汽车列车模型分别进行了稳态转向特性试验和制动效能试验,并对结果进行比较分析,验证了所建立的半挂汽车列车模型与实车的一致性,所建模型可以进行轴偏角对半挂汽车列车行驶性能影响的仿真分析研究。
     在半挂汽车列车的建模过程中对车轴进行了参数化分析,运用ADAMS的试验设计技术对模型进行了半挂汽车列车匀速直线保持性、直线制动性能、转弯行驶性能和瞬态横摆响应特性等各种工况下的仿真分析,并对试验数据进行了相应的处理和理论分析,得到轴偏角与半挂汽车列车行驶性能的定量关系。
     本文在分析半挂汽车列车轴偏角对其行驶稳定性影响的同时,应用机器视觉技术和激光测距技术,对半挂汽车列车轴偏角检测方法进行了研究。
Effects Analysis on the Performance and Detection Study of Axial Deviation Angle of Tractor-trailer
     With the increasing widespread application of tractor-semi trailer, problems of driving safety, handling stability and so on were also becoming more prominent. The driving and handling stability, and the driving safety of high-speed and curve of tractor-semi trailer that were influenced seriously by axial deviation angle, increasing the width of driving passage and tire wear, brought about hidden trouble. It has academic meaning and practical value to study on detection methods and effects analysis on the performance of axial deviation angle of tractor-trailer, it can enhance the initiative security.
     Based on the analyses of international researchers'researches on handling stability of tractor-semi trailer quantitatively, in order to make a comprehensive study on the mechanism of effects of axial deviation angle on driving stability of tractor-semi trailer, in this paper, dynamics and kinematics analysis of the tractor-trailer system was carried out with the application of virtual prototyping technology. The mathematical model of driving stability of tractor-semi trailer and virtual prototype were established. Then the effect of axial deviation angle on driving stability of tractor-semi trailer was further explored, and the detection methods of axial deviation angle were involved. The research mainly included the following aspects.
     (1)In this paper, the axial deviation angle was interpreted, the deviation causes of carrying axletree were introduced briefly from manufacturing and maintenance; at the same time, the mechanism of effects of axial deviation angle on the performance of straight line driving, braking, handling stability and tire wear were analyzed qualitatively with the application of relevant theory of dynamics and kinematics, the necessity and feasibility of study on effects on the performance of axial deviation angle of tractor-trailer were discussed as well.
     (2)In this paper, applied with the tractor dynamics principle, dynamic and kinematic analyses of driving stability were analyzed considering evaluation parameters, tire properties and freedom degrees. Steady-state steering characteristics and transient response characteristics of angle step input of the tractor-trailer were analyzed, and the steady-factor' influence about steering was discussed. The basic theory of braking stability was analyzed.
     (3) In this paper, two detection methods was studied.
     ①The detection method of semi-trailer carrying axletree deviation angle based on machine visual, adopting the machine visual method to capture the print of the tyre and the panorama picture of the semi-trailer. Using the matlab software to carry through the disposing of the image, got the printed centre of the axle and the angle between steering orientation and detecting platform's centre line of the semi-trailer. And use the data to work out the result of the carrying axletree deviation angle of the semi-trailer. The emphasis was to analyze and compare with the different kinds of classical operators for edger detecting. At last, choose the fitting canny operator as the operator of the detecting system.
     ②The detection method of semi-trailer carrying axletree deviation angle based on laser ranging technology, the detection trestle was fixed to the draft key vertically. The laser range finder was fixed on the bottom of the detection trestle and emitted laser, measuring the horizontal projection distance between the left and right edge in front and behind of the wheels and the point of semi-trailer draft key. The rotation angle of laser range finder was measured by the photoelectric encoder, according to the value of the distance and angle to calculate the semi-trailer axial deviation angle. The emphasis was the introduction of laser ranging and advanced sensor technologies, the precision, efficiency and adaptability were enhanced.
     (4) In order to analyze the effects of axial deviation angle on the performance of tractor-semi trailer, the object for study was actual model in this paper. After analyzed and simplified in a certain extent, separately the chassis models, steering system model, draft model, suspension model, tires and ground were established, and steering drive, drive torque and braking torque were added, thereby the whole model of tractor-semi trailer was established. Through the PID controller, the speed and the braking force of tractor-semi trailer were controlled.
