高斯光束圆孔衍射理论在准直系统优化设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线光通信准直系统的数值孔径和焦距是准直系统设计中首先应该确定的参数,本文就准直系统的数值孔径和焦距的优化设计进行了详细的探讨。
     本文主要研究了以下几个问题:
     1).使用基模高斯光束参量方程对半导体激光器光束准直系统的光功率透过率与准直系统的数值孔径的关系进行了研究;
     2).在Richard G.Schell的基础上研究了高斯光束圆孔衍射理论,修正了其中的符号规定使其与现行规定一致,并且拓展了该理论,得出了高斯光束束腰位于孔径平面上或位于孔径平面前方或后方时的高斯光束圆孔衍射场分布及强度分布解析表达式;
     3).应用高斯光束圆孔衍射理论详细研究了准直系统数值孔径与远场横向强度分布的关系;准直系统的象差与远场横向强度分布的关系;
     4).在上述研究的基础上,对准直系统的数值孔径和焦距的优化设计进行了探讨;
     5).本文还对我们感兴趣的两个问题进行了研究:平面波和高斯光束圆孔衍射远场强度分布比较;高斯光束圆孔衍射远场横向光强分布与高斯分布的接近程度。
     本文得出的几个主要结论:
     1) 随着准直系统数值孔径的增大(准直系统焦距保持不变,准直系统等效光瞳增大),远场横向近轴强度先增大后保持该最大值不变;随着准直系统数值孔径的减小(准直系统焦距增大,准直系统等效光瞳保持不变),远场横向近轴强度先增大后减小,存在一个最大值;
     2) 准直系统象差的存在使远场横向近轴强度减小,远场发散角增大;
The numerical aperture and focus in collimating system of wireless optical communication are parameters which should be a priority to make certain in collimating system. Optimize design of the numerical aperture and focus in the system will be detailed in this paper.Mainly subjects studied in it:1). The relation between numerical aperture and the passing power rate of semiconductor laser in collimating system has been studied through the parameter equations of fundamental mode Gaussian beam.2). We have studied the theory of Gaussian beam diffracted by a circular aperture on the basis of Richard .Schell's theory, modified the prescribe of the sign standard in accordance with the actual prescribe as well. Furthermore, the scope of the theory have been worked broadly, coming to an analytical expression of optical field and intensity distribution when the waist of Gaussian beam be located in the plane of circular aperture or front /back of circular aperture.3). We have studied the relationship between numerical aperture of collimating system and far-field intensity distribution in the transverse direction by the theory of Gaussian beam diffracted by a circular aperture.4). Discussion about the optimized design of the numerical aperture and focus of collimating system was followed by above studied.5). Besides, there are still two more interesting subjects studied in the paper: Compared far-field intensity distribution in the transverse direction of plane wave passing through a circular aperture with Gaussian beam; Degree of similarity between far-field intensity distribution in the transverse direction of Gaussian beam diffracted by a circular aperture and a standard Gaussian distribution.