     (5) According to national standards, the typical steady-state steering and braking tests were applied to real vehicle and virtual prototype simulation tests. The five rounds of device, wireless accelerometer, wireless strain sensors, potentiometers and other advanced equipments were applied to real vehicle tests; they all had high precision and sensitivity. Through tests, the correctness of the model was verified. The conclusion was got that the tractor-semi trailer virtual prototype had good consistency with the real vehicle, after comparing and analysis of test results between real vehicle tests and virtual prototype simulation tests.
     (6)In this paper, it was attempted to adopt a new analysis method-experimental design technology that was a relatively mature technology. The tests processes were planned rationally and the tests results were analyzed statistically. The parameters analysis tests could be completed with the application of experimental design in various operating conditions. The test system has high simulation, high reliability, full working condition and other characteristics, providing a new research and test method for the research and design of tractor-trailer.
     (7)According to the kinematics and dynamics theory and the virtual prototype, four typical working conditions of straight line driving maintenance, braking performance, steering performance, and transient yaw response characteristics were simulated and analyzed. The typical measurement indicators were analyzed also in all conditions, and the impact assessments were quantized, finally the conclusion could be drawn that axial deviation angle has a obvious impact on the performance of tractor-semi trailer. And it has a theoretical significance and the practical application value to optimize tractor-semi trailer structure and raise the technical level of parametric detection and diagnosis.
     The research and the development work made by this paper is an application of functional virtual prototyping modeling and simulation and practice. Some research fruit is achieved in some areas such as research realization technology and parametric analysis. It has theoretical and practical application value for improving the detection and study technology. At the same time, this paper leads virtual prototyping experimental design techniques into the detection of tractor-trailer performance, realizes the parametric and multi functions process of detection. The results of this paper play a positive role in the development of the tractor-trailer detection.
引文
[1]吕安涛.半挂汽车列车技术发展趋势[J].专用汽车,2001(2):19-20.
    [2]中国经济信息网.中国公路运输行业分析报告[EB/OL],2009.2. http://www.doc88. com/p-99425467559. html.
    [3]中国新闻网.增长迅猛的我国机动车保有量已达到1.8亿辆[EB/OL]. http://www:chinanews. com. cn/auto/auto-zxzz/news/2009/09-09/1857272. shtml,2009-09-09.
    [4]中国汽车技术研究中心,国家机械工业局.GB/T 3730.1-2001,汽车和挂车类型的术语和定义[S]//国家标准化管理委员会.北京:中国标准出版社,2004.
    [5]葛云杰.挂车轮胎非正常损耗的原因分析及对策[J].商用汽车,2004(9):91-92.
    [6]孙志刚.特种半挂汽车列车行驶稳定性研究[D].南京:南京理工大学,1998.
    [7]王东杰.半挂汽车列车弯道行驶横摆稳定性分析[D].青岛:青岛理工大学,2008.
    [8]林慧英.基于立体视觉的汽车车身与车轴位置偏差检测系统的研究[D].长春:吉林大学,2008.
    [9]李钱.半挂车轴偏角对其行驶性能影响的研究[D].长春:吉林大学,2008.
    [10]陈明飞.汽车轴偏角检测研究[D].长春:吉林大学,2003.
    [11]刘超.半挂车承载轴偏斜角检测系统的研究[D].青岛:青岛理工大学,2007.
    [12]龚睿.半挂车承载轴偏斜角检测仪的开发研究[D].长春:吉林大学,2006.
    [13]WILLIAMS D. The Mathematical Theory of the Snaking of Two-Wheel Trailers [J]. Proceedings of the Institution of Mechanical Engineers, Automobile Div ision.1951-1952:175-187.
    [14]ELLIS J R. The Ride and Handling of Semi-Trailer Articulated Vehicle[J]. Automobile Engineer,1966(56):523-529.
    [15]D. Nyuyen and B. widow. The truck back-upper an example of self-learning in Neural Network. Proc. Int. Joint. Conf. Neural Networks[J], June 1989:357-363.
    [16]SCHMID I. Engineering Approach to Truck and Trailer-trains Stability. D244[J], SAE Paper,1968:1-26.
    [17]Kristopher J. Seluga, Richard M. Obert and Irving U. ojalvo. Artieulated Vehiele Yaw Stability DuringBraking-A Parametric Study[J].SAE TECHNICAL PAPER2004-01-2630.
    [18]#12
    [19]赵又群,郭孔辉.汽车操纵性评价的发展、研究意义与基本问题[J].汽车技术,1998(2):1-4.
    [20]#12
    [21]适应汽车列车化公路标准的研究报告[C].交通科学研究院.1959:37-41.