引文
[1].薛琳生,王岩.空间光通信技术的发展与展望.电子器件,2003,Vol26,NO.3:287~294
    [2].吕海寰,蔡剑铭,甘仲民,陈九治.卫星通信系统.人民邮电出版社,1996
    [3]. Chan V W S. Optical Space Communication[J]. IEEE J Quantum Electron. 2002, 6(6): 959~975
    [4]. Mecherle Stephen G, Michael Horstein. Comparison of Radio Frequency and Optical Architectures for Deep-Space Communication via a Relay Satellite [J]. SPIE Proc. 1994, 2123: 36~53
    [5]. Marshalek Robert G, Stephen Mecherle G and Jordan Paul R.System-Level Comparison of Optical and RF Technologies Links circa 2000[J]. SPIE Proc, 1996, 2699: 134~145
    [6]. Clarke A. C. Extra- terrestrial relays[J]. Wireless Word, Oct. 1945, 305
    [7]. James R. Lesh and Ramon DePaula. Overview of NASA R&D in Optical Communications[J]. SPIE Proc. 1995, 2381: 4~11
    [8]. Nykolak G, Szajowski P F, Jacques J. 4X2.5Gb/s 4.4Km WDM free-space link at 1550nm[C]. In: Post deadline paper optical fiber conference, OFC, Feb. 1996, 35~44
    [9]. Szajowski P F, Nykolak G, Auborn J J. Key Elements of High-Speed WDM Terrestrial Free-Space Optical Communications System[J]. SPIE Proc, 2000, 3932: 2~14
    [10]. Korevaar Eric, Hofmeister R J, Schuster J, Chow-Miller C, Aahikari P, Hakakha H, Cuthbert D and Ruigrok R. Design of Satellite Terminal for BMDO Lasercom Technology Demonstration [J]. SPIE Proc, 1995, 2381: 60~71
    [11]. Richard Ruigrok , Prasanna Adhikari, Ron Stieger. Preliminary Tracking Performance of the STRV- Lasercom Transceiver[J]. SPIE Proc, 1996, 2699: 198~209
    [12]. John Schusterm, Harel Hakakaha and Eric Korevaar. Optomechanical Design of STRV-2 Lasercom Transceiver using Novel Azimuth/ Slant Gimbal [J]. SPIE Proc, 1996, 2699: 227~239
    [13]. Eric Korevaar, John Schuster, Prasanna Adhikari, Harel Hakakha. Description of STRV-2 Lasercom Experimental Operations[J]. SPIE Proc, 1997, 2990: 60~69
    [14]. Biswas A, Williams G and Wilson K E. Results of the STRV-2 Lasercom Terminal Evaluation Tests[J]. SPIE Proc, 1998, 3266: 2~13
    [15]. Eric Korevaar, John Schuster, Harel Hakakha, Ron Stieger, Prasanna Adhikari. Design of Ground Terminal for STRV-2 Satellite-to-Ground Lasercom Experiment[J]. SPIEProc, 1998, 3266: 153~164
    [16]. Fletcher G. D. Hicks T. R. Laurent B. The SILEX optical interorbit link experilnent[J]. Electronics &Communication Engineering Journal, 1991, 3 (6): 273~279
    [17]. Popescu A F, Furch B. Status of the European Developments for Lser Intersatellite Communications [J]. SPIE Proc, 1993, 1866: 10~20
    [18]. Pribil K, Serbe Ch, Wandernoth B, Ch. Rapp. SOLACOSYKS-an Optical High Dataarate Communication System for Intersatellite Link Applications[J]. SPIE Proc, 1995, 2381: 83~88
    [19]. Homayoon Ansari. Digital Control Design of a CCD-based Tracking Loop for Precision Beam Pointing[J]. SPIE Proc, 1994, 2123: 328~333
    [20]. LeeAnn Voisinet. Control Processing System Architecture for the Optical Communication Demonstrator [J]. SPIE Proc, 1994, 2123: 393~398
    [21].王世华.自聚焦光纤对半导体激光束的准直研究.激光技术,1998,Vol22,No.3:163~165
    [22].严瑛白,王超,邬敏贤,等.半导体激光器的二元光学消像散准直器件.红外与激光工程,1996,Vol.25,No.5:36~42
    [23].陈颖,杨华军,邱琪,等.半导体激光器的衍射准直透镜的优化设计.电子科技大学学报,2003,Vol.32,No.2:129~132
    [24].刘肖民.半导体激光器光学系统准直特性的研究.应用光学,2000,Vol.21,No.6:13~24
    [25].曾小东,于常青,詹玉书.半导体激光器光波准直特性研究.光学学报,1999,Vol.19,No.3:295~298
    [26].王秀琳,黄文财,郭福源.导体激光束准直系统的研究.应用光学,1999,Vol.20No.1:1~5
    [27]. Richard G. Schell and George, Tyras. Irradiance from an Aperture with a Truncated-Gaussian Field Distribution. J. Opt. Soc. Am, 1971, Vol. 61, No. 1: 31~35
    [28].周炳琨,高以智,陈佣嵘,等.激光原理.国防工业出版社,2000:79~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700