    [22]陈荫三.汽车列车直线行驶的稳定性[C].西安公路学院学术会议论文,1985(8):8—12.
    [23]娄效苏.连接车辆操纵稳定性模拟计算的初步研究[J].河北工学院报,1986(3):26—34.
    [24]蔡世芳,周耕深,苏邑权.结构和使用参数对半挂汽车列车操纵稳定性的影响[J].汽车运输研究,1988(8):75-96.
    [25]郭正康.全挂汽车列车的稳态转向特性[J].汽车技术,1990(8):29-34.
    [26]郭正康.随机制动力矩对重型半挂列车制动稳定性的影响研究[J].汽车工程,1988(1):49-54.
    [27]张海岑.汽车列车操纵稳定性和制动性模拟计算研究[D].北京:清华大学汽车工程系,1992.
    [28]张越今.汽车多体动力学及计算机仿真[M].长春:吉林科学技术出版社,1998.
    [29]王国林等.半挂汽车列车模型的建立与试验[J].农业机械学报,2005(5):17-20.
    [30]刘宏飞.半挂汽车列车直线行驶横向摆振研究[J].汽车技术,2005(1):11-14.
    [31]RobertW. Golaman, Development of a Rollover — Warning Deviee for Road Vehieles[J], Ph. D., DePartment of Meehanieal Engineering, Pennsylvania State University,
    [32]挂车电子制动系统,P_3525_EN_05.pdf,www. knorr —bremse. eom,德国慕尼黑.
    [33]Smith, M. C., Aehievable dynamie response for automotive active suspension[J], Vehiele System Dynamie,24(1)1995.
    [34]中国机械网,http://www. china-machine. com/adv_technology.2003.
    [35]宗长富,麦莉,李雅娟.重型半挂车的动力学建模及侧倾稳定性分析[J].辽宁工业大学学报,2008,28(1):52-55.
    [36]中国专业汽车信息网.衡量汽车的性能的主要指标[EB/OL], http://www.chinazyqc. com/, html. 2009-04.
    [37]关志伟.汽车列车直线行驶稳定性的模型试验研究方法[J].汽车技术,2003(8):65-68。
    [38]董继明.车轮定位参数对汽车行驶性能的影响[J].现代工业商贸,2007,19(10):280-281.
    [39]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [40]董恩国.基于ADAMS的车轮定位参数及转向机构优化设计[D].天津:天津大学,2006.
    [41]陈家瑞.汽车构造(下册)[M].北京:人民交通出版社.1995.
    [42]于尧.基于差动制动的半挂汽车列车稳定性仿真与控制研究[D].长春:吉林大学,2007.
    [43]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [44]夏长高.半挂汽车列车转弯制动性能的模拟计算[J].江苏理工大学学报,1997,18(1):50-55.
    [45]林熊熊.全挂汽车列车弯路运动轨迹计算机仿真[J].汽车工程,1998,20(5):317-319.
    [46]韩忠浩.汽车四轮转向与两轮转向的瞬态响应比较[J].机械设计与制造,2001(1):77-78.
    [47]白冰.全挂汽车列车横向操纵稳定性研究[D].长春:吉林大学,2007.
    [48]刘宏飞.汽车列车高速行驶横向摆振的模拟实验研究[D].长春:吉林大学,2002.
    [49]罗金桥.重型载重汽车行驶稳定性与行驶系结构分析[D].武汉:武汉理工大学,2006.
    [50]刘宏飞.半挂汽车列车横摆动力学仿真及控制策略研究[D].长春:吉林大学,2005.
    [51]刘合法,花家寿.汽车侧倾稳定性的动态仿真(一)—数学模型的建立[J],传动技术,2003, 17(2):25-34.
    [52]张建国,李显生.半挂汽车列车制动稳定性仿真分析[D].长春:吉林大学,2007.
    [53]金明新.国内外半挂车制动标准对比分析[J].专用汽车,1997(2):47-52.
    [54]李显生.商用车行驶安全性及主动横向稳定器的研究[D].长春:吉林大学,2002.
    [55]贾杨成.虚拟样机技术在汽车制动仿真方面应用研究[D].合肥:合肥工业大学,2004.
    [56]姜丰.用多体力学方法研究高速半挂汽车列车动力学[D].北京:清华大学,1994.
    [57]宗振奇.虚拟技术在汽车工业中的应用[J].沈阳大学学报,2005(5):49-52.
    [58]A M C odhams, R L Roebuck, D Cebon and C B Winkler.Dynamic safety of active trailer steering systems, Proceedings of the Institution of Mechanical Engineers[M], Part K: Journal of Multi-body Dynamics. Volume 222, Number 4/2008.
    [59]何焜.特种车辆整车建模与动力学仿真[D].南京:南京理工大学,2005.
    [60]G J Heydinger, M K Salaani, W R Garrott and P A Grygier. Vehicle dynamics modelling for the National Advanced Driving Simulator. Proceedings of the Institution of Mechanical Engineers[M], Part D:Journal of Automobile Engineering. Volume 216, Number 4/2002.
    [61]ZeidA, ChangD. Simulation of multi-body systems for the computer Aided Design of vehiele dynamic control[J]. SAE paper.1991(10):18-19.
    [62]梅奋永.基于虚拟样机技术的汽车操纵稳定性仿真研究[D].合肥:合肥工业大学,2005.
    [63]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [64]陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,1995.
    [65]郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2002.
    [66]包继华,张建武,于岩.汽车整车多体系统动力学建模和仿真[J].计算机仿真,2004,21(1):53-56.
    [67]吴碧磊,秦民.重型牵引车平顺性建模与仿真分析[J].汽车技术,2006(3):12-15.
    [68]黄朝胜等.牵引车—半挂车列车动力学仿真研究[J].汽车工程,2005,27(6):744-750.
    [69]《汽车工程手册》编委会.汽车工程手册(试验篇)[M].北京:人民交通出版社,2000.
    [70]冯向敏.半挂汽车列车的主动侧倾控制[D].长春:吉林大学,2005.
    [71]张建国.半挂汽车列车制动稳定性仿真分析[D].长春:吉林大学,2007.
    [72]王德彬.汽车半挂列车转向特性的研究[J].汽车技术,1988(2):36-45.
    [73]李祥峰,罗新闻,马金刚等.半挂汽车列车转向特性的计算机仿真分析[J].拖拉机与农用运输车,2008,35(3):28-30.
    [74]Pahngroe Oh, Hao Zhou and, Kevin Pavlov. Stability control of combination vehicle[J]. SAE PaPer,2001, No.010138.
    [75]Weiwen(Kevin)Deng, Xiaodi Kang. Parametric Study on Vehiele—Trailer Dynamics for Stability Control[J]. SAE PaPer,2003, No.011321.
    [76]任卫群.车-路系统动力学中的虚拟样机[M].北京:电子工业出版社,2005.
    [77]陈家瑞.汽车构造[M].北京:机械工业出版社.2000.
    [78]A. Hussien Ahmed, A. Shabana, Wei Ji ung Tsung and Micheal R. Fetcho. Dynamic and vibration analys is of a vehicle rear axle system[J].Vehicle System Dynamics, 2000(33):205-231.
    [79]S. Hegazy H.Rahnejat and K. Hussain. Multi-body dynamics in full-vehicle hangding analysis under transient maneuver[J]. Vehicle System Dynamics,2000(34):1-24.
    [80]蔡章林.动力学仿真技术在悬架和整车开发中的应用[D].长春:吉林大学,2004.
    [81]Stefano J. Cassara, David C. Anderon. A Multi-Level Approach For The Validation Of A Tractor-Semitrailer Ride And Handling Model[J]. SAE,2006,01:2694.
    [82]杨国光.如何提高轮转向全挂车行驶稳定性[J].专用汽车,2000(13):56-58.
    [83]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1997.
    [84]秦民.整车动力学控制仿真分析[D].长春:吉林工业大学,2003.
    [85]董华林,吴光强.汽车动力学稳定性控制仿真研究[J].汽车研究与开发,2006(3):41-44.
    [86]关志伟.半挂汽车列车行驶稳定性动力学仿真研究[D].长春吉林大学,2003.
    [87]Chieh Chen. Lateral Control of Commerical Heavy Vehicles [J]. Vehicle System Dynamics, 2000(33):391-420.
    [88]关志伟等.应用虚拟样机技术进行半挂汽车列车制动动力学分析[J].汽车技术,2005(10):17-19.
    [89]Philip M, Leucht. The Directional Dynamics Of The Commercial Tractor-Semitrailer Vehicle During Braking[J]. SAE Trans,700371.
    [90]Ashley L. (Al)Dunn, Gary Heydinger. In-Depth Analysis of the Influence of HighTorque Brakes on the Jackknife Stability of Heavy Trucks[J]. SAE 2003-01-3398.
    [91]吕安涛.半挂汽车列车制动稳定性分析[J].专用汽车,2002(3):3-4.
    [92]江守一郎等.模型试验的理论和应用[M].北京:科学出版社,1982.
    [93]GB/T 6323.6-1994,汽车操纵稳定性试验法稳态回转试验[S].
    [94]JT/T 426-2000,汽车列车性能要求及试验方法[S].
    [95]GB/T 13873-92,货运挂车试验方法[S].
    [96]GB/T 13594-2003,机动车和挂车防抱死制动性能和试验方法[S].
    [97]GB/T 12534-1990,汽车道路试验方法通则[S].
    [98]许洪国,刘宏飞,于增亮.汽车列车横向稳定性研究[J].公路交通科技,2006,23(2):141-150.
    [99]何耀华,方飞.汽车操纵稳定性的计算机仿真研究[J].武汉理工大学学报,2006,28(6):60-62.
    [100]Robert C. Lawson, E. H. Law. Optimization To Improve Lateral Stability Of Tractor Semi-Tr ailers During Steady State Cornering[J]. SAE,2004(1):2690.
    [101]魏功祥.车辆行驶运动稳定性的简化分析[J].济南大学学报,2000(2):43-45.
    [102]姜丰,洪岩,王铁光,贾书惠.半挂汽车列车高速行驶转弯制动特性分析[J].东北大学学报 (自然科学版).1995,19(6):652-655.
    [103]马云杰.车辆弯道制动工况下的动力学分析[J].汽车技术,2005(5):17-20.
    [104]Egon-Christian. The Compatibility of Tractor/Trailer-Combinations During Braking Maneuv ers [J]. Society of Automotive Engineers,973282.
    [105]Myung-Won Suh, Yoon-Ki Park and Seong-Jin Kwon. A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle[J]. SAE 2000-01-3415.
    [106]徐进.汽车制动及操纵稳定性的虚拟试验仿真[D].重庆:重庆交通大学,2006.
    [107]蔡章林,宋传学,安晓鹃.车辆稳态回转特性的虚拟仿真[J].吉林大学学报,2006,36(3):311-314.
    [108]Brain Jujnovich, Comparative Performance Of Semi-trailer Steering Systems [R], University Of Cambridge,7th International Symposium On Heavy Vehicle Weights &dimensions, June 16-202002.
    [109]许洪国,关志伟,刘宏飞.转向盘转角阶跃输入下半挂汽车列车操纵稳定性仿真分析[J].公路交通科技,2004(5):118-120.
    [110]许先锋等.方向盘角阶跃输入的汽车操纵稳定性仿真分析[J/OL]. http://www. minest. n et/ArticleContent. asp?ID=394.
    [111]交通部公路司审定.汽车综合性能检测[M].上海:上海科技文献出版社,1999.
    [112]王凤歧著.汽车诊断技术[M].北京:人民交通出版社,1991.
    [113]张建俊主编.汽车检测与故障诊断技术[M].北京:机械工业出版社,1999.
    [114]苏建,王建强等.汽车前后轴不平行度对汽车使用性能的影响[J].公路交通科技,1998(3):25-29.
    [115]王建强.汽车轴距差检测系统的研究[D].长春:吉林工业大学,1999.
    [116]詹东华.图像处理在汽车轴距差检测中的应用研究[J].东北汽车运输,2003(3):20-23.
    [117]马颂德,张正友.计算机视觉[M].北京:科学出版社,2000.
    [118]朱飞虎.机器视觉及应用[J].自动化博览,2005,22(2):81-83.
    [119]Kenneth, r. castleman著,朱志刚等译[M].数字图像处理.北京:电子工业出版社,1998.
    [120]章毓晋.图像工程—图像分析[M].北京:清华大学出版社,2005.
    [121]郑方,章毓晋.数字信号与图像处理[M].北京:清华大学出版社,2006.
    [122]崔小虹,王茜蒨,阎吉祥.激光原理技术及应用[M].北京:北京理工大学出版社,2006.
    [123]蓝信矩.激光技术[M].武汉:华中科技大学出版社,2004.
    [124]周翰宗.激光技术[M].长沙:湖南科学技术出版社,1981.
    [125]朱相磊,王存记.脉冲—相位式激光测距仪的研究[J].仪器表用户,2004,11(1):3-4.
    [126]刘元鹏,苏建,龚睿,刘凤勇.半挂车承载轴偏斜角对车辆行驶性能影响及检测方法研究[J].公路交通科技,2007,24(5):154-158.
    [127]李洋.汽车轴距差检测仪的检定装置及检定规程的研究[D].长春:吉林大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